AccScience Publishing / OR / Online First / DOI: 10.36922/or.8295
REVIEW ARTICLE

Global research trends in bone/cartilage organoids from 2010 to 2024: A bibliometric and visualization study

Aikang Li1,2 Rongji Liang1,3 Weibei Sheng2 Xiaohao Wu4 Liang Gao5,6 Weijin Guo7 Peng Liu8 Hui Zeng9 Fuyang Cao10* Yanbin Peng11* Jianjing Lin3*
Show Less
1 Shantou University Medical College, Shantou University, Shantou, Guangdong, China
2 Department of Orthopedics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
3 Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
4 Division of Immunology and Rheumatology, School of Medicine, Stanford University, Palo Alto, California, United States of America
5 Berlin Center of Clinical Medicine, Huatuo Insitute of Medical Innovation (HTIMI), Berlin, Germany
6 Department of Clinical Research and Development, Benovus Medical Technology (BMT) Corporation, Chengdu, China
7 Department of Biomedical Engineering, Shantou University, Shantou, Guangdong, China
8 National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
9 Department of Orthopedics, Shenzhen Second People’s Hospital (First Affiliated Hospital of Shenzhen University), Shenzhen, Guangdong, China
10 Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
11 Department of Hand & Microsurgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
Submitted: 30 September 2024 | Revised: 20 October 2024 | Accepted: 23 January 2025 | Published: 16 April 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Bone/cartilage organoids have garnered significant attention in regenerative medicine due to their promising applications in tissue repair and disease modeling. Despite this growing interest, there is still a gap in understanding global research trends and developments in this field. This study provides a comprehensive review of the present status and emerging directions of bone/cartilage organoid research worldwide. Utilizing data from 288 records in the Web of Science Core Collection (2010 – 2024), we employed R, VOSviewer, CiteSpace, and GraphPad Prism to analyze the literature’s historical development, general characteristics, and keyword distributions. The analysis revealed a steady increase in publications since 2010, peaking in 2023, with the United States leading in contributions, and Bioactive Materials as the most influential journal. Noteworthy authors included Jiacan Su from China and Hans Clevers from the Netherlands. Research subareas were clustered into seven themes: Regenerative Medicine, Bone Regeneration, Bone Marrow Organoids, Differentiation, Extracellular Matrix, Expression, and Protein-Based Culture. Four main research directions were identified: stem cells and the microenvironment, biomaterials, regenerative medicine, and disease modeling/drug screening. This first bibliometric study on bone/cartilage organoids establishes a knowledge map, identifies key trends, and pinpoints potential hotspots, offering valuable insights for future research in this evolving field.

Graphical abstract
Keywords
Bibliometric
Visualization
Bone/cartilage organoids
Tissue engineering
Funding
This study was supported by the Guangdong Basic and Applied Basic Research Foundation (project numbers: 2023A1515220019, 2022A1515220056), the Sanming Project of Medicine in Shenzhen (project number: SZSM202211019), the “Merro” Young Physician Innovation and Development Project (project number: GSKQNJJ-2023-004), and the Shenzhen Science and Technology Program (project number: JCYJ20240813115833044).
Conflict of interest
The authors declare that there are no conflicts of interest regarding the publication of this paper.
References
  1. Zhang H, Wu S, Chen W, Hu Y, Geng Z, Su J. Bone/cartilage targeted hydrogel: Strategies and applications. Bioact Mater. 2022;23:156-169. doi: 10.1016/j.bioactmat.2022.10.028

 

  1. Pigeolet M, Jayaram A, Park KB, Meara JG. Osteoarthritis in 2020 and beyond. Lancet. 2021;397(10279):1059-1060. doi: 10.1016/S0140-6736(21)00208-7

 

  1. Compston JE, McClung MR, Leslie WD. Osteoporosis. Lancet. 2019;393(10169):364-376. doi: 10.1016/S0140-6736(18)32112-3

 

  1. Armiento AR, Alini M, Stoddart MJ. Articular fibrocartilage - Why does hyaline cartilage fail to repair? Adv Drug Deliv Rev. 2019;146:289-305. doi: 10.1016/j.addr.2018.12.015

 

  1. Johnstone B, Alini M, Cucchiarini M, et al. Tissue engineering for articular cartilage repair--the state of the art. Eur Cell Mater. 2013;25:248-267. doi: 10.22203/ecm.v025a18

 

