AccScience Publishing / JES / Online First / DOI: 10.36922/JES025280013
REVIEW ARTICLE

A review on steel mill scale as a sustainable catalyst for oxidative degradation of organic pollutants

Beatriz Carvalho Pontes1 Jhenneffer Tainara Zancanaro Ghizzi2 Luana Malaquias Bertoleti2 Filipe Kalil da Silva Naves2 Marcio Barreto-Rodrigues3*
Show Less
1 Academic Department of Chemistry, Bioprocess Laboratory, Federal University of Technology–Paraná, Pato Branco, Paraná, Brazil
2 Graduate Program in Chemical and Biochemical Process Technology, Academic Department of Chemistry, Bioprocess Laboratory, Federal University of Technology–Paraná, Pato Branco, Paraná, Brazil
3 Academic Department of Chemistry and Graduate Program in Chemical and Biochemical Process Technology, Federal University of Technology–Paraná, Pato Branco, Paraná, Brazil
JES 2024, 1(1), 025280013 https://doi.org/10.36922/JES025280013
Received: 12 July 2025 | Revised: 18 August 2025 | Accepted: 26 August 2025 | Published online: 19 September 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Industrial effluents frequently contain persistent organic pollutants, such as phenolic and nitroaromatic compounds, which pose significant risks to aquatic ecosystems and human health. Advanced oxidation processes (AOPs), including Fenton, Fenton-like, and catalytic ozonation, have demonstrated high effectiveness in degrading these contaminants, often achieving removal efficiencies exceeding 90%. This review explores the potential of steel mill scale (SMS), a byproduct of steel manufacturing, as a sustainable and cost-effective heterogeneous catalyst in AOPs. SMS is primarily composed of magnetite, hematite, and wüstite, all of which exhibit redox activity and reactivity in generating reactive oxygen species. Characterization using scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction confirms a heterogeneous microstructure, a high iron content (approximately 67.5%), and the presence of catalytically active iron oxide phases. These features indicate SMS’s potential for participating in both heterogeneous and homogeneous oxidative reactions. Literature-based evidence highlights a range of applications for SMS and related ferrous wastes in the treatment of effluents containing emerging contaminants. Reported degradation efficiencies range from 90% to 100% for compounds such as chlorophenol, dyes, hexavalent chromium, benzidine, and pharmaceutical pollutants. Many studies report significant pollutant removal efficiencies, along with operational advantages such as magnetic recoverability, catalyst reusability, and low sludge generation. The integration of SMS into oxidative treatment systems aligns with circular economy strategies and supports Sustainable Development Goals (SDGs) such as SDG 6 (clean water and sanitation) and SDG 12 (responsible consumption and production). This review highlights the importance of further exploring SMS as a promising material for environmental catalysis while identifying current research gaps and technical challenges for real-world applications.

Keywords
Steel mill scale
Advanced oxidation processes
Heterogeneous Fenton
Catalytic ozonation
Wastewater treatment
Circular economy
Funding
This work was supported by the Graduate Support Program (Programa de Apoio à Pós-Graduação) of Coordination for the Improvement of Higher Education Personnel, Brazil (CAPES, Financing Code: 001).
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Schwarzenbach RP, Escher BI, Fenner K, et al. The challenge of micropollutants in aquatic systems. Science. 2006;313(5790):1072-1077. doi: 10.1126/science.1127291

 

  1. Richardson SD, Ternes TA. Water analysis: Emerging contaminants and current issues. Anal Chem. 2018; 90(1):398-428. doi: 10.1021/acs.analchem.7b04577

 

  1. Haq I, Shah MP, editors. Recalcitrant Pollutants Removal from Wastewater. 1st ed. Boca Raton: CRC Press; 2024. doi: 10.1201/9781003368120

 

