AccScience Publishing / AJWEP / Volume 14 / Issue 1 / DOI: 10.3233/AJW-170001
RESEARCH ARTICLE

Effect of South China Sea Water on Corrosion Behaviour of Copper Alloy and Mild Steel

Z.M. Siddiqi1* d M.M. Amin2
Show Less
1 Jubail University College, P.O. Box 10074, Jubail Industrial City 31961, KSA
2 University Malaysia, Perlis, 02600 Jejawi, Perlis, Malaysia
AJWEP 2017, 14(1), 1–8; https://doi.org/10.3233/AJW-170001
Submitted: 13 May 2016 | Revised: 30 November 2016 | Accepted: 30 November 2016 | Published: 18 January 2017
© 2017 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

 The oxidation behaviour of copper alloy and mild steel were investigated in South China Seawater at temperatures around 50° C for a period of 10 h. A procedure was applied to measure the pH of the seawater at elevated temperature. The susceptibility to heavy internal oxidation increases with increasing time. A mechanism involving chloride and oxygen dissolution in the alloy matrix as well as internal oxidation, exhibits mass gains throughout the experiment. Immersed in South China Seawater, the alloy of incomplete recrytallisation showed thick, loose and porous films, of which the inner layer was metallic oxides/chlorides and the outer layer contained a great amount of seawater species, and of which the underlying substrate was found with severe inter-granular corrosion. Overall, the South China Seawater species have a deleterious effect on the surface of the alloy and rapid degradation is noted. The scale morphologies were determined by Optical and Scanning Electron Microscopic techniques.

Keywords
Metallic oxides
seawater
copper alloy
scale morphologies
Conflict of interest
The authors declare they have no competing interests.
References

Alloy Guide (2016). First copper Technology Co., Ltd.  (FCTC) Alloy Guide (1), http://www.fcht.com.tw/english/ AlloyGuideEng.pdf, accessed on 23/3/2016.

Amin, M.M., Nik, W.B.W. and K. Yunus (2002). Oxidation  Behavior of Low Carbon Steel in Natural Water. Orient.  J. Chem., 18(2): 183-86.

Amin, M.M. (1997). The CsCl- and CsNO3-induced high  temperature oxidation of Nimonic-90 alloy at 1123 K.  Appl. Surf. Sci., 115: 355-360.

Amin, M.M. and M.B. Ahmad (1995). KNO3- and K2CO3- induced hot corrosion behaviour of M-21 alloy at 900°C.  Corros. Sci. Protect. Tech., 7(4): 321-326.

Akhir, M.F.M., Zakaria, N.Z. and F. Tangang (2014).  Inter-monsoon Variation of Physical Characteristics and  Current Circulation along the East Coast of Peninsular  Malaysia. International Journal of Oceanography, Article  ID 527587.

Al-Hashem, A., Crew, J. and A. Al-Sayeh (1996). ErosionCorrosion Performance of Nickel-base and Copperbased Alloys in the Arabian Gulf Seawater. In: NACE,  Corrosion, Houston, Texas. Paper No. 498.

Awad, N.K., Ashour, E.A. and N.K. Ahmad (2015).  Unravelling the composition of the surface layers formed  on Cu, Cu-Ni, Cu-Zn and Cu-Ni-Zn in clean and polluted  environments. Applied Surface Science, 346: 158-164.

Badawy, W.A., Al-Kharafi, F.M. and A.S. El-Azab (1999).  Electrochemical behaviour and corrosion inhibition of Al,  Al-6061 and Al-Cu in neutral aqueous solution. Corrosion  Science, 41: 709-727.

Chen,W., Hao, L., Dong, J. and W. Ke (2014). Effect of  sulphur dioxide on the corrosion of low alloy steel  in simulated coastal industrial atmosphere. Corrosion  Science, 83: 155-163.

DOE (Department of Environment Malaysia) (2008).  Malaysia Environmental Quality Report 2007. Petaling  Jaya: Department of Environment, Ministry of Natural  Resources and Environment, Malaysia.

Grass, G., Rensing, C. and C. Solioz (2011). Metallic Copper  as an Antimicrobial Surface. Appl. Environ. Microb., 77: 1541-1547.

Gouda, V.K. and W.T. Reid (1988). KSIR Technical Report  2767. 

Horton, D.J., Ha, H., Foster, L.L., Bindig, H.J. and J.R.  Scully (2015). Tarnishing and Cu Ion release in Selected  Copper-Base Alloys: Implications towards Antimicrobial  Functionality. Electrochimica Acta, 169: 351-366.

Ikechukwu, A.S., Obioma, E. and N.H. Ugochukwu (2014).  Studies on Corrosion Characteristics of Carbon Steel  Exposed to Na2CO3, Na2SO4 and NaCl Solutions of  Different Concentrations. The International Journal of  Engineering and Science (IJES), 3(10): 48-60.

Kok, P.H., Akhir, M.F. and F.T. Tangang (2015). Thermal  frontal zone along the east coast of Peninsular Malaysia.  Continental Shelf Research, 110: 1-15.

Macdonald, D.D., Syrett, B.C. and S.A. Wing (1979). TheCorrosion of Cu-Ni Alloys 706 and 715 in Flowing Sea  Water. II – Effect of Dissolved Sulfide. Corrosion, 35(8): 367.

Laque, F.L. (1975). Marine Corrosion, John Wiley and Sons,  New York.

Lawler, D.M. (2004). Turbidimetry and nephelometry. In: Townshend, A. (Ed.) Encyclopedia of Analytical Science,  2nd edition. Academic Press, London.

MaCafferty, E. (2003). Sequence of Steps in the Pitting  of Aluminum by Chloride Ions. Corrosion Science, 45: 1421-1438.

Malik, A.U., Amin, M.M. and S. Ahmed (1984). Hot  Corrosion Behaviour of 18Cr-8Ni Austenitic Steel in  Presence of Na2SO4 and Transition Metal Salts. Trans.  Jpn. Inst. Met., 25: 168-178.

Melchers, R.E. (2015). Effect of Water Nutrient Pollution  on Long-Term Corrosion of 90:10 Copper Nickel Alloy. Materials, 8(12): 8047-8058.

Olesen, B.H., Nielsen, P.H. and Z. Lewandowski (2000).  Effect of biomineralized manganese on the corrosion  behavior of C1008 mild steel. Corrosion, 15(1): 80-89.

Santo, C.E., Lam, E.W., Elowsky, C.G., Quaranta, D.,  Domaille, D.W., Chang, C.J. and G. Grass (2011).  Bacterial killing by dry metallic copper surfaces. Appl  Environ Microb., 77: 794-802.

Saricimen, H., Quddus, A. and O.A. Eid (2011). Corrosion  behaviour of cast iron exposed to Arabian Gulf environment.  Anti-Corrosion Methods and Materials, 58/6: 303-311.

Satpathy, K.K., Mohanty, A.K., Sahu, G., Sarguru, S.,  Sarkar, S.K. and U. Natesan (2011). Spatio-temporal  variation in physicochemical properties of coastal waters  off Kalpakkam, southeast coast of India during summer,  pre-monsoon and post-monsoon period. Environ. Monit.  Assess., 180: 41-62.

Sudha, V.B.P., Ganesan, S., Pazhani, G.P., Ramamurthy, T.,  Nair, G.B. and P. Venkatasubramanian (2012). Storing  drinking-water in copper pots kills contaminating  diarrheagenic bacteria. J. Health Popul. Nutr., 30: 17-21.

Sujaul, I.M., Hossain, M.A., Nasly, M.A. and M.A. Sobahan  (2013). Effect of Industrial Pollution on the spatial  variation of Surface Water Quality. American Journal of  Environmental Science, 9(2), 120-129.

Trabanell, G. and E.F. Mansfeld (1987). Corrosion  Mechanism. Marcel Dekkar, New York. 

Wang Yangang, W., Xinghua, T., Yong, J., Yong, L. and Z.  Linsen (2012). Research on corrosion characteristics of  mild steel in sea water at Weihai. Applied Mechanics and  Materials, 229-231: 31-34.

Yap, C.K., Choh, M.S., Edward, B.F., Ismail, A. and S.G.  Tan (2006). Comparison of heavy metal concentrations  in surface sediment of Tanjung Piai wetland with other  sites receiving anthropogenic inputs along the south  western coast of Peninsular Malaysia. Wetland Science,  4(1): 48-57.

Yap, C.K., Fairuz, M.S., Yeow, K.L., Hatta, M.Y., Ismail,  A.. Ismail, A.R. and S.G. Tan (2009). Dissolved Heavy  Metals and Water Quality in the Surface Waters of Rivers  and Drainages of the West Peninsular Malaysia. Asian  Journal of Water, Environment and Pollution, 6(3): 51-59.

Yap, C.K., Chee, M.W., Shamarina, S., Edward, F.B.,  Chew, W. and S.G. Tan (2011). Assessment of Surface  Water Quality in the Malaysian Coastal Waters by Using  Multivariate Analyses. Sains Malaysiana, 40(10): 1053- 1064.

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing