AccScience Publishing / AJWEP / Volume 19 / Issue 5 / DOI: 10.3233/AJW220073
RESEARCH ARTICLE

Regulatory Effect of Thyroxine on Calcium and Phosphorus Metabolism in Tissues of Common Indian Toad

K. Mohanty 1 S. Pattnaik 2 G. Mishra 2 B.B. Kar 3*
Show Less
1 G.C College, Ramachandrapur, Jajpur, Odisha
2 Berhampur University, Berhampur, Odisha
3 KIIT University, Bhubaneswar, Odisha
AJWEP 2022, 19(5), 73–82; https://doi.org/10.3233/AJW220073
Submitted: 22 May 2022 | Revised: 25 August 2022 | Accepted: 25 August 2022 | Published: 16 September 2022
© 2022 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Thyroxine (T4) plays a vital role in the metabolic processes of animals. It influences the storage and  mobilisation of minerals and their utilisation according to the requirement of the body. It is also involved in the  early development of vertebrates, especially in amphibian metamorphosis. It has shown anabolic and catabolic  effects at a lower dose and higher dose, respectively. The present study aims to identify the role of thyroxine in  regulating calcium and phosphorous metabolism in the blood, muscle and bone tissues of Bufo melanostictus.  Toads of various sizes and different age groups were chosen, showing a positive correlation between body weight  and snout to vent length, indicating overall continuous growth as observed for a large number of poikilothermic  animals. As per an earlier report, thyroxine has been shown to have a direct catabolic effect on bone mineral  homeostasis leading to an increase in bone mineral resorption and calcium loss through the kidney. Results of the  present study indicate that thyroxine treatment in Bufo melanostictus caused depletion of calcium and phosphorous  in muscle and bone, while their level increased in the serum at both doses (0.5 µg/gm and 2 µg/gm) during short  term i.e. a one-day T4 treatment. Such results are very much consistent with many of the earlier obscurations that,  T4 causes an increase in serum calcium and phosphorous levels, while their level in muscle and bone decreased.  When the level of these two minerals falls in the serum due to any other condition, the bone resorption under  the influence of thyroxine maintains the concentration in serum, consequently, there is a loss in bone density due  to resorption and in muscle due to utilisation. However, if the exogenous supply is adequate, the loss caused as  above is compensated for, in both bone and muscle.

Keywords
Calcium
phosphorus
thyroxine (T4)
Bufo melanostictus.
Conflict of interest
The authors declare they have no competing interests.
References

Amanzadeh, J. and R.F. Reilly (2006). Hypophosphatemia:  an evidence-based approach to its clinical consequences  and management. Nat. Clin. Pract. Nephrol., 2: 136-148. 

Andia, B.N. (2000). Correlation between skeletochronology  and some biochemical parameters in bones of some  amphibian species, Ph.D. thesis, Berhampur University,  Odisha, India.

Andia, B.N., Dixit, P.K., Behera, S., Mishra, G. and  H.N. Behera (2009). Age related changes in mineral  and collagen in long bones of paddy field frog, Rana  limnocharis. The ICFAI J. Life Sci., III(2): 14-23. 

Begum, K.A., Behera, H.N. and B.K. Patnaik (1984). Thyroid  hormone and carbohydrate metabolism of brain in teleost,  Chana punctatus, 1. Effect of T4 and thiourea on succinic  dehydrogenase (SDH) activity and protein content. Gen.  Comp. Endocrinol., 53: 402.

Berndt, T.J., Schiavi, S. and R. Kumar (2005). “Phosphatonins”  and the regulation of phosphorus homeostasis. Am. J.  Physiol. Renal Physiol., 289: F1170-F1182.

  Brown, E.M. and S.C. Hebert (1997). Calcium-receptorregulated parathyroid and renal function. Bone, 20: 303- 309.

  Brown, E.M. (1982). Parathyroid hormone secretion in vivo.  Regulation by calcium and other secretogogues, Minor  Electrolyte Metab., 8(3-4): 130-150.

  Clark, E.P. and J.B. Collip (1925). A study of the Tisdall  method for the determination of blood serum calcium with  a suggested modification. J. Biol. Chem., 63(2): 461-464. 

Fiske, C.H. and Y. Subbarow (1925). The colorimetric  determination of phosphorous. J. Biol. Chem., 66: 375. 

Gaasbeek, A. and A.E. Meinders (2005). Hypophosphatemia:  An update on its etiology and treatment. Am J. Med.,  118: 1094.

Ghosh, R.K. (1982). Effect of thyroxine on protein and  nucleic acid content of different parts of brain of Singi fish  (Heteropneustes fossilis). Endocrinologic., 79: 355-229.

Goodman, W.G. (2005). Calcium and phosphorus metabolism  in patients who have chronic kidney disease. Med. Clin.  N. Am., 89: 631-647.

Hassan, E.E. (2013). Assessment of serum levels of calcium  and phosphorus in Sudanese patient with hypothyroidism.  Asian Journal of Biomedical and Pharmaceutical Sciences.  3: 25.