  1. Xue N, Ding X, Huang R, et al. Bone tissue engineering in the treatment of bone defects. Pharmaceuticals (Basel). 2022;15(7):879. doi: 10.3390/ph15070879

 

  1. Zhang W, Zha K, Hu W, et al. Multifunctional hydrogels: Advanced therapeutic tools for osteochondral regeneration. Biomater Res. 2023;27:76. doi: 10.1186/s40824-023-00411-9

 

  1. Zeng D, Chen Y, Liao Z, et al. Cartilage organoids and osteoarthritis research: A narrative review. Front Bioeng Biotechnol. 2023;11:1278692. doi: 10.3389/fbioe.2023.1278692

 

  1. Chen S, Chen X, Geng Z, Su J. The horizon of bone organoid: A perspective on construction and application. Bioact Mater. 2022;18:15-25. doi: 10.1016/j.bioactmat.2022.01.048

 

  1. Yang Z, Wang B, Liu W, et al. In situ self-assembled organoid for osteochondral tissue regeneration with dual functional units. Bioact Mater. 2023;27:200-215. doi: 10.1016/j.bioactmat.2023.04.002

 

  1. Wu K, Liu Y, Liu L, et al. Emerging trends and research foci in tumor microenvironment of pancreatic cancer: A bibliometric and visualized study. Front Oncol. 2022;12:810774. doi: 10.3389/fonc.2022.810774

 

  1. Pu QH, Lyu QJ, Su HY. Bibliometric analysis of scientific publications in transplantation journals from Mainland China, Japan, South Korea and Taiwan between 2006 and 2015. BMJ Open. 2016;6(8):e011623. doi: 10.1136/bmjopen-2016-011623

 

  1. Ismail II, Saqr M. A quantitative synthesis of eight decades of global multiple sclerosis research using bibliometrics. Front Neurol. 2022;13:845539. doi: 10.3389/fneur.2022.845539

 

  1. Dong X, Tan Y, Zhuang D, Hu T, Zhao M. Global characteristics and trends in research on ferroptosis: A data-driven bibliometric study. Oxid Med Cell Longev. 2022;2022(1):8661864. doi: 10.1155/2022/8661864

 

  1. Yang Z, Lin J, Li H, et al. Bibliometric and visualization analysis of macrophages associated with osteoarthritis from 1991 to 2021. Front Immunol. 2022;13:1013498. doi: 10.3389/fimmu.2022.1013498

 

  1. Lin J, Yang Z, Wang L, Xing D, Lin J. Global research trends in extracellular vesicles based on stem cells from 1991 to 2021: A bibliometric and visualized study. Front Bioeng Biotechnol. 2022;10:956058. doi: 10.3389/fbioe.2022.956058

 

  1. Lin J, Jia S, Jiao Z, et al. Global research trends in CRISPR-related technologies associated with extracellular vesicles from 2015 to 2022: A bibliometric, dynamic, and visualized study. Cell Mol Biol Lett. 2023;28:99. doi: 10.1186/s11658-023-00507-z

 

  1. Shi J, Liao Z, Yang M, Kuang X, Wei W. Academic publication of neurodegenerative diseases from a bibliographic perspective: A comparative scientometric analysis. Front Aging Neurosci. 2021;13:722944. doi: 10.3389/fnagi.2021.722944

 

  1. Lin J, Wang L, Lin J, Liu Q. The role of extracellular vesicles in the pathogenesis, diagnosis, and treatment of osteoarthritis. Molecules. 2021;26(16):4987. doi: 10.3390/molecules26164987

 

  1. Liu T, Yang L, Mao H, Ma F, Wang Y, Zhan Y. Knowledge domain and emerging trends in podocyte injury research from 1994 to 2021: A bibliometric and visualized analysis. Front Pharmacol. 2021;12:772386. doi: 10.3389/fphar.2021.772386

 

  1. Wu H, Li Y, Tong L, Wang Y, Sun Z. Worldwide research tendency and hotspots on hip fracture: A 20-year bibliometric analysis. Arch Osteoporos. 2021;16(1):73. doi: 10.1007/s11657-021-00929-2

 

  1. Wang K, Xing D, Dong S, Lin J. The global state of research in nonsurgical treatment of knee osteoarthritis: A bibliometric and visualized study. BMC Musculoskelet Disord. 2019;20(1):407. doi: 10.1186/s12891-019-2804-9

 