  1. Heinz OL, Cunha MAA, Amorim JS, Barbosa-Dekker AM, Dekker RFH, Barreto-Rodrigues M. Combined fungal and photo-oxidative Fenton processes for the treatment of wood-laminate industrial waste effluent. J Hazard Mater. 2019;374:120790. doi: 10.1016/j.jhazmat.2019.120790

 

  1. Ma D, Yi H, Lai C, et al. Critical review of advanced oxidation processes in organic wastewater treatment. Chemosphere. 2021;275:130104. doi: 10.1016/j.chemosphere.2021.130104

 

  1. Matei E, Predescu C, Berbecaru AC, et al. Ferrous industrial wastes-valuable resources for water and wastewater decontamination: A review. Int J Environ Res Public Health. 2022;19(21):13951. doi: 10.3390/ijerph192113951

 

  1. Liu J, Peng C, Shi X. Preparation, characterization, and applications of Fe based catalysts in advanced oxidation processes for organics removal: A review. Environ Pollut. 2021;293(Part A):118565. doi: 10.1016/j.envpol.2021.118565

 

  1. Li X, Zhang H, Li X, et al. Characteristics and application of iron-based materials in advanced oxidation processes: A review. Environ Sci Water Res Technol. 2023;9(1):1-15. doi: 10.1039/d2ew00810f

 

  1. El-Shiekh H, El-Fawakhry MK, Mitwally ME, Shash AY. Production of reduced iron from mill scale waste using tilting rotary furnace. Results Mater. 2023;27:100429. doi: 10.1016/j.rinma.2023.100429

 

  1. Motz H, Geiseler J. Products of steel slags an opportunity to save natural resources. Waste Manage. 2001;21(3):285-293. doi: 10.1016/S0956-053X(00)00102-1

 

  1. Singh S, Garg A. Characterisation and utilization of steel industry waste sludge as heterogeneous catalyst for the abatement of chlorinated organics by advanced oxidation processes. Chemosphere. 2020;242:125158. doi: 10.1016/j.chemosphere.2019.125158

 

  1. Kargin J, De Los Santos Valladares L, Borja-Castro LE, Xize J, Barnes CHW. Characterization of iron oxide waste scales obtained by rolling mill steel industry. Hyperfine Interact. 2022;243(1):1-9. doi: 10.1007/s10751-022-01800-7

 

  1. Makhathini TP, Bwapwa JK, Mtsweni S. Various options for mining and metallurgical waste in the circular economy: A review. Sustainability. 2023;15(3):2518. doi: 10.3390/su15032518

 

  1. Kowal P, Szwed A, Święs P. Application of steel waste as a heterogeneous catalyst in advanced oxidation processes- Preliminary study. Sustainability. 2023;17(3):1187. doi: 10.3390/su17031187

 

  1. Ziembowicz S, Kida M, Sarzyńska K. Application of steel waste as a heterogenous catalyst in advanced oxidation processes-Preliminary study. Sustainability. 2025;17(3):1187. doi: 10.3390/su17031187

 

  1. Heidari B, Soleimani M, Mirghaffari N. The use of steel slags in the heterogeneous Fenton process for decreasing the chemical oxygen demand of oil refinery wastewater. Water Sci Technol. 2018;78(5-6):1159-1167. doi: 10.2166/wst.2018.347

 

  1. Predescu AM, Matei E, Berbecaru AC, et al. An innovative method of converting ferrous mill scale wastes into superparamagnetic nanoadsorbents for water decontamination. Materials (Basel). 2021;14(10):2539. doi: 10.3390/ma14102539

 

  1. Sun W, Wang S, Yu Z, Cao X. Characteristics and application of iron based materials in heterogeneous Fenton oxidation for wastewater treatment: A review. Environ Sci Water Res Technol. 2023;9:1266-1289. doi: 10.1039/D2EW00810F

 

  1. Das B, Prakash S, Reddy PSR, Misra VN. An overview of utilization of slag and sludge from steel industries. Resour Conserv Recycl. 2007;50(1):40-57. doi: 10.1016/j.resconrec.2006.05.008

 

  1. Lai L, He Y, Zhou H, Huang B, Yao G, Lai B. Critical review of natural iron based minerals used as heterogeneous catalysts in peroxide activation processes: Characteristics, applications and mechanisms. J Hazard Mater. 2021;416:125809. doi: 10.1016/j.jhazmat.2021.125809

 

  1. Wu Z, Ji S, Li YY, Liu J. A review of iron use and recycling in municipal wastewater treatment plants and a novel applicable integrated process. Bioresour Technol. 2023;379:129037. doi: 10.1016/j.biortech.2023.129037

 

  1. Jjagwe J, Olupot PW, Carrara S. Iron oxide nanoparticles/ nanocomposites derived from steel and iron wastes for water treatment: A review. J Environ Manag. 2023;343:118236. doi: 10.1016/j.jenvman.2023.118236

 

  1. Elbarbary TA. Mill scale as an industrial solid waste for preparing iron nano-metal powder as a value-added product. Nano Biomed Eng. 2022;12(2):38. doi: 10.33263/LIANBS122.038

 

  1. Ulbrich KF, de Campos CEM. Obtaining of hematite from industrial steel waste using dry-milling and high temperature. Cleaner Eng Technol. 2021;4:100327. doi: 10.1016/j.clet.2021.100327

 

  1. Zhang Y, Zhang C, Xu J, et al. Strategies to enhance the reactivity of zero-valent iron for environmental remediation: A review. J Environ Manag. 2023;323:115381. doi: 10.1016/j.jenvman.2022.115381

 

  1. Boontian N, Phorndon T, Piasai C, Padri M. Combination of alkaline and heat pretreatments with zero-valent iron application in cassava pulp and wastewater for methane generation: Development from batch to continuous systems. Fermentation. 2023;9(2):108. doi: 10.3390/fermentation9020108

 

  1. Shahid MK, Phearom S, Choi YG. Synthesis of magnetite from raw mill scale and its application for arsenate adsorption from contaminated water. Chemosphere. 2018;206:300-308. doi: 10.1016/j.chemosphere.2018.03.150

 

  1. Oliveira EM, Oliveira EM, Dal-Bó AG, De Noni A Jr., Oliveira CM, Peterson M. Steel mill scale nanoparticles prepared via high-energy wet milling. Mater Chem Phys. 2025;340:130855. doi: 10.1016/j.matchemphys.2025.130855

 

  1. Hollanda LR, Souza JAB, Dotto GL, Foletto EL, Chiavone- Filho O. Iron-bearing mining reject as an alternative and effective catalyst for photo-Fenton oxidation of phenol in water. Environ Sci Pollut Res. 2024;31(14):21291-21301. doi: 10.1007/s11356-024-32513-9

 

  1. Carta M, Sanna AL, Porcheddu A, Garroni S, Delogu F. Mechanochemical effects underlying the mechanically activated catalytic hydrogenation of carbon monoxide. Sci Rep. 2023;13:2470. doi: 10.1038/s41598-023-28972-8

 

  1. Ambika S, Devasena M, Nambi IMS. Synthesis, characterization and performance of high energy ball milled meso-scale zero valent iron in Fenton reaction. J Environ Manag. 2016;181:847-855. doi: 10.1016/j.jenvman.2016.06.054

 

  1. Chen Q, Wu P, Li Y, Zhu N, Dang Z. Effect of mechanical activation on catalytic properties of Fe₂O₃-pillared bentonite for Fenton-like reaction. Clay Miner. 2017;52(4):439-451. doi: 10.1180/claymin.2017.052.4.03

 

  1. Kongkajun N, Cherdhirunkorn B, Kongkarat S. Upcycling mill scale and aluminum dross for sustainable materials processing: Synthesis of hercynite via Fe₂O₃–Al₂O₃–C Combustion. Recycling. 2024;9(5):80. doi: 10.3390/recycling9050080

