AccScience Publishing / TD / Online First / DOI: 10.36922/TD025110020
REVIEW ARTICLE

Mechanisms of resistance to immunotherapy in lung cancer: A review

Helmut H. Popper1*
Show Less
1 Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Styria, Austria
Tumor Discovery, 025110020 https://doi.org/10.36922/TD025110020
Received: 11 March 2025 | Revised: 13 May 2025 | Accepted: 30 May 2025 | Published online: 31 December 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Pulmonary carcinomas have developed several mechanisms to evade immune cell attack. Among these mechanisms, the programmed death 1 (PD-1), programmed death ligand 1 and 2 (PD-L1/2), and the cytotoxic T-lymphocyte-associated protein 4 system have garnered particular interest. Tumor cells and lymphocytes express ligands for PD-1, which induce apoptosis or exhaustion of CD8 T cells. This further impacts the microenvironment (MEV) composed of cytokines, leading to immune tolerance. Therapies targeting PD-L1 expression have shown significant success in restoring the function of T-lymphocytes against tumor cells. Antibodies against the PD-1 receptor have been developed and tested in clinical trials with positive outcomes. Immunohistochemistry tests for PD-1 and PD-L1 expression are used to select patients likely to respond to this therapy. A strong PD-L1 staining in at least 1% of tumor cells and/or lymphocytes (or 50% in one trial) was considered a positive result and was associated with patient prognosis. This criterion was used to determine eligibility for anti-PD-L1 therapy. However, PD-L1 expression thresholds vary across clinical trials and therapeutic agents, with some drugs requiring PD-L1 positivity in ≥50% of tumor cells. Based on data from previous clinical trials, most patients were diagnosed using this simple staining method. However, false-positive and false-negative results have been reported in some patients. Resistance and immune escape mechanisms of pulmonary carcinoma have been extensively investigated. Some of these mechanisms involve the metabolic reprogramming of tumor cells within the tumor MEV. Several immune checkpoint molecules have been identified and further tested. In addition, the composition of the tumor stroma, including various types of lymphocytes and dendritic cells, has gained considerable attention.

Keywords
Programmed death 1-programmed death ligand 1
Cytotoxic T-lymphocyte-associated protein 4
Lymphocyte activation gene 3
T-cell immunoglobulin and mucin domain-3
Glucocorticoid-induced tumor necrosis factor receptor family-related protein
Cytotoxic T cell
Dendritic cell
Metabolites
Funding
None.
Conflict of interest
Helmut H. Popper is the Editor-in-Chief of this journal and Guest Editor of this special issue, but was not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. The author declared that he has no known competing financial interests or personal relationships that could have influenced the work reported in this paper.
References
  1. Dall’Era M, Davis J. CTLA4Ig: A novel inhibitor of costimulation. Lupus. 2004;13(5):372-376. doi: 10.1191/0961203303lu1029oa

 

  1. Peggs KS, Quezada SA. PD-1 blockade: Promoting endogenous anti-tumor immunity. Expert Rev Anticancer Ther. 2012;12(10):1279-1282. doi: 10.1586/era.12.109

 

  1. Velcheti V, Rimm DL, Schalper KA. Sarcomatoid lung carcinomas show high levels of programmed death ligand-1 (PD-L1). J Thorac Oncol. 2013;8(6):803-805. doi: 10.1097/JTO.0b013e318292be18

 

  1. Sznol M, Chen L. Antagonist antibodies to PD-1 and B7-H1 (PD-L1) in the treatment of advanced human cancer. Clin Cancer Res. 2013;19(5):1021-1034. doi: 10.1158/1078-0432.ccr-12-2063

 

  1. Hamid O, Carvajal RD. Anti-programmed death-1 and anti-programmed death- ligand 1 antibodies in cancer therapy. Expert Opin Biol Ther. 2013;13(6):847-861. doi: 10.1517/14712598.2013.770836

 

  1. Brahmer JR, Tykodi SS, Chow LQM, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N EnglJ Med. 2012;366(26):2455-2465. doi: 10.1056/NEJMoa1200694

 

  1. Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443-2454. doi: 10.1056/NEJMoa1200690

 

  1. Akbay EA, Koyama S, Carretero J, et al. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov. 2013;3(12):1355-1363. doi: 10.1158/2159-8290.cd-13-0310

 

  1. Davies M. New modalities of cancer treatment for NSCLC: Focus on immunotherapy. Cancer Manag Res. 2014;6:63-75. doi: 10.2147/cmar.s57550

 

  1. Yang CY, Lin MW, Chang YL, Wu CT, Yang PC. Programmed cell death-ligand 1 expression in surgically resected stage I pulmonary adenocarcinoma and its correlation with driver mutations and clinical outcomes. Eur J Cancer. 2014;50:1361-1369. doi: 10.1016/j.ejca.2014.01.018

 

  1. Ohaegbulam KC, Assal A, Lazar-Molnar E, Yao Y, Zang X. Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway. Trends Mol Med. 2015;21(1):24-33. doi: 10.1016/j.molmed.2014.10.009

 

  1. Pan ZK, Ye F, Wu X, An HX, Wu JX. Clinicopathological and prognostic significance of programmed cell death ligand1 (PD-L1) expression in patients with non-small cell lung cancer: A meta-analysis. J Thorac Dis. 2015;7(3):462-470. doi: 10.3978/j.issn.2072-1439.2015.02.13

 

  1. Karachaliou N, Cao MG, Teixido C, et al. Understanding the function and dysfunction of the immune system in lung cancer: The role of immune checkpoints. Cancer Biol Med. 2015;12(2):79-86. doi: 10.7497/j.issn.2095-3941.2015.0029

 

  1. Teixido C, Karachaliou N, Gonzalez-Cao M, Morales- Espinosa D, Rosell R. Assays for predicting and monitoring responses to lung cancer immunotherapy. Cancer Biol Med. 2015;12(2):87-95. doi: 10.7497/j.issn.2095-3941.2015.0019

 

  1. Bai R, Li L, Chen X, et al. Advances in novel molecular typing and precise treatment strategies for small cell lung cancer. Chin J Cancer Res. 2021;33(4):522-534. doi: 10.21147/j.issn.1000-9604.2021.04.09

 

  1. Chang YL, Yang CY, Huang YL, Wu CT, Yang PC. High PD-L1 expression is associated with stage IV disease and poorer overall survival in 186 cases of small cell lung cancers. Oncotarget. 2017;8:18021-18030. doi: 10.18632/oncotarget.14935

 

  1. Chung HC, Piha-Paul SA, Lopez-Martin J, et al. Pembrolizumab after two or more lines of previous therapy in patients with recurrent or metastatic SCLC: Results from the KEYNOTE-028 and KEYNOTE-158 studies. J Thorac Oncol. 2020;15(4):618-627. doi: 10.1016/j.jtho.2019.12.109

 

  1. Ochoa CE, Mirabolfathinejad SG, Ruiz VA, et al. Interleukin 6, but not T helper 2 cytokines, promotes lung carcinogenesis. Cancer Prev Res (Phila). 2011;4(1):51-64. doi: 10.1158/1940-6207.CAPR-10-0180

 

  1. Lu J, Lee-Gabel L, Nadeau MC, Ferencz TM, Soefje SA. Clinical evaluation of compounds targeting PD-1/PD-L1 pathway for cancer immunotherapy. J Oncol Pharm Pract. 2014;21:451-467. doi: 10.1177/1078155214538087

 

  1. O’Byrne K. Stimulating immune responses to fight cancer: Basic biology and mechanisms. Asia Pac J Clin Oncol. 2015;11 Suppl 1:9-15. doi: 10.1111/ajco.12410

 

  1. Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373(2):123-135. doi: 10.1056/NEJMoa1504627

 

  1. Popper H, Gruber-Mösenbacher U, Pall G, et al. The 2020 update of the recommendations of the Austrian working group on lung pathology and oncology for the diagnostic workup of non-small cell lung cancer with focus on predictive biomarkers. Magaz Eur Med Oncol. 2020;13:11-26. doi: 10.1007/s12254-019-00565-0

 

  1. Havel JJ, Chowell D, Chan TA. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat Rev Cancer. 2019;19(3):133-150. doi: 10.1038/s41568-019-0116-x

 

  1. Pujol JL, De Pas T, Rittmeyer A, et al. Safety and immunogenicity of the PRAME cancer immunotherapeutic in patients with resected non-small cell lung cancer: A phase I dose escalation study. J Thorac Oncol. 2016;11(12):2208-2217. doi: 10.1016/j.jtho.2016.08.120

 

  1. Tveita AA, Schjesvold F, Haabeth OA, Fauskanger M, Bogen B. Tumors escape CD4+ T-cell-mediated immunosurveillance by impairing the ability of infiltrating macrophages to indirectly present tumor antigens. Cancer Res. 2015;75(16):3268-3278. doi: 10.1158/0008-5472.can-14-3640

 

  1. Martin K, Schreiner J, Zippelius A. Modulation of APC function and anti-tumor immunity by anti-cancer drugs. Front Immunol. 2015;6:501. doi: 10.3389/fimmu.2015.00501

 

  1. Scheel AH, Ansen S, Schultheis AM, et al. PD-L1 expression in non-small cell lung cancer: Correlations with genetic alterations. Oncoimmunology. 2016;5(5):e1131379. doi: 10.1080/2162402x.2015.1131379

 

  1. Deeb KK, Hohman CM, Risch NF, Metzger DJ, Starostik P. Routine clinical mutation profiling of non-small cell lung cancer using next-generation sequencing. Arch Pathol Lab Med. 2015;139(7):913-921. doi: 10.5858/arpa.2014-0095-OA

 

  1. Yang W, Lee KW, Srivastava RM, et al. Immunogenic neoantigens derived from gene fusions stimulate T cell responses. Nat Med. 2019;25(5):767-775. doi: 10.1038/s41591-019-0434-2

 

  1. Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124-128. doi: 10.1126/science.aaa1348

 

  1. Saito K, Nakayama E, Valmori D. Immune responses to the cancer testis antigen XAGE-1b in non small cell lung cancer caucasian patients. PLoS One. 2016;11(3):e0150623. doi: 10.1371/journal.pone.0150623

 

  1. Ohue Y, Kurose K, Nozawa R, et al. Survival of lung adenocarcinoma patients predicted from expression of PD-L1, galectin-9, and XAGE1 (GAGED2a) on tumor cells and tumor-infiltrating T cells. Cancer Immunol Res. 2016;4(12):1049-1060. doi: 10.1158/2326-6066.cir-15-0266

 

  1. Riaz N, Havel JJ, Makarov V, et al. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell. 2017;171(4):934-949.e16. doi: 10.1016/j.cell.2017.09.028

 

  1. Sarkizova S, Hacohen N. How T cells spot tumour cells. Nature. 2017;551(7681):444-446. doi: 10.1038/d41586-017-07267-9

 

  1. Balachandran VP, Luksza M, Zhao JN, et al. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature. 2017;551(7681):512-516. doi: 10.1038/nature24462

 

  1. Luksza M, Riaz N, Makarov V, et al. A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature. 2017;551(7681):517-520. doi: 10.1038/nature24473

 

  1. Ruf B, Greten TF, Korangy F. Innate lymphoid cells and innate-like T cells in cancer - at the crossroads of innate and adaptive immunity. Nat Rev Cancer. 2023;23(6):351-371. doi: 10.1038/s41568-023-00562-w

 

  1. Mayoux M, Roller A, Pulko V, et al. Dendritic cells dictate responses to PD-L1 blockade cancer immunotherapy. Sci Transl Med. 2020;12(534):aav7431. doi: 10.1126/scitranslmed.aav7431

 

  1. Song Q, Shang J, Zhang C, Chen J, Zhang L, Wu X. Transcription factor RUNX3 promotes CD8+ T cell recruitment by CCL3 and CCL20 in lung adenocarcinoma immune microenvironment. J Cell Biochem. 2020;121(5- 6):3208-3220. doi: 10.1002/jcb.29587

 

  1. Pereira C, Gimenez-Xavier P, Pros E, et al. Genomic profiling of patient-derived xenografts for lung cancer identifies B2M inactivation impairing immunorecognition. Clin Cancer Res. 2017;23(12):3203-3213. doi: 10.1158/1078-0432

 

  1. Bilsborough J, Panichelli C, Duffour MT, et al. A MAGE-3 peptide presented by HLA-B44 is also recognized by cytolytic T lymphocytes on HLA-B18. Tissue Antigens. 2002;60(1):16-24. doi: 10.1034/j.1399-0039.2002.600103.x

 

  1. Chowell D, Morris LGT, Grigg CM, et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science. 2018;359(6375):582-587. doi: 10.1126/science.aao4572

 

  1. He Y, Zhang X, Jia K, et al. OX40 and OX40L protein expression of tumor infiltrating lymphocytes in non-small cell lung cancer and its role in clinical outcome and relationships with other immune biomarkers. Transl Lung Cancer Res. 2019;8(4):352-366. doi: 10.21037/tlcr.2019.08.15

 

  1. Messenheimer DJ, Jensen SM, Afentoulis ME, et al. Timing of PD-1 blockade is critical to effective combination immunotherapy with anti-OX40. Clin Cancer Res. 2017;23(20):6165-6177. doi: 10.1158/1078-0432.Ccr-16-2677

 

  1. Aspeslagh S, Postel-Vinay S, Rusakiewicz S, Soria JC, Zitvogel L, Marabelle A. Rationale for anti-OX40 cancer immunotherapy. Eur J Cancer. 2016;52:50-66. doi: 10.1016/j.ejca.2015.08.021

 

  1. Webb GJ, Hirschfield GM, Lane PJL. OX40, OX40L and autoimmunity: A comprehensive review. Clin Rev Allergy Immunol. 2016;50(3):312-332. doi: 10.1007/s12016-015-8498-3

 

  1. Puhr HC, Ilhan-Mutlu A. New emerging targets in cancer immunotherapy: The role of LAG3. ESMO Open. 2019;4(2):e000482. doi: 10.1136/esmoopen-2018-000482

 

  1. Andrews LP, Marciscano AE, Drake CG, Vignali DA. LAG3 (CD223) as a cancer immunotherapy target. Immunol Rev. 2017;276(1):80-96. doi: 10.1111/imr.12519

 

  1. Antonia SJ, Vansteenkiste JF, Moon E. Immunotherapy: Beyond anti-PD-1 and anti-PD-L1 therapies. Am Soc Clin Oncol Educ Book. 2016;35:e450-e458. doi: 10.14694/edbk_158712

 

  1. Gonzalez-Gugel E, Saxena M, Bhardwaj N. Modulation of innate immunity in the tumor microenvironment. Cancer Immunol Immunother. 2016;65(10):1261-1268. doi: 10.1007/s00262-016-1859-9

 

  1. Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017;541(7637):321-330. doi: 10.1038/nature21349

 

  1. Holtzhausen A, Zhao F, Evans KS, et al. Melanoma-derived Wnt5a promotes local dendritic-cell expression of IDO and immunotolerance: Opportunities for pharmacologic enhancement of immunotherapy. Cancer Immunol Res. 2015;3(9):1082-1095. doi: 10.1158/2326-6066.cir-14-0167

 

  1. Domagala-Kulawik J. The role of the immune system in non-small cell lung carcinoma and potential for therapeutic intervention. Transl Lung Cancer Res. 2015;4(2):177-190. doi: 10.3978/j.issn.2218-6751.2015.01.11

 

  1. Kim S, Buchlis G, Fridlender ZG, et al. Systemic blockade of transforming growth factor-beta signaling augments the efficacy of immunogene therapy. Cancer Res. 2008;68(24):10247-10256. doi: 10.1158/0008-5472.CAN-08-1494

 

  1. Kunzmann S, Wright JR, Steinhilber W, et al. TGF-beta1 in SP-A preparations influence immune suppressive properties of SP-A on human CD4+ T lymphocytes. Am J Physiol Lung Cell Mol Physiol. 2006;291(4):L747-L756. doi: 10.1152/ajplung.00401.2005

 

  1. Ager A, Watson HA, Wehenkel SC, Mohammed RN. Homing to solid cancers: A vascular checkpoint in adoptive cell therapy using CAR T-cells. Biochem Soc Trans. 2016;44(2):377-385. doi: 10.1042/bst20150254

 

  1. Mikucki ME, Fisher DT, Matsuzaki J, et al. Non-redundant requirement for CXCR3 signalling during tumoricidal T-cell trafficking across tumour vascular checkpoints. Nat Commun. 2015;6:7458. doi: 10.1038/ncomms8458

 

  1. Slaney CY, Kershaw MH, Darcy PK. Trafficking of T cells into tumors. Cancer Res. 2014;74(24):7168-7174. doi: 10.1158/0008-5472.Can-14-2458

 

  1. Pages F, Galon J, Dieu-Nosjean MC, Tartour E, Sautes- Fridman C, Fridman WH. Immune infiltration in human tumors: A prognostic factor that should not be ignored. Oncogene. 2010;29(8):1093-1102. doi: 10.1038/onc.2009.416

 

  1. Skoulidis F, Araujo HA, Do MT, et al. CTLA4 blockade abrogates KEAP1/STK11-related resistance to PD-(L)1 inhibitors. Nature. 2024;635(8038):462-471. doi: 10.1038/s41586-024-07943-7

 

  1. Zavitsanou AM, Pillai R, Hao Y, et al. KEAP1 mutation in lung adenocarcinoma promotes immune evasion and immunotherapy resistance. Cell Rep. 2023;42(11):113295. doi: 10.1016/j.celrep.2023.113295

 

  1. Stankovic B, Bjørhovde HAK, Skarshaug R, et al. Immune cell composition in human non-small cell lung cancer. Front Immunol. 2018;9:3101. doi: 10.3389/fimmu.2018.03101

 

  1. Backman M, Strell C, Lindberg A, et al. Spatial immunophenotyping of the tumour microenvironment in non-small cell lung cancer. Eur J Cancer. 2023;185:40-52. doi: 10.1016/j.ejca.2023.02.012

 

  1. Zagorulya M, Yim L, Morgan DM, et al. Tissue-specific abundance of interferon-gamma drives regulatory T cells to restrain DC1-mediated priming of cytotoxic T cells against lung cancer. Immunity. 2023;56(2):386-405.e10. doi: 10.1016/j.immuni.2023.01.010

 

  1. Wang J, Li S, Wang M, et al. STING licensing of type I dendritic cells potentiates antitumor immunity. Sci Immunol. 2024;9(92):eadj3945. doi: 10.1126/sciimmunol.adj3945

 

  1. Alraies Z, Rivera CA, Delgado MG, et al. Cell shape sensing licenses dendritic cells for homeostatic migration to lymph nodes. Nat Immunol. 2024;25(7):1193-1206. doi: 10.1038/s41590-024-01856-3

 

  1. Dan Q, Yang Y, Ge H. cGAS-STING pathway as the target of immunotherapy for lung cancer. Curr Cancer Drug Targets. 2023;23(5):354-362. doi: 10.2174/1568009623666221115095114

 

  1. Maier B, Leader AM, Chen ST, et al. A conserved dendritic-cell regulatory program limits antitumour immunity. Nature. 2020;580(7802):257-262. doi: 10.1038/s41586-020-2134-y

 

  1. Li R, Fang F, Jiang M, et al. STAT3 and NF-κB are simultaneously suppressed in dendritic cells in lung cancer. Sci Rep. 2017;7:45395. doi: 10.1038/srep45395

 

  1. Kuo PL, Hung JY, Huang SK, et al. Lung cancer-derived galectin-1 mediates dendritic cell anergy through inhibitor of DNA binding 3/IL-10 signaling pathway. J Immunol. 2011;186(3):1521-1530. doi: 10.4049/jimmunol.1002940

 

  1. Ao YQ, Gao J, Jin C, et al. ASCC3 promotes the immunosuppression and progression of non-small cell lung cancer by impairing the type I interferon response via CAND1-mediated ubiquitination inhibition of STAT3. J Immunother Cancer. 2023;11(12):e007766. doi: 10.1136/jitc-2023-007766

 

  1. Enk AH. Dendritic cells in tolerance induction. Immunol Lett. 2005;99(1):8-11. doi: 10.1016/j.imlet.2005.01.011

 

  1. Liu Q, Zhang C, Sun A, Zheng Y, Wang L, Cao X. Tumor-educated CD11bhighIalow regulatory dendritic cells suppress T cell response through arginase I. J Immunol. 2009;182(10):6207-6216. doi: 10.4049/jimmunol.0803926

 

  1. Suzuki K, Sun R, Origuchi M, et al. Mesenchymal stromal cells promote tumor growth through the enhancement of neovascularization. Mol Med. 2011;17(7-8):579-587. doi: 10.2119/molmed.2010.00157

 

  1. Yoshimura A. Signal transduction of inflammatory cytokines and tumor development. Cancer Sci. 2006;97(6):439-447. doi: 10.1111/j.1349-7006.2006.00197.x

 

  1. Wang YC, He F, Feng F, et al. Notch signaling determines the M1 versus M2 polarization of macrophages in antitumor immune responses. Cancer Res. 2010;70(12):4840-4849. doi: 10.1158/0008-5472.can-10-0269

 

  1. Wu H, Shang LQ, Chen RL, et al. Significance of Trask protein interactions in brain metastatic cohorts of lung cancers. Tumour Biol. 2015;36:4181-4187. doi: 10.1007/s13277-015- 3053-7

 

  1. Wang Y, Sparwasser T, Figlin R, Kim HL. Foxp3+ T cells inhibit antitumor immune memory modulated by mTOR inhibition. Cancer Res. 2014;74:2217-2228. doi: 10.1158/0008-5472.can-13-2928

 

  1. Kim PS, Jochems C, Grenga I, et al. Pan-Bcl-2 Inhibitor, GX15-070 (Obatoclax), decreases human T regulatory lymphocytes while preserving effector T lymphocytes: A rationale for its use in combination immunotherapy. J Immunol. 2014;192:2622-2633. doi: 10.4049/jimmunol.1301369

 

  1. Brcic L, Stanzer S, Krenbek D, et al. Immune cell landscape in therapy-naive squamous cell and adenocarcinomas ofthe lung. Virchows Arch. 2018;472(4):589-598. doi: 10.1007/s00428-018-2326-0

 

  1. Adah D, Hussain M, Qin L, Qin L, Zhang J, Chen X. Implications of MDSCs-targeting in lung cancer chemo-immunotherapeutics. Pharmacol Res. 2016;110:25-34. doi: 10.1016/j.phrs.2016.05.007

 

  1. McDonald PC, Chafe SC, Dedhar S. Overcoming hypoxia-mediated tumor progression: Combinatorial approaches targeting pH regulation, angiogenesis and immune dysfunction. Front Cell Dev Biol. 2016;4:27. doi: 10.3389/fcell.2016.00027

 

  1. Chafe SC, Lou Y, Sceneay J, et al. Carbonic anhydrase IX promotes myeloid- derived suppressor cell mobilization and establishment of a metastatic niche by stimulating G-CSF production. Cancer Res. 2015;75(6):996-1008. doi: 10.1158/0008-5472.can-14-3000

 

  1. Li X, Chen G, Wang F, et al. Oncogenic PIK3CA recruits myeloid-derived suppressor cells to shape the immunosuppressive tumour microenvironment in luminal breast cancer through the 5-lipoxygenase-dependent arachidonic acid pathway. Clin Transl Med. 2023;13(11):e1483. doi: 10.1002/ctm2.1483

 

  1. Wang N, Wang B, Maswikiti EP, et al. AMPK-a key factor in crosstalk between tumor cell energy metabolism and immune microenvironment? Cell Death Discov. 2024;10(1):237. doi: 10.1038/s41420-024-02011-5

 

  1. Schlie K, Spowart JE, Hughson LR, Townsend KN, Lum JJ. When cells suffocate: Autophagy in cancer and immune cells under low oxygen. Int J Cell Biol. 2011;2011:470597. doi: 10.1155/2011/470597

 

  1. Tittarelli A, Janji B, Van Moer K, Noman MZ, Chouaib S. The selective degradation of synaptic connexin 43 protein by hypoxia-induced autophagy impairs natural killer cell-mediated tumor cell killing. J Biol Chem. 2015;290(39):23670-23679. doi: 10.1074/jbc.M115.651547

 

  1. Fang X, Li D, Wan S, et al. Insights into the heterogeneity of the tumor microenvironment in lung adenocarcinoma and squamous carcinoma through single- cell transcriptomic analysis: Implications for distinct immunotherapy outcomes. J Gene Med. 2024;26(6):e3694. doi: 10.1002/jgm.3694

 

  1. Rath M, Muller I, Kropf P, Closs EI, Munder M. Metabolism via arginase or nitric oxide synthase: Two competing arginine pathways in macrophages. Front Immunol. 2014;5:532. doi: 10.3389/fimmu.2014.00532

 

  1. Steggerda SM, Bennett MK, Chen J, et al. Inhibition of arginase by CB-1158 blocks myeloid cell-mediated immune suppression in the tumor microenvironment. J Immunother Cancer. 2017;5(1):101. doi: 10.1186/s40425-017-0308-4

 

  1. Lemos H, Huang L, Prendergast GC, Mellor AL. Immune control by amino acid catabolism during tumorigenesis and therapy. Nat Rev Cancer. 2019;19(3):162-175. doi: 10.1038/s41568-019-0106-z

 

  1. Mellor AL, Lemos H, Huang L. Indoleamine 2,3-dioxygenase and tolerance: Where are we now? Front Immunol. 2017;8:1360. doi: 10.3389/fimmu.2017.01360

 

  1. Lemos H, Mohamed E, Huang L, et al. STING promotes the growth of tumors characterized by low antigenicity via IDO activation. Cancer Res. 2016;76(8):2076-2081. doi: 10.1158/0008-5472.Can-15-1456

 

  1. Mondanelli G, Bianchi R, Pallotta MT, et al. A relay pathway between arginine and tryptophan metabolism confers immunosuppressive properties on dendritic cells. Immunity. 2017;46(2):233-244. doi: 10.1016/j.immuni.2017.01.005

 

  1. Timosenko E, Hadjinicolaou AV, Cerundolo V. Modulation of cancer-specific immune responses by amino acid degrading enzymes. Immunotherapy. 2017;9(1):83-97. doi: 10.2217/imt-2016-0118

 

  1. Feng PH, Lee KY, Chang YL, et al. CD14(+)S100A9(+) monocytic myeloid-derived suppressor cells and their clinical relevance in non-small cell lung cancer. Am J Respir Crit Care Med. 2012;186(10):1025-1036. doi: 10.1164/rccm.201204-0636OC

 

  1. Raber P, Ochoa AC, Rodriguez PC. Metabolism of L-arginine by myeloid-derived suppressor cells in cancer: Mechanisms ofT cell suppression and therapeutic perspectives. Immunol Invest. 2012;41(6-7):614-634. doi: 10.3109/08820139.2012.680634

 

  1. Wang J, Matosevic S. Adenosinergic signaling as a target for natural killer cell immunotherapy. J Mol Med (Berl). 2018;96(9):903-913. doi: 10.1007/s00109-018- 1679-9

 

  1. Ohta A. A metabolic immune checkpoint: Adenosine in tumor microenvironment. Front Immunol. 2016;7:109. doi: 10.3389/fimmu.2016.00109

 

  1. Hay CM, Sult E, Huang Q, et al. Targeting CD73 in the tumor microenvironment with MEDI9447. Oncoimmunology. 2016;5(8):e1208875. doi: 10.1080/2162402x.2016.1208875

 

  1. Vijayan D, Young A, Teng MWL, Smyth MJ. Targeting immunosuppressive adenosine in cancer. Nat Rev Cancer. 2017;17(12):709-724. doi: 10.1038/nrc.2017.86

 

  1. Schmid S, Kubler M, Korcan Ayata C, et al. Altered purinergic signaling in the tumor associated immunologic microenvironment in metastasized non-small-cell lung cancer. Lung Cancer. 2015;90(3):516-521. doi: 10.1016/j.lungcan.2015.10.005

 

  1. Mittal D, Young A, Stannard K, et al. Antimetastatic effects of blocking PD-1 and the adenosine A2A receptor. Cancer Res. 2014;74(14):3652-3658. doi: 10.1158/0008- 5472.can-14-0957

 

  1. Demaria O, Cornen S, Daeron M, Morel Y, Medzhitov R, Vivier E. Harnessing innate immunity in cancer therapy. Nature. 2019;574(7776):45-56. doi: 10.1038/s41586-019-1593-5

 

  1. Kao KC, Vilbois S, Tsai CH, Ho PC. Metabolic communication in the tumour- immune microenvironment. Nat Cell Biol. 2022;24(11):1574-1583. doi: 10.1038/s41556-022-01002-x

 

  1. Germain C, Gnjatic S, Tamzalit F, et al. Presence of B cells in tertiary lymphoid structures is associated with a protective immunity in lung cancer patients. Am J Respir Crit Care Med. 2014;189:832-844. doi: 10.1164/rccm.201309-1611OC

 

  1. Sautes-Fridman C, Petitprez F, Calderaro J, Fridman WH. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat Rev Cancer. 2019;19(6):307-325. doi: 10.1038/s41568-019-0144-6

 

  1. Sautes-Fridman C, Cherfils-Vicini J, Damotte D, et al. Tumor microenvironment is multifaceted. Cancer Metastasis Rev. 2011;30(1):13-25. doi: 10.1007/s10555-011- 9279-y

 

  1. Draghiciu O, Lubbers J, Nijman HW, Daemen T. Myeloid derived suppressor cells- An overview of combat strategies to increase immunotherapy efficacy. Oncoimmunology. 2015;4(1):e954829. doi: 10.4161/21624011.2014.954829

 

  1. Newick K, O’Brien S, Moon E, Albelda SM. CAR T cell therapy for solid tumors. Annu Rev Med. 2017;68:139-152. doi: 10.1146/annurev-med-062315-120245

 

  1. Majzner RG, Mackall CL. Tumor antigen escape from CAR T-cell therapy. Cancer Discov. 2018;8(10):1219-1226. doi: 10.1158/2159-8290.Cd-18-0442

 

  1. Mollanoori H, Shahraki H, Rahmati Y, Teimourian S. CRISPR/Cas9 and CAR-T cell, collaboration of two revolutionary technologies in cancer immunotherapy, an instruction for successful cancer treatment. Hum Immunol. 2018;79(12):876-882. doi: 10.1016/j.humimm.2018.09.007

 

  1. Li Y, Hermanson DL, Moriarity BS, Kaufman DS. Human iPSC-derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity. Cell Stem Cell. 2018;23(2):181-192.e5. doi: 10.1016/j.stem.2018.06.002

 

  1. Mehta RS, Rezvani K. Chimeric antigen receptor expressing natural killer cells for the immunotherapy of cancer. Front Immunol. 2018;9:283. doi: 10.3389/fimmu.2018.00283

 

  1. Rezvani K, Rouce R, Liu E, Shpall E. Engineering natural killer cells for cancer immunotherapy. Mol Ther. 2017;25(8):1769-1781. doi: 10.1016/j.ymthe.2017.06.012

 

  1. Saetersmoen ML, Hammer Q, Valamehr B, Kaufman DS, Malmberg KJ. Off-the-shelf cell therapy with induced pluripotent stem cell-derived natural killer cells. Semin Immunopathol. 2019;41(1):59-68. doi: 10.1007/s00281-018-0721-x

 

  1. Barkal AA, Brewer RE, Markovic M, et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature. 2019;572(7769):392-396. doi: 10.1038/s41586-019-1456-0

 

  1. Feng M, Jiang W, Kim BYS, Zhang CC, Fu YX, Weissman IL. Phagocytosis checkpoints as new targets for cancer immunotherapy. Nat Rev Cancer. 2019;19(10):568-586. doi: 10.1038/s41568-019-0183-z

 

  1. Lim RJ, Salehi-Rad R, Tran LM, et al. CXCL9/10-engineered dendritic cells promote T cell activation and enhance immune checkpoint blockade for lung cancer. Cell Rep Med. 2024;5(4):101479. doi: 10.1016/j.xcrm.2024.101479

 

  1. Ingels J, De Cock L, Stevens D, et al. Neoantigen-targeted dendritic cell vaccination in lung cancer patients induces long-lived T cells exhibiting the full differentiation spectrum. Cell Rep Med. 2024;5(5):101516. doi: 10.1016/j.xcrm.2024.101516

 

  1. Popper H, Pongratz M. Value and indications for bronchoalveolar lavage combined with transbronchial lung biopsy. Wien Klin Wochenschr. 1987;99(24):848-55.

 

  1. Robinson PC, Watters LC, King TE, Mason RJ. Idiopathic pulmonary fibrosis. Abnormalities in bronchoalveolar lavage fluid phospholipids. Am Rev Respir Dis. 1988;137(3):585-591. doi: 10.1164/ajrccm/137.3.585

 

  1. Oshima M, Maeda A, Ishioka S, Hiyama K, Yamakido M. Expression of C-C chemokines in bronchoalveolar lavage cells from patients with granulomatous lung diseases. Lung. 1999;177(4):229-240. doi: 10.1007/pl00007643

 

  1. Magi B, Bini L, Perari MG, et al. Bronchoalveolar lavage fluid protein composition in patients with sarcoidosis and idiopathic pulmonary fibrosis: A two-dimensional electrophoretic study. Electrophoresis. 2002;23(19):3434-3444.

 

  1. Bozinovski S, Jones JE, Vlahos R, Hamilton JA, Anderson GP. Granulocyte/macrophage-colony-stimulating factor (GM-CSF) regulates lung innate immunity to lipopolysaccharide through Akt/Erk activation of NFkappa B and AP-1 in vivo. J Biol Chem. 2002;277(45):42808-42814. doi: 10.1074/jbc.M207840200

 

  1. Zhou S, Yang H. Immunotherapy resistance in non-small-cell lung cancer: From mechanism to clinical strategies. Front Immunol. 2023;14:1129465. doi: 10.3389/fimmu.2023.1129465
Share
Back to top
Tumor Discovery, Electronic ISSN: 2810-9775 Print ISSN: 3060-8597, Published by AccScience Publishing