  1. Xing D, Zhao Y, Dong S, Lin J. Global research trends in stem cells for osteoarthritis: A bibliometric and visualized study. Int J Rheum Dis. 2018;21(7):1372-1384. doi: 10.1111/1756-185X.13327

 

  1. Bertoli-Barsotti L, Lando T. A theoretical model of the relationship between the h-index and other simple citation indicators. Scientometrics. 2017;111(3):1415-1448. doi: 10.1007/s11192-017-2351-9

 

  1. Takebe T, Wells JM. Organoids by design. Science. 2019;364(6444):956-959. doi: 10.1126/science.aaw7567

 

  1. Takebe T, Zhang B, Radisic M. Synergistic engineering: Organoids meet organs-on-a-chip. Cell Stem Cell. 2017;21(3):297-300. doi: 10.1016/j.stem.2017.08.016

 

  1. Lancaster MA, Huch M. Disease modelling in human organoids. Dis Model Mech. 2019;12(7):dmm039347. doi: 10.1242/dmm.039347

 

  1. Lancaster MA, Knoblich JA. Organogenesis in a dish: Modeling development and disease using organoid technologies. Science. 2014;345(6194):1247125. doi: 10.1126/science.1247125

 

  1. Clevers H. On stem cells, organoids and human disease. Eur Rev. 2020;28(1):1-5. doi: 10.1017/S1062798719000231

 

  1. Zhang Y, Li G, Wang J, Zhou F, Ren X, Su J. Small joint organoids 3D bioprinting: Construction strategy and application. Small. 2024;20(8):e2302506. doi: 10.1002/smll.202302506

 

  1. Moroni L, Burdick JA, Highley C, et al. Biofabrication strategies for 3D in vitro models and regenerative medicine. Nat Rev Mater. 2018;3(5):21-37. doi: 10.1038/s41578-018-0006-y

 

  1. Nilsson Hall G, Mendes LF, Gklava C, Geris L, Luyten FP, Papantoniou I. Developmentally engineered callus organoid bioassemblies exhibit predictive in vivo long bone healing. Adv Sci (Weinh). 2020;7(2):1902295. doi: 10.1002/advs.201902295

 

  1. Spence JR, Mayhew CN, Rankin SA, et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature. 2011;470(7332):105-109. doi: 10.1038/nature09691

 

  1. Takasato M, Er PX, Chiu HS, et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature. 2016;536(7615):238. doi: 10.1038/nature17982

 

  1. Dye BR, Hill DR, Ferguson MAH, et al. In vitro generation of human pluripotent stem cell derived lung organoids. Elife. 2015;4:e05098. doi: 10.7554/eLife.05098

 

  1. Torisawa YS, Spina CS, Mammoto T, et al. Bone marrow-on-a-chip replicates hematopoietic niche physiology in vitro. Nat Methods. 2014;11(6):663-669. doi: 10.1038/nmeth.2938

 

  1. Reinisch A, Hernandez DC, Schallmoser K, Majeti R. Generation and use of a humanized bone-marrow-ossicle niche for hematopoietic xenotransplantation into mice. Nat Protoc. 2017;12(10):2169-2188. doi: 10.1038/nprot.2017.088

 

  1. Van de Wetering M, Francies HE, Francis JM, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 2015;161(4):933-945. doi: 10.1016/j.cell.2015.03.053

 

  1. Sato T, Vries RG, Snippert HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459(7244):262-265. doi: 10.1038/nature07935

 

  1. Serra D, Mayr U, Boni A, et al. Self-organization and symmetry breaking in intestinal organoid development. Nature. 2019;569(7754):66-72. doi: 10.1038/s41586-019-1146-y

 

  1. Yin X, Mead BE, Safaee H, Langer R, Karp JM, Levy O. Engineering stem cell organoids. Cell Stem Cell. 2016;18(1):25-38. doi: 10.1016/j.stem.2015.12.005

 

  1. Clevers H. Modeling development and disease with organoids. Cell. 2016;165(7):1586-1597. doi: 10.1016/j.cell.2016.05.082

 

  1. Rossi G, Manfrin A, Lutolf MP. Progress and potential in organoid research. Nat Rev Genet. 2018;19(11):671-687. doi: 10.1038/s41576-018-0051-9

 

  1. Zhang Y, Yin P, Liu Y, Hu Y, Hu Z, Miao Y. Global trends and hotspots in research on organoids between 2011 and 2020: A bibliometric analysis. Ann Palliat Med. 2022;11(10):3043-3062. doi: 10.21037/apm-22-290

 

  1. Hu Y, Zhang H, Wang S, et al. Bone/cartilage organoid on-chip: Construction strategy and application. Bioact Mater. 2023;25:29-41. doi: 10.1016/j.bioactmat.2023.01.016

 

  1. Faeed M, Ghiasvand M, Fareghzadeh B, Taghiyar L. Osteochondral organoids: Current advances, applications, and upcoming challenges. Stem Cell Res Ther. 2024;15(1):183. doi: 10.1186/s13287-024-03790-5

 

  1. He C, Lu F, Liu Y, Lei Y, Wang X, Tang N. Emergent trends in organ-on-a-chip applications for investigating metastasis within tumor microenvironment: A comprehensive bibliometric analysis. Heliyon. 2024;10(1):e23504. doi: 10.1016/j.heliyon.2023.e23504

 

  1. Garreta E, Kamm RD, Chuva de Sousa Lopes SM, et al. Rethinking organoid technology through bioengineering. Nat Mater. 2021;20(2):145-155. doi: 10.1038/s41563-020-00804-4

 

  1. Tam WL, Freitas Mendes L, Chen X, et al. Human pluripotent stem cell-derived cartilaginous organoids promote scaffold-free healing of critical size long bone defects. Stem Cell Res Ther. 2021;12(1):513. doi: 10.1186/s13287-021-02580-7

 

  1. Yamashita A, Morioka M, Yahara Y, et al. Generation of scaffoldless hyaline cartilaginous tissue from human iPSCs. Stem Cell Rep. 2015;4(3):404-418. doi: 10.1016/j.stemcr.2015.01.016

 

  1. Bertassoni LE. Bioprinting of complex multicellular organs with advanced functionality-recent progress and challenges ahead. Adv Mater. 2022;34(3):e2101321. doi: 10.1002/adma.202101321

 

  1. Zhu W, Ma X, Gou M, Mei D, Zhang K, Chen S. 3D printing of functional biomaterials for tissue engineering. Curr Opin Biotechnol. 2016;40:103-112. doi: 10.1016/j.copbio.2016.03.014

 

  1. Abdollahiyan P, Oroojalian F, Mokhtarzadeh A, de la Guardia M. Hydrogel-based 3D bioprinting for bone and cartilage tissue engineering. Biotechnol J. 2020;15(12):e2000095. doi: 10.1002/biot.202000095

 

  1. Shen C, Wang J, Li G, et al. Boosting cartilage repair with silk fibroin-DNA hydrogel-based cartilage organoid precursor. Bioact Mater. 2024;35:429-444. doi: 10.1016/j.bioactmat.2024.02.016

 

  1. Wu S, Wu X, Wang X, Su J. Hydrogels for bone organoid construction: From a materiobiological perspective. J Mater Sci Technol. 2023;136(0):21-31. doi: 10.1016/j.jmst.2022.07.008

 

  1. Zhu T, Hu Y, Cui H, Cui H. 3D Multispheroid assembly strategies towards tissue engineering and disease modeling. Adv Healthc Mater. 2024;13:e2400957. doi: 10.1002/adhm.202400957

 

  1. Rausch M, Iqbal N, Pathak S, Owston HE, Ganguly P. Organoid models and next-generation sequencing for bone marrow and related disorders. Organoids. 2023;2(3):123-139. doi: 10.3390/organoids2030010

 

  1. Augello A, De Bari C. The regulation of differentiation in mesenchymal stem cells. Hum Gene Ther. 2010; 21(10):1226-1238. doi: 10.1089/hum.2010.173

 

  1. León IE, Cadavid-Vargas JF, Resasco A, et al. In vitro and in vivo antitumor effects of the VO-chrysin complex on a new three-dimensional osteosarcoma spheroids model and a xenograft tumor in mice. J Biol Inorg Chem. 2016;21(8):1009-1020. doi: 10.1007/s00775-016-1397-0

 

  1. Visconti RJ, Kolaja K, Cottrell JA. A functional three-dimensional microphysiological human model of myeloma bone disease. J Bone Miner Res. 2021;36(10):1914-1930. doi: 10.1002/jbmr.4404

 

  1. Cullier A, Cassé F, Manivong S, et al. Functionalized nanogels with endothelin-1 and bradykinin receptor antagonist peptides decrease inflammatory and cartilage degradation markers of osteoarthritis in a horse organoid model of cartilage. Int J Mol Sci. 2022;23(16):8949. doi: 10.3390/ijms23168949

 

  1. Kleuskens MWA, Crispim JF, van Donkelaar CC, Janssen RPA, Ito K. Evaluating initial integration of cell-based chondrogenic constructs in human osteochondral explants. Tissue Eng Part C Methods. 2022;28(1):34-44. doi: 10.1089/ten.TEC.2021.0196

 

  1. Abe K, Yamashita A, Morioka M, et al. Engraftment of allogeneic iPS cell-derived cartilage organoid in a primate model of articular cartilage defect. Nat Commun. 2023;14(1):804. doi: 10.1038/s41467-023-36408-0

 

  1. Xie C, Liang R, Ye J, et al. High-efficient engineering of osteo-callus organoids for rapid bone regeneration within one month. Biomaterials. 2022;288:121741. doi: 10.1016/j.biomaterials.2022.121741

 

  1. Lin X, Patil S, Gao YG, Qian A. The Bone extracellular matrix in bone formation and regeneration. Front Pharmacol. 2020;11:757. doi: 10.3389/fphar.2020.00757

 

  1. Lamandé SR, Ng ES, Cameron TL, et al. Modeling human skeletal development using human pluripotent stem cells. Proc Natl Acad Sci U S A. 2023;120(19):e2211510120. doi: 10.1073/pnas.2211510120

 

  1. Eiraku M, Takata N, Ishibashi H, et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature. 2011;472(7341):51-56. doi: 10.1038/nature09941

 

  1. Boj SF, Hwang CI, Baker LA, et al. Organoid models of human and mouse ductal pancreatic cancer. Cell. 2015;160(1-2):324-338. doi: 10.1016/j.cell.2014.12.021

 

  1. Takebe T, Sekine K, Enomura M, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature. 2013;499(7459):481-484. doi: 10.1038/nature12271

 

  1. Sun Y, You Y, Wu Q, Hu R, Dai K. Senescence-targeted MicroRNA/Organoid composite hydrogel repair cartilage defect and prevention joint degeneration via improved chondrocyte homeostasis. Bioact Mater. 2024;39:427-442. doi: 10.1016/j.bioactmat.2024.05.036

 

  1. Cheng A, Schwartz Z, Kahn A, et al. Advances in porous scaffold design for bone and cartilage tissue engineering and regeneration. Tissue Eng Part B Rev. 2019;25(1):14-29. doi: 10.1089/ten.TEB.2018.0119

 

  1. Qasim M, Chae DS, Lee NY. Advancements and frontiers in nano-based 3D and 4D scaffolds for bone and cartilage tissue engineering. Int J Nanomedicine. 2019;14:4333-4351. doi: 10.2147/IJN.S209431

 

  1. Liu X, Jin X, Ma PX. Nanofibrous hollow microspheres self-assembled from star-shaped polymers as injectable cell carriers for knee repair. Nat Mater. 2011;10(5):398-406. doi: 10.1038/nmat2999

 

  1. Sun Y, Ding Q. Genome engineering of stem cell organoids for disease modeling. Protein Cell. 2017;8(5):315-327. doi: 10.1007/s13238-016-0368-0

 

  1. Paggi CA, Teixeira LM, Le Gac S, Karperien M. Joint-on-chip platforms: Entering a new era of in vitro models for arthritis. Nat Rev Rheumatol. 2022;18(4):217-231. doi: 10.1038/s41584-021-00736-6

 

  1. Babaliari E, Petekidis G, Chatzinikolaidou M. A precisely flow-controlled microfluidic system for enhanced pre-osteoblastic cell response for bone tissue engineering. Bioengineering (Basel). 2018;5(3):66. doi: 10.3390/bioengineering5030066

 

  1. Bloks NGC, Dicks A, Harissa Z, et al. Hyper-physiologic mechanical cues, as an osteoarthritis disease-relevant environmental perturbation, cause a critical shift in set points of methylation at transcriptionally active CpG sites in neo-cartilage organoids. Clin Epigenetics. 2024;16(1):64. doi: 10.1186/s13148-024-01676-0

 

  1. Kong Y, Yang Y, Hou Y, Wang Y, Li W, Song Y. Advance in the application of organoids in bone diseases. Front Cell Dev Biol. 2024;12:1459891. doi: 10.3389/fcell.2024.1459891

 

Share
Back to top
Organoid Research, Published by AccScience Publishing