 

  1. Kopp M, Anabalón P, Rocha S, et al. Synthesis of iron oxide/ activated hydrochar composite from residual brewery biomass for remediation of water contaminated with chlorophenol. Sci Rep. 2025;15:10705. doi: 10.1038/s41598-025-95686-4

 

  1. Gogoi A, Liu X, Du X, Sharma KC, Navgire M, Gogoi P. Nanostructured iron oxide hybrid composites as heterogeneous Fenton-like catalyst for remediation of persistent organic pollutants. In: Sudarsanam P, Yamauchi Y, Bharali P, editors. Nanostructured Materials for Environmental Remediation. Wiley; 2022. p. 345-369. doi: 10.1002/9781119772057.ch16

 

  1. Orero B, Lekgoba T, Mabuza M, et al. Insight into hybridization of iron scrap derived Fe₃O₄ on TiO₂: Facile synthesis of an eco-friendly photocatalyst, characterization, and photoelectric properties. Results Eng. 2025;19:106559. doi: 10.1016/j.rineng.2025.106559

 

  1. Ding D, Zhao Y, Chen Y, Zhao D. Recent advances in bimetallic nanoscale zero-valent iron composite for water decontamination: Synthesis, modification and mechanisms. J Environ Manage. 2024;353:120187. doi: 10.1016/j.jenvman.2024.120187

 

  1. Chen S, Long F, Gao G, et al. Zero-valent iron-copper bimetallic catalyst supported on graphite from spent lithium-ion battery anodes and mill scale waste for the degradation of 4-chlorophenol in aqueous phase. Sep Purif Technol. 2022;286:120466. doi: 10.1016/j.seppur.2022.120466

 

  1. Salehirozveh M, Dehghani P, Mijakovic I. Synthesis, functionalization, and biomedical applications of iron oxide nanoparticles (IONPs). J Funct Biomater. 2024;15(11):340. doi: 10.3390/jfb15110340

 

  1. Teng Z, Zhang Y, Wang J. Phosphate functionalized iron-based nanomaterials coupled with phosphate solubilizing bacteria as an efficient remediation system to enhance lead passivation in soil. J Hazard Mater. 2021;419:126433. doi: 10.1016/j.jhazmat.2021.126433

 

  1. Rattanachueskul N, Onsri P, Watcharin W, et al. Waste para-rubber wood ash and iron scrap for the sustainable preparation of magnetic Fenton catalyst for efficient degradation of tetracycline. Arab J Chem. 2024;17(6):105791. doi: 10.1016/j.arabjc.2024.105791

 

  1. Barreto-Rodrigues M, Silveira J, García-Muñoz P, Rodríguez JJ. Dechlorination and oxidative degradation of 4-chlorophenol with nanostructured iron-silver alginate beads. J Environ Chem Eng. 2017;5(1):838-842. doi: 10.1016/j.jece.2016.12.051

 

  1. Yu Q, Deng Y, Feng Y, Li Z. Phase transformation of alumina, silica and iron oxide during carbothermic reduction of fly ash for ceramics production. Metals. 2021;11:1165. doi: 10.3390/met11081165

 

  1. Legodi MA, Motaung DE, Mhlongo MI, et al. An innovative method of converting ferrous mill scale wastes into magnetic iron oxide nanoparticles for water purification. Materials. 2021;14(10):2539. doi: 10.3390/ma14102539

 

  1. Sun X, Ni X, Wang X, Xu D. Preparation of zero-valent iron-based composite catalyst with red mud and scrap tire as starting materials for Fenton-like degradation of methyl blue. Surf Interfaces. 2022;31:102053. doi: 10.1016/j.surfin.2022.102053

 

  1. Bhaskar S, Apoorva KV, Ashraf S, Devan TA. Synthesis and application of iron nanoparticles from scrap metal for triclosan degradation in water via Fenton and Sono-Fenton oxidation. Waste Manag Bull. 2025;3(1):293-300. doi: 10.1016/j.wmb.2025.01.012

 

  1. Barreto-Rodrigues M, Silveira J, Zazo JA, Rodríguez JJ. Synthesis, characterization and application of nanoscale zero-valent iron in the degradation of the azo dye Disperse Red. J Environ Chem Eng. 2017;5(1):628-634. doi: 10.1016/j.jece.2016.12.041

 

  1. Bhatti HN, Iram Z, Iqbal M, Nisar J, Khan MI. Facile synthesis of zero valent iron and photocatalytic application for the degradation of dyes. Mater Res Express. 2020;7(1):015802. doi: 10.1088/2053-1591/ab66a0

 

  1. Saning A, Thanachayanont C, Suksai L, et al. Green magnetic carbon/alginate biocomposite beads from iron scrap waste for efficient removal of textile dye and heavy metal. Int J Biol Macromol. 2024;267:129765. doi: 10.1016/j.ijbiomac.2024.129765

 

  1. Li Y, Lu X, Liu Y, et al. Facile green synthesis of zero-valent iron nanoparticles for dye degradation. RSC Adv. 2015;5(108):88987-88995. doi: 10.1039/C5RA17122A

 

  1. Rawat S, Singh J. Fenton like oxidative degradation of toxic water pollutants by iron nanoparticles synthesized via facile green route using waste iron rust as the iron precursor. Environ Eng Res. 2023;28(2):210621. doi: 10.4491/eer.2021.621

 

  1. Barmpatza AC, Baklezos AT, Vardiambasis IO, Nikolopoulos CD. A review of characterization techniques for ferromagnetic nanoparticles and the magnetic sensing perspective. Appl Sci. 2024;14(12):5134. doi: 10.3390/app14125134

 

  1. Greneche JM. Magnetic characterization of some nanometric iron oxides. In: ICAME 2007. Berlin, Heidelberg: Springer; 2009. p. 377-386. doi: 10.1007/978-3-540-78697-9_47

 

  1. Ali MEM, Gad-Allah TA, Badawy MI. Heterogeneous Fenton process using steel industry wastes for methyl orange degradation. Appl Water Sci. 2013;3(4):1-7. doi: 10.1007/s13201-013-0078-1

 

  1. Moresco MA, Falchi PP, Ferreira ES, Silva DC, Barreto- Rodrigues M. Application of steel waste for 2,4-dinitrophenol degradation through Fenton type advanced oxidation system [in Portuguese]. Eng Sanit Ambien. 2021;26(2):201- 210. doi: 10.1590/S1413-415220190251

 

  1. Pignatello JJ, Oliveros E, MacKay A. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit Rev Environ Sci Technol. 2006;36(1):1-84. doi: 10.1080/10643380500326564

 

  1. Thomas N, Dionysiou DD, Pillai SC. Heterogeneous Fenton catalysts: A review of recent advances. J Hazard Mater. 2021;404(B):124082. doi: 10.1016/j.jhazmat.2020.124082

 

  1. Santos A, Yustos P, Quintanilla A, et al. Fe-based catalysts for the catalytic ozonation of real wastewater: Catalyst stability and catalytic activity. Appl Catal B Environ. 2009;88(3-4):448-454. doi: 10.1016/j.cej.2016.11.118

 

  1. Rekhate CV, Srivastava JK. Recent advances in ozone-based advanced oxidation processes for treatment of wastewater: A review. Chem Eng J Adv. 2020;3:100031. doi: 10.1016/j.ceja.2020.100031

 

  1. Tian X, Luo T, Nie Y, et al. New insight into a Fenton-like reaction mechanism over sulfidated β-FeOOH: Key role of sulfidation in efficient iron(III) reduction and sulfate radical generation. Environ Sci Technol. 2022;56(9):5542-5551. doi: 10.1021/acs.est.2c00132

 