 Holick, M.F. (2004). Sunlight and vitamin D for bone  health and prevention of autoimmune diseases, cancers,  and cardiovascular disease. Am. J. Clin. Nutr., 80: 1678S-1688S. 

Kramer, B. and F.F. Tisdall (1921). A simple technique for the  determination of calcium and magnesium in small amounts  of serum. J. Biol. Chem., 47(3): 475-481.

Kumar, R. (1991). Vitamin D and calcium transport. Kidney  Int., 40(6): 1177-1189.

Lamber, T.T., Bindels, R.J. and J.G. Hoenderop (2006).  Coordinated control of renal calcium ion handling. Kidney Int., 69(4): 650-654.

Manicourt. D., Detester, M.N., Brauman, H. and J. Corvilain  (1979). Disturbed mineral metabolism in hyperthyroidism:  Good correlation with tri-iodothyronine. Clin Endocrinol  (Oxf), 10: 407-412.

Manzon, R.G. and J.Y. Houston (1997). The effects of  exogenous thyroxine (T₄) or triiodothyronine (T₃), in the presence and absence of potassium perchlorate on  the incidence of metamorphosis and on serum T₄ and T₃ concentrations in larval sea lampreys (Petromyzon marinus  L). Gen. Comp. Endocrinol., 106(2): 211-220.

Medda, A.K. and A.K. Ray (1979). Effect of thyroxine and  analogs on protein and nucleic acid contents of liver and  muscle of lata fish (Ophiocephalus punctatus). Gen. Comp.  Endocrinol., 37: 74.

Mosekilde, L. and M.S. Christensen (1977). Decreased  parathyroid function in hyperthyroidism: Interrelationship  between serum parathyroid hormone, calcium phosphorus  metabolism and thyroid function. Acta Endocrinol  (Copenh), 84: 566-575. 

Mosekilde, L., Eriksen, E.F. and P. Charles (1990). Effects  of thyroid hormones on bone & mineral metabolism.  Endocrinol. Metab . Clin., 19: 35-63. 

Mundy, G.R., Shapiro, J.L., Bandelin, J.G., Canalis, E.M. and  L.G. Raisz (1976). Direct stimulation of bone resorption  by thyroid hormones. J. Clin. Invest., 58(3): 529-534.

Naderi, A.SA. and R.F. Reilly (2010). Hereditary disorders  of renal phosphate wasting. Nat. Rev.Nephrol., 6: 657-665.

Pattnaik, S., Mohanty, K., Pati, S. and G. Mishra (2015).  Some Aspects of Calcium and Phosphorus Metabolism  in Liver Tissue of Thyroxine Treated Duttaphrynus  melanostictus. Applied Science and Advanced Materials  International, 6: 171-175. 

Paul, A.K. and A.K. Medda (1981). Comparative study of  thyroxine-induced changes in liver of different vertebrates.  In: Advance Notes on Symposia and Discussion, Section  of Physiology, Paper presented at the 68th Indian Science  Congress (Abstract), Varanasi, p. 8.

Prie, D., Beck, L., Urena, P. and G. Friedlander (2005).  Recent findings in phosphate homeostasis. Curr Opin  Nephrol Hypertens, 14: 318-324.

Qin, C., Baba, O. and W.T. Butler (2004). Post-translational  modifications of sibling proteins and their roles in  osteogenesis and dentinogenesis. Crit. Rev. Oral Biol.  Med., 15(3): 126-136. 

Ramasamy, I. (2006). Recent advances in physiological  calcium homeostasis. Clin. Chem. Lab. Med., 44(3): 237-273. 

Ray, A.K. and A.K. Dasgupta (1981). Thyroid hormone action  in fish. In: Advance Notes on Symposia and Discussion,  Section of Physiology, Paper presented at the 68th Session  of the Indian Science Congress, Varanasi, p. 13.

Rowe, P.S.N. (2004). The wrickkened-pathways of FGF23,  MEPE and PHEX. Crit. Rev. Oral Biol. Med., 15: 264-281.  Storz, B.L. (2003). The Role of Thyroxine in Spade foot  Toad Development. Electronic Theses, Treatises and  Dissertations. Paper, 1553. 

White, B.A. and C.S. Nicoll (1982). Hormonal control of  amphibian metamorphosis. L.I. Gilbert and E. Friedinceds  (Eds.), In: Metamorphosis, New York. pp. 363-396.

White, K.E., Larsson, T.E. and M.J. Econs (2006). The role of  specific genes implicated as circulating factors in normal  & disordered phosphate homeostasis: Frizzled related  protein- 4, matric extracellular phosphoglycoprotein, and  fibroblast growth factor 23. Endocr. Rev., 27: 221.

Zoller, R.T. (2003). Commentary: Transplacemental thyroxine  and fetal brain development. JCI, 111: 1073-1082.

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing