AccScience Publishing / TD / Online First / DOI: 10.36922/td.5163
ORIGINAL RESEARCH ARTICLE

Covalent docking-based virtual screening and molecular dynamics simulations identify C02b as a potential KRAS(G12C) inhibitor

Safiye Merve Bostancioglu1* Ahmet Acar2*
Show Less
1 Department of Biology, Faculty of Arts and Sciences, Marmara University, Goztepe Campus, Istanbul, Turkey
2 Department of Biological Sciences, Middle East Technical University, Universiteler Mah., Ankara, Turkey
Tumor Discovery, 5163 https://doi.org/10.36922/td.5163
Submitted: 15 October 2024 | Accepted: 9 December 2024 | Published: 26 December 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Decades of efforts to target the “undruggable” Kirsten rat sarcoma viral oncogene homolog (KRAS) oncoprotein yielded promising results in 2021 with the approval of Sotorasib, a KRAS(G12C) inhibitor for non-small cell lung cancer patients with the KRAS(G12C) variant. Before Sotorasib’s approval, developing KRAS(G12C) covalent inhibitors faced challenges, particularly their inability to preserve the KRAS protein in the GDP-bound state, which hindered clinical trial progression. Considering the importance of developing inhibitors targeting KRAS(G12C), we aimed to identify compounds analogous to Sotorasib, resulting in the discovery of a total of 174 Sotorasib scaffold-compounds. We then performed covalent docking-based virtual screening to examine the binding affinity of Sotorasib-like compounds to KRAS(G12C). Four compounds showed comparable binding energies according to Glide score to Sotorasib for targeting KRAS(G12C). Subsequently, molecular dynamics (MD) simulations were conducted for these four compounds, spanning 100 ns, 300 ns, and 500 ns durations, to identify the most stable complex with the lowest root-mean-square deviation (RMSD), similar to the KRAS(G12C)-Sotorasib reference complex. Additional dynamic cross-correlation matrix and PCA were performed as post-MD analyses to investigate the movements of two switches and the flexible regions of KRAS(G12C)-Sotorasib and -C02b complexes. As a result, among these four compounds, KRAS(G12C)-C02b was found as the optimal candidate. Further investigations beyond this study may provide more insight into C02b’s inhibitory effect on KRAS(G12C), offering a deeper understanding of its potential as a therapeutic agent.

Keywords
KRAS(G12C)
Sotorasib-like compounds
Molecular dynamics simulations
Funding
Ahmet Acar would like to acknowledge Republic of Türkiye The Council of Higher Education Research Universities Support Program (Grant number: ADEP-108- 2022-11202).
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Hanahan D. Hallmarks of cancer: New dimensions. Cancer Discov. 2022;12:31-46. doi: 10.1158/2159-8290.CD-21-1059

 

  1. Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell. 2011;144:646-74. doi: 10.1016/j.cell.2011.02.013

 

  1. Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012;481:306-313.

 

  1. Gatenby RA, Brown JS. Integrating evolutionary dynamics into cancer therapy. Nat Rev Clin Oncol. 2020;17:675-86. doi: 10.1038/s41571-020-0411-1

 

  1. Ermini L, Mallo D, Kleftogiannis D, et al. Editorial: Cancer evolution. Front Genet. 2023;14:1187687. doi: 10.3389/fgene.2023.1187687

 

  1. Merlo LMF, Pepper JW, Reid BJ, et al. Cancer as an evolutionary and ecological process. Nat Rev Cancer. 2006;6:924-935. doi: 10.1038/nrc2013

 

  1. Turajlic S, Sottoriva A, Graham T, et al. Resolving genetic heterogeneity in cancer. Nat Rev Genet. 2019;20:404-416. doi: 10.1038/s41576-019-0114-6

 

  1. Yalcin GD, Yilmaz KC, Dilber T, et al. Investigation of evolutionary dynamics for drug resistance in 3D spheroid model system using cellular barcoding technology. PLoS One. 2023;18:e0291942. doi: 10.1371/journal.pone.0291942

 

  1. Danisik N, Yilmaz KC, Acar A. Identification of collateral sensitivity and evolutionary landscape of chemotherapy-induced drug resistance using cellular barcoding technology. Front Pharmacol. 2023;14:1178489. doi: 10.3389/fphar.2023.1178489

 

  1. Acar A, Nichol D, Fernandez-Mateos J, et al. Exploiting evolutionary steering to induce collateral drug sensitivity in cancer. Nat Commun. 2020;11:1923. doi: 10.1038/s41467-020-15596-z

 

  1. Smalley KS, Lioni M, Noma K, et al. In vitro three-dimensional tumor microenvironment models for anticancer drug discovery. Expert Opin Drug Discov. 2008;3:1-10. doi: 10.1517/17460441.3.1.1

 

  1. Downward J. Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer. 2003;3:11-22. doi: 10.1038/nrc969

 

  1. Kim HJ, Lee HN, Jeong MS, et al. Oncogenic KRAS: Signaling and drug resistance. Cancers (Basel). 2021;13:5599. doi: 10.3390/cancers13225599

 

  1. Singh G, Thakur N, Kumar U. RAS: Circuitry and therapeutic targeting. Cell Signal. 2023;101:110505. doi: 10.1016/j.cellsig.2022.110505

 

  1. Ferrer I, Zugazagoitia J, Herbertz S, et al. KRAS-Mutant non-small cell lung cancer: From biology to therapy. Lung Cancer. 2018;124:53-64. doi: 10.1016/j.lungcan.2018.07.013

 

  1. Ciardiello D, Maiorano BA, Martinelli E. Targeting KRASG12C in colorectal cancer: The beginning of a new era. ESMO Open. 2023;8:100745. doi: 10.1016/j.esmoop.2022.100745

 

  1. Naim N, Moukheiber S, Daou S, et al. KRAS-G12C covalent inhibitors: A game changer in the scene of cancer therapies. Crit Rev Oncol Hematol. 2021;168:103524. doi: 10.1016/j.critrevonc.2021.103524

 

  1. Molina-Arcas M, Samani A, Downward J. Drugging the undruggable: Advances on RAS targeting in cancer. Genes (Basel). 2021;12:899. doi: 10.3390/genes12060899

 

  1. Skoulidis F, Li BT, Dy GK, et al. Sotorasib for lung cancers with KRAS p.G12C mutation. N Engl J Med. 2021;384: 2371-2381. doi: 10.1056/nejmoa2103695

 

  1. Lanman BA, Parsons AT. Sotorasib (LUMAKRAS), an ırreversible covalent Inhibitor of KRAS G12C. İn: Current Drug Synthesis. United States: Wiley; 2022. p. 183-199. doi: 10.1002/9781119847281.ch10

 

  1. Saleh K, Kordahi M, Felefly T, et al. KRAS-targeted therapies in advanced solid cancers: Drug the undruggable? Pharmacogenomics. 2021;22:587-90. doi: 10.2217/pgs-2021-0045

 

  1. Kim HJ, Lee HN, Jeong MS, et al. Oncogenic KRAS: Signaling and drug resistance. Cancers (Basel). 2021;13:5599. doi: 10.3390/cancers13225599

 

  1. Oyedele AQK, Ogunlana AT, Boyenle ID, et al. Pharmacophoric analogs of sotorasib-entrapped KRAS G12C in its inactive GDP-bound conformation: Covalent docking and molecular dynamics investigations. Mol Divers. 2023;27:1795-1807. doi: 10.1007/s11030-022-10534-1

 

  1. Mortier J, Friberg A, Badock V, et al. Computationally empowered workflow identifies novel covalent allosteric binders for KRASG12C. ChemMedChem. 2020;15:827-832 doi: 10.1002/cmdc.201900727

 

  1. Nnadi CI, Jenkins ML, Gentile DR, et al. Novel K-Ras G12C switch-II covalent binders destabilize ras and accelerate nucleotide exchange. J Chem Inf Model. 2018;58:464-471. doi: 10.1021/acs.jcim.7b00399

 

  1. Boehm M, Wu TY, Haussen H, et al. Similarity searching and scaffold hopping in synthetically accessible combinatorial chemistry spaces. J Med Chem. 2008;51:2468-2480. doi: 10.1021/jm0707727

 

  1. Madhavi Sastry G, Adzhigirey M, Day T, et al. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des. 2013;27:221-34. doi: 10.1007/s10822-013-9644-8

 

  1. Schrödinger Release 2023-3: LigPre. New York,: Schrödinger, LLC; 2023.

 

  1. Shelley JC, Cholleti A, Frye LL, et al. Epik: A software program for pK(a) prediction and protonation state generation for drug-like molecules. J Comput Aided Mol Des. 2007;21:681-691. doi: 10.1007/s10822-007-9133-z

 

  1. Canon J, Rex K, Saiki AY, et al. The clinical KRAS(G12C) inhibitor AMG 510 drives Anti-tumour immunity. Nature. 2019;575:217-223. doi: 10.1038/s41586-019-1694-1

 

  1. Schrödinger Release 2023-3: Protein Preparation Wizard; Epik. New York: Schrödinger, LLC; 2023.

 

  1. Roos K, Wu C, Damm W, et al. OPLS3e: Extending force field coverage for drug-like small molecules. J Chem Theory Comput. 2019;15:1863-1874. doi: 10.1021/acs.jctc.8b01026

 

  1. Zhu K, Borrelli KW, Greenwood JR, et al. Docking covalent inhibitors: A parameter free approach to pose prediction and scoring. J Chem Inf Model. 2014;54:1932-1940. doi: 10.1021/ci500118s

 

  1. Friesner RA, Banks JL, Murphy RB, et al. Glide: A New Approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem. 2004;47:1739-1749. doi: 10.1021/jm0306430

 

  1. Halgren TA, Murphy RB, Friesner RA, et al. Glide: A new approach for rapid, accurate docking and scoring. 2. enrichment factors in database screening. J Med Chem. 2004;47:1750-1759. doi: 10.1021/jm030644s

 

  1. Van Der Spoel D, Lindahl E, Hess B, et al. GROMACS: Fast, flexible, and free. J Comput Chem. 2005;26:1701-1718. doi: 10.1002/jcc.20291

 

  1. Best RB, Zhu X, Shim J, et al. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ1 and χ2 Dihedral Angles. J Chem Theory Comput. 2012;8:3257-3273. doi: 10.1021/ct300400x

 

  1. Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys. 2007;126:014101. doi: 10.1063/1.2408420

 

  1. Berendsen HJC, Postma JPM, Van Gunsteren WF, et al. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;81:3684-3690. doi: 10.1063/1.448118

 

  1. Bernetti M, Bussi G. Pressure control using stochastic cell rescaling. J Chem Phys. 2020;153:114107. doi: 10.1063/5.0020514

 

  1. Darden T, York D, Pedersen L. Particle mesh ewald: An N·log(N) method for ewald sums in large systems. J Chem Phys. 1993;98:10089-100920. doi: 10.1063/1.464397

 

  1. Hess B. P-LINCS: A parallel linear constraint solver for molecular simulation. J Chem Theory Comput. 2008;4: 116-122. doi: 10.1021/ct700200b

 

  1. Turner P. XMGRACE, Version 5.1. 19. Center for Coastal and Land-Margin Research. Beaverton, OR: Oregon Graduate Institute of Science and Technology; 2005.

 

  1. Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. J Mol Graph. 1996;14:33-8. doi: 10.1016/0263-7855(96)00018-5

 

  1. Grant BJ, Rodrigues APC, ElSawy KM, McCammon JA, Caves LS. Bio3d: An R package for the comparative analysis of protein structures. Bioinformatics. 2006;22:2695-2696. doi: 10.1093/bioinformatics/btl461

 

  1. Scarpino A, Ferenczy GG, Keserü GM. Comparative evaluation of covalent docking tools. J Chem Inf Model. 2018;58:1441-1458. doi: 10.1021/acs.jcim.8b00228

 

  1. Pantsar T. KRAS(G12C)-AMG 510 interaction dynamics revealed by all-atom molecular dynamics simulations. Sci Rep. 2020;10:11992. doi: 10.1038/s41598-020-68950-y

 

  1. Milburn MV, Tong L, DeVos AM, et al. Molecular switch for signal transduction: Structural differences between active and inactive forms of protooncogenic ras proteins. Science (1979). 1990;247:939-945. doi: 10.1126/science.2406906

 

  1. Li Y, Han L, Zhang Z. Understanding the influence of AMG 510 on the structure of KRASG12C empowered by molecular dynamics simulation. Comput Struct Biotechnol J. 2022;20:1056-1067 doi: 10.1016/j.csbj.2022.02.018
Share
Back to top
Tumor Discovery, Electronic ISSN: 2810-9775 Print ISSN: 3060-8597, Published by AccScience Publishing