AccScience Publishing / TD / Volume 3 / Issue 1 / DOI: 10.36922/td.2512
ORIGINAL RESEARCH ARTICLE

Bioinformatics analysis of missense mutations in CXCR1 implicates altered protein stability and function

Shah Kamal1†* Amanullah Amanullah1† Qingqing Wang1 Najeeb Ullah1 Gohar Mushtaq2* Muhammad Nasir Iqbal3 Mohammad Amjad Kamal4,5,6,7,8
Show Less
1 Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
2 Department of Biochemistry, Center for Scientific Research, Faculty of Medicine University, Idlib University, Idlib, Syria
3 Department of Bioinformatics, Faculty of Biological and Chemical Sciences, The lslamia Universityof Bahawalpur, Pakistan
4 Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and institutes for Systems Genetics, West China School of Nursing, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital. Sichuan University. 610212, Chengdu, China
5 King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
6 Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Birulia, Savar, Dhaka -1216, Bangladesh
7 Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
8 Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, Australia
Tumor Discovery 2024, 3(1), 2512 https://doi.org/10.36922/td.2512
Submitted: 22 December 2023 | Accepted: 21 February 2024 | Published: 21 March 2024
© 2024 by the Author (s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Human CXCR1 is a G-protein α subunit i (Gαi)-coupled receptor (GPCR) that plays an important role in promoting leukocyte recruitment and activation in inflammatory regions; thus, its genetic contribution to human disorders warrants further investigation. In this study, we investigated whether oncogenic missense mutations in CXCR1 would affect its activity and hinder its ability to interact with its ligand. This study utilized a bioinformatics approach and employed precise and thorough computational methods to gain insights into the molecular characteristics of mutated CXCR1 that are responsible for causing diseases. I-TASSER was used to construct a mutant model with the required mutations. Schrödinger’s Desmond software was used to evaluate how mutations affect the stability and function of proteins. In this study, 299 CXCR1 missense mutations were examined; 53 of these were reported to be disease-causing, five of which were directly associated with cancer. The impact of the three cancer-causing mutations (N57D, R135C, and P302S) on protein stability and function was subsequently examined through computational analysis. Positions N57, R135, and P302 were determined to be highly conserved, and substitutions with aspartic acid (D), cysteine (C), and serine (S), respectively, could impair CXCR1 activity. Hence, our findings suggested that these mutations could alter CXCR1 ligand binding activity, lowering the risk of cancer and helping patients defend against pathogen invasion during a neutrophil-mediated innate immune response.

Keywords
CXCR1
Molecular dynamic simulation
Molecular modelling
G protein-coupled receptors
Funding
This work was supported by the National Natural Science Foundation of China (32270438, 32170498, 31970388), National Key Research and Development Program of China (2021YFF0702000, 2018YFD0900602), 1.3.5 Project for Disciplines of Excellence by the West China Hospital, Sichuan University (ZYJC21050), Science and Technology Department of Sichuan Province (2022YFH0116), Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University (Z2023JC003).
Conflict of interest
The authors declare no conflict of interest.
References

1. Yang D, Zhou Q, Labroska V, et al. G protein-coupled receptors: Structure-and function-based drug discovery. Signal Transduct Target Ther. 2021;6(1):7. doi: 10.1038/s41392-020-00435-w

 

2. Katritch V, Cherezov V, Stevens RC. Diversity and modularity of G protein-coupled receptor structures. Trends Pharmacol Sci. 2012;33(1):17-27. doi: 10.1016/j.tips.2011.09.003

 

3. Berman HM, Westbrook J, Feng Z, et al. The protein data bank. Nucleic Acids Res. 2000;28(1):235-242. doi: 10.1093/nar/28.1.235

 

4. Rajagopalan L, Rajarathnam K. Ligand selectivity and affinity of chemokine receptor CXCR1. Role of N-terminal domain. J Biol Chem. 2004;279(29):30000-30008. doi: 10.1074/jbc.M313883200

 

5. Holmes WE, Lee J, Kuang WJ, Rice GC, Wood WI. Structure and functional expression of a human interleukin-8 receptor. Science. 1991;253(5025):1278-1280. J Immun. 2009;183(5):2895-2897. doi: 10.1126/science.1840701

 

6. Ha H, Debnath B, Neamati N. Role of the CXCL8-CXCR1/2 axis in cancer and inflammatory diseases. Theranostics. 2017;7(6):1543-1588. doi: 10.7150/thno.15625

 

7. Park SH, Das BB, Casagrande F, et al. Structure of the chemokine receptor CXCR1 in phospholipid bilayers. Nature. 2012;491(7426):779-783. doi: 10.1038/nature11580

 

8. Sojka AC, Brennan KM, Maizels ET, Young CD. The science behind g protein-coupled receptors (GPCRs) and their accurate visual representation in scientific research. J Biocommun. 2017;41(1):e6. doi: 10.5210/jbc.v41i1.7309

 

9. Hofmann KP, Scheerer P, Hildebrand PW, et al. A G protein-coupled receptor at work: The rhodopsin model. Trends Biochem Sci. 2009;34(11):540-552. doi: 10.1016/j.tibs.2009.07.005

 

10. Park JH, Scheerer P, Hofmann KP, Choe HW, Ernst OP. Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature. 2008;454(7201):183-187. doi: 10.1038/nature07063

 

11. Vauquelin G, Van Liefde I. G protein-coupled receptors: A count of 1001 conformations. Fundam Clin Pharmacol. 2005;19(1):45-56. doi: 10.1111/j.1472-8206.2005.00319.x

 

12. Rosenbaum DM, Rasmussen SGF, Kobilka BK. The structure and function of G-protein-coupled receptors. Nature. 2009;459(7245):356-363. doi: 10.1038/nature08144

 

13. Rosenbaum DM, Cherezov V, Hanson MA, et al. GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science. 2007;318(5854):1266-1273. doi: 10.1126/science.1150609

 

14. Landau EM, Rosenbusch JP. Lipidic cubic phases: A novel concept for the crystallization of membrane proteins. Proc Natl Acad Sci U S A. 1996;93(25):14532-14535. doi: 10.1073/pnas.93.25.14532

 

15. Oldham WM, Hamm HE. Heterotrimeric G protein activation by G-protein-coupled receptors. Nat Rev Mol Cell Biol. 2008;9(1):60-71. doi: 10.1038/nrm2299

 

16. Leong SR, Kabakoff RC, Hébert CA. Complete mutagenesis of the extracellular domain of interleukin-8 (IL-8) type A receptor identifies charged residues mediating IL-8 binding and signal transduction. J Biol Chem. 1994;269(30):19343-19348.

 

17. Skelton NJ, Quan C, Reilly D, Lowman H. Structure of a CXC chemokine-receptor fragment in complex with interleukin-8. Structure. 1999;7(2):157-168. doi: 10.1016/S0969-2126(99)80022-7

 

18. Hébert CA, Vitangcol RV, Baker JB. Scanning mutagenesis of interleukin-8 identifies a cluster of residues required for receptor binding. J Biol Chem. 1991;266(28):18989-18994.

 

19. Nicholls DJ, Tomkinson NP, Wiley KE, et al. Identification of a putative intracellular allosteric antagonist binding-site in the CXC chemokine receptors 1 and 2. Mol Pharmacol. 2008;74(5):1193-1202. doi: 10.1124/mol.107.044610

 

20. Han X, Feng Y, Chen X, Gerard C, Boisvert WA. Characterization of G protein coupling mediated by the conserved D134(3.49) of DRY motif, M241(6.34), and F251(6.44) residues on human CXCR1. FEBS Open Bio. 2015;5:182-190. doi: 10.1016/j.fob.2015.03.001

 

21. Huynh N, Mallik B, Zhang L, Martins-Green M, Morikis D. Computational studies of CXCR1, the receptor of IL-8/ CXCL8, using molecular dynamics and electrostatics. Biopolymers. 2008;89(1):52-61. doi: 10.1002/bip.20851

 

22. Pandurangan AP, Blundell TL. Prediction of impacts of mutations on protein structure and interactions: SDM, a statistical approach, and mCSM, using machine learning. Protein Sci. 2020;29(1):247-257. doi: 10.1002/pro.3774

 

23. Capriotti E, Altman RB, Bromberg Y. Collective judgment predicts disease-associated single nucleotide variants. BMC Genomics. 2013;14(Suppl 3):S2. doi: 10.1186/1471-2164-14-S3-S2

 

24. López-Ferrando V, Gazzo A, de la Cruz X, Orozco M, Gelpí JL. PMut: A web-based tool for the annotation of pathological variants on proteins, 2017 update. Nucleic Acids Res. 2017;45(W1):W222-W228. doi: 10.1093/nar/gkx313

 

25. Choi Y, Chan AP. PROVEAN web server: A tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics. 2015;31(16):2745-2747. doi: 10.1093/bioinformatics/btv195

 

26. Rogers MF, Shihab HA, Mort M, Cooper DN, Gaunt TR, Campbell C. FATHMM-XF: Accurate prediction of pathogenic point mutations via extended features. Bioinformatics. 2018;34(3):511-513. doi: 10.1093/bioinformatics/btx536

 

27. Pires DE, Ascher DB, Blundell TL. mCSM: Predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics. 2014;30(3):335-342. doi: 10.1093/bioinformatics/btt691

 

28. Worth CL, Preissner R, Blundell TL. SDM--a server for predicting effects of mutations on protein stability and malfunction. Nucleic Acids Res. 2011;39:W215-222. doi: 10.1093/nar/gkr363

 

29. Pires DE, Ascher DB, Blundell TL. DUET: A server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Res. 2014;42:W314-W319. doi: 10.1093/nar/gku411

 

30. Martin FJ, Amode MR, Aneja A, et al. Ensembl 2023. Nucleic Acids Res. 2023;51(D1):D933-D941. doi: 10.1093/nar/gkac958

 

31. Sherry ST, Ward MH, Kholodov M, et al. dbSNP: The NCBI database of genetic variation. Nucleic Acids Res. 2001;29(1):308-311. doi: 10.1093/nar/29.1.308

 

32. UniProt Consortium. UniProt: A hub for protein information. Nucleic Acids Res. 2015;43:D204-D212. doi: 10.1093/nar/gku989

 

33. Goodsell DS, Zardecki C, Di Costanzo L, et al. RCSB protein data bank: Enabling biomedical research and drug discovery. Protein Sci. 2020;29(1):52-65. doi: 10.1002/pro.3730

 

34. Hecht M, Bromberg Y, Rost B. Better prediction of functional effects for sequence variants. BMC Genomics. 2015;16(Suppl 8):S1. doi: 10.1186/1471-2164-16-S8-S1

 

35. Mi H, Lazareva-Ulitsky B, Loo R, et al. The PANTHER database of protein families, subfamilies, functions and pathways. Nucleic Acids Res. 2005;33:D284-D288. doi: 10.1093/nar/gki078

 

36. Ng PC, Henikoff S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003;31(13):3812-3814. doi: 10.1093/nar/gkg509

 

37. Bendl J, Stourac J, Salanda O, et al. PredictSNP: Robust and accurate consensus classifier for prediction of disease-related mutations. PLoS Comput Biol. 2014;10(1):e1003440. doi: 10.1371/journal.pcbi.1003440

 

38. Pejaver V, Mooney SD, Radivojac P. Missense variant pathogenicity predictors generalize well across a range of function-specific prediction challenges. Hum Mutat. 2017;38(9):1092-1108. doi: 10.1002/humu.23258

 

39. Ghosh M, Sodhi SS, Sharma N, et al. An integrated in silico approach for functional and structural impact of non-synonymous SNPs in the MYH1 gene in Jeju Native Pigs. BMC Genet. 2016;17:35. doi: 10.1186/s12863-016-0341-1

 

40. Vila JA. Proteins’ evolution upon point mutations. ACS Omega. 2022;7(16):14371-14376. doi: 10.1021/acsomega.2c01407

 

41. Pandurangan AP, Ochoa-Montaño B, Ascher DB, Blundell TL. SDM: A server for predicting effects of mutations on protein stability. Nucleic Acids Res. 2017;45(W1):W229-W235. doi: 10.1093/nar/gkx439

 

42. Choudhury A, Mohammad T, Anjum F, et al. Comparative analysis of web-based programs for single amino acid substitutions in proteins. PLoS One. 2022;17(5):e0267084. doi: 10.1371/journal.pone.0267084

 

43. AlAjmi MF, Khan S, Choudhury A, et al. Impact of deleterious mutations on structure, function and stability of serum/glucocorticoid regulated kinase 1: A gene to diseases correlation. Front Mol Biosci. 2021;8:780284. doi: 10.3389/fmolb.2021.780284

 

44. Rodrigues CHM, Myung Y, Pires DEV, Ascher DB. mCSM-PPI2: Predicting the effects of mutations on protein-protein interactions. Nucleic Acids Res. 2019;47(W1):W338-W344. doi: 10.1093/nar/gkz383

 

45. Mutlu G, Acı Çİ. SVM-SMO-SGD: A hybrid-parallel support vector machine algorithm using sequential minimal optimization with stochastic gradient descent. Parallel Comput. 2022;113:102955. doi: 10.1016/j.parco.2022.102955

 

46. Shihab HA, Gough J, Cooper DN, Day INM, Gaunt TR. Predicting the functional consequences of cancer-associated amino acid substitutions. Bioinformatics. 2013;29(12):1504-1510. doi: 10.1093/bioinformatics/btt182

 

47. Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformats. 2008;9:40. doi: 10.1186/1471-2105-9-40

 

48. Ishimoto N, Park JH, Kawakami K, et al. Structural basis of CXC chemokine receptor 1 ligand binding and activation. Nat Commun. 2023;14(1):4107. doi: 10.1038/s41467-023-39799-2

 

49. Lovell SC, Davis IW, Arendall WB 3rd, et al. Structure validation by Calpha geometry: Phi,psi and Cbeta deviation. Proteins. 2003;50(3):437-450. doi: 10.1002/prot.10286

 

50. Kc DB. Recent advances in sequence-based protein structure prediction. Brief Bioinform. 2017;18(6):1021-1032. doi: 10.1093/bib/bbw070

 

51. Hollingsworth SA, Dror RO. Molecular Dynamics Simulation for All. Neuron. 2018;99(6):1129-1143. doi: 10.1016/j.neuron.2018.08.011

 

52. Muhammed MT, Aki-Yalcin E. Homology modeling in drug discovery: Overview, current applications, and future perspectives. Chem Biol Drug Des. 2019;93(1):12-20. doi: 10.1111/cbdd.13388

 

53. Brooks BR, Brooks CL 3rd, Mackerell AD Jr, et al. CHARMM: The biomolecular simulation program. J Comput Chem. 2009;30(10):1545-1614. doi: 10.1002/jcc.21287

 

54. Rasheed MA, Iqbal MN, Saddick S, et al. Identification of lead compounds against Scm (fms10) in Enterococcus faecium using computer aided drug designing. Life (Basel). 2021;11(2):77. doi: 10.3390/life11020077

 

55. Hildebrand PW, Rose AS, Tiemann JKS. Bringing molecular dynamics simulation data into view. Trends Biochem Sci. 2019;44(11):902-913. doi: 10.1016/j.tibs.2019.06.004

 

56. Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD. Molecular docking and structure-based drug design strategies. Molecules. 2015;20(7):13384-13421. doi: 10.3390/molecules200713384

 

57. Shivakumar D, Williams J, Wu Y, Damm W, Shelley J, Sherman W. Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J Chem Theory Comput. 2010;6(5):1509-1519. doi: 10.1021/ct900587b

 

58. Huang Y, Li Z, Hong Q, et al. A stepwise docking molecular dynamics approach for simulating antibody recognition with substantial conformational changes. Comput Struct Biotechnol J. 2022;20:710-720. doi: 10.1016/j.csbj.2022.01.012

 

59. Hung LH, Guerquin M, Samudrala R. GPU-Q-J, a fast method for calculating root mean square deviation (RMSD) after optimal superposition. BMC Res Notes. 2011;4:97. doi: 10.1186/1756-0500-4-97

 

60. Carter P, Andersen CAF, Rost B. DSSPcont: Continuous secondary structure assignments for proteins. Nucleic Acids Res. 2003;31(13):3293-3295. doi: 10.1093/nar/gkg626

 

61. Ashkenazy H, Abadi S, Martz E, et al. ConSurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 2016;44(W1):W344-W350. doi: 10.1093/nar/gkw408

 

62. Wang Y, Park JH, Lupala CS, et al. Computer aided protein engineering to enhance the thermo-stability of CXCR1-T4 lysozyme complex. Sci Rep. 2019;9(1):5317. doi: 10.1038/s41598-019-41838-2

 

63. Yang J, Zhang Y. Protein structure and function prediction using I-TASSER. Curr Protoc Bioinformatics. 2015;52:5.8.1- 5.8.15. doi: 10.1002/0471250953.bi0508s52

 

64. Roy A, Kucukural A, Zhang Y. I-TASSER: A unified platform for automated protein structure and function prediction. Nat Protoc. 2010;5(4):725-738. doi: 10.1038/nprot.2010.5

 

65. Sobolev OV, Afonine PV, Moriarty NW, et al. A global Ramachandran score identifies protein structures with unlikely stereochemistry. Structure. 2020;28(11):1249-1258.e2. doi: 10.1016/j.str.2020.08.005

 

66. Guzzi AF, Oliveira FSL, Amaro MMS, Tavares-Filho PF, Gabriel JE. In silico prediction of the functional and structural consequences of the non-synonymous single nucleotide polymorphism A122V in bovine CXC chemokine receptor type 1. Braz J Biol. 2020;80(1):39-46. doi: 10.1590/1519-6984.188655

 

67. Kato K, Nakayoshi T, Kurimoto E, Oda A. Mechanisms of deamidation of asparagine residues and effects of main-chain conformation on activation energy. Int J Mol Sci. 2020;21(19):7035. doi: 10.3390/ijms21197035

 

68. Chakkalakal SA, Heilig J, Baumann U, Paulsson M, Zaucke F. Impact of arginine to cysteine mutations in collagen II on protein secretion and cell survival. Int J Mol Sci. 2018;19(2):541. doi: 10.3390/ijms19020541

 

69. Ganguly HK, Basu G. Conformational landscape of substituted prolines. Biophys Rev. 2020;12(1):25-39. doi: 10.1007/s12551-020-00621-8

 

70. Zaki OK, Krishnamoorthy N, El Abd HS, et al. Two patients with Canavan disease and structural modeling of a novel mutation. Metab Brain Dis. 2017;32(1):171-177. doi: 10.1007/s11011-016-9896-9

 

71. Agrahari AK, Kumar A, Siva R, Zayed H, Doss CGP. Substitution impact of highly conserved arginine residue at position 75 in GJB1 gene in association with X-linked Charcot-Marie-tooth disease: A computational study. J Theor Biol. 2018;437:305-317. doi: 10.1016/j.jtbi.2017.10.028

 

72. Suetomi K, Rojo D, Navarro J. Identification of a signal transduction switch in the chemokine receptor CXCR1. J Biol Chem. 2002;277(35):31563-31566. doi: 10.1074/jbc.M204713200

 

73. Mirzadegan T, Benkö G, Filipek S, Palczewski K. Sequence analyses of G-protein-coupled receptors: Similarities to rhodopsin. Biochemistry. 2003;42(10):2759-2767. doi: 10.1021/bi027224+

 

74. Rovati GE, Capra V, Neubig RR. The highly conserved DRY motif of class A G protein-coupled receptors: Beyond the ground state. Mol Pharmacol. 2007;71(4):959-964. doi: 10.1124/mol.106.029470

 

75. Arshad M, Bhatti A, John P. Identification and in silico analysis of functional SNPs of human TAGAP protein: A comprehensive study. PLoS One. 2018;13(1):e0188143. doi: 10.1371/journal.pone.0188143

 

76. Mosaeilhy A, Mohamed MM, Doss CGP, et al. Genotype-phenotype correlation in 18 Egyptian patients with glutaric acidemia type I. Metab Brain Dis. 2017;32(5):1417-1426. doi: 10.1007/s11011-017-0006-4

 

77. Zhao F, Zheng L, Goncearenco A, Panchenko AR, Li M. Computational approaches to prioritize cancer driver missense mutations. Int J Mol Sci. 2018;19(7):2113. doi: 10.3390/ijms19072113

 

78. Chun S, Fay JC. Identification of deleterious mutations within three human genomes. Genome Res. 2009;19(9):1553- 1561. doi: 10.1101/gr.092619.109.

 

79. Li J, Wei Z, Hakonarson H. Application of computational methods in genetic study of inflammatory bowel disease. World J Gastroenterol. 2016;22(3):949-960. doi: 10.3748/wjg.v22.i3.949

Share
Back to top
Tumor Discovery, Electronic ISSN: 2810-9775 Print ISSN: 3060-8597, Published by AccScience Publishing