  1. Guimarães T, Aguiar ACM, Silva EMG, et al. Dicamba degradation by fenton-like process using iron/biochar composites. J Braz Chem Soc. 2023;34(12):1753-1761. doi: 10.21577/0103-5053.20230068

 

  1. Pescarmona MR, Ingrosso GM, Cioffi R, Evangelista L. Steel scale waste as a heterogeneous Fenton like catalyst for landfill leachate treatment: Influence of particle size and catalyst dose. Ind Eng Chem Res. 2021;60(14):5222-5231. doi: 10.1021/acs.iecr.1c01901

 

  1. Salazar-Arias AM, Giraldo-Gómez GI, Sanabria-González NR. Degradation of phenol using mill scale as a Fenton-type catalyst. Water Environ J. 2019;33(4):527-535. doi: 10.1111/wej.12516

 

  1. Islam SMKN, Kurny ASW, Gulshan F. Photocatalytic efficiency of mill scale for the degradation of textile dye by photo-Fenton and photo-ferrioxalate system under UV and sunlight. Environ Ecol Res. 2013;1(3):129-134. doi: 10.13189/eer.2013.010302

 

  1. Gupta A, Kumar A, Singh R, Yadav R, Mandal D. Removal of Cr(VI) using magnetized biochar derived from steel mill scale: Performance in ozonation-Fenton hybrid system. Environ Sci Pollut Res. 2019;26(30):30765-30777. doi: 10.1007/s11356-019-06393-2

 

  1. GilPavas E, Correa-Sánchez S, Acosta DA. Using scrap zero valent iron to replace dissolved iron in the Fenton process for textile wastewater treatment: Optimization and assessment of toxicity and biodegradability. Environ Pollut. 2019;252(B):1709-1718. doi: 10.1016/j.envpol.2019.06.104

 

  1. Priyadarshini M, Ahmad A, Ghangrekar MM. Efficient upcycling of iron scrap and waste polyethylene terephthalate plastic into Fe₃O₄@C incorporated MIL-53(Fe) as a novel electro-Fenton catalyst for the degradation of salicylic acid. Environ Pollut. 2023;322:121242. doi: 10.1016/j.envpol.2023.121242

 

  1. Chen Y, Li R, Gu T, Zhang W. Effective periodate activation by the ball-milled bimetallic zero-valent iron/manganese oxides catalyst for sulfamethoxazole degradation. Chem Eng J. 2024;489:156967. doi: 10.1016/j.cej.2024.156967

 

  1. Li H, Qian L, Liang C, Zheng T, Dong X, Chen M. Enhanced Cr(VI) reduction by zero-valent iron and ferroferric oxide wet ball milling: Synergy of electron storage and electron transfer. Chem Eng J. 2023;457:141254. doi: 10.1016/j.cej.2022.141254

 

  1. Shu Z, Yang H, Ye S, et al. Iron scrap derived nano zero-valent iron/biochar activated persulfate for p-arsanilic acid decontamination with coexisting microplastics. J Environ Sci. 2024;125:1-14. doi: 10.1016/j.jes.2024.04.031

 

  1. Hussain S, Aneggi E, Maschio S, Contin M, Goi D. Steel scale waste as a heterogeneous fenton-like catalyst for the treatment of landfill leachate. Ind Eng Chem Res. 2021;60(31):11715-11724. doi: 10.1021/acs.iecr.1c01901

 

  1. Tochetto GA, da Luz VC, Dervanoski A, Pasquali GDL. Hexavalent chromium removal by electrocoagulation using iron scrap electrodes: Optimization and kinetic modeling. Curr Direct Chem Eng. 2024;4:101138. doi: 10.1016/j.cdc.2024.101138

 

  1. Kumar R, Sinha A, Mondal GC, Masto RE. Effective scrap iron particles (SIP) pre-treatment for complete mineralization of benzidine based azo dye effluent. Arab J Chem. 2017;10(5):664-673. doi: 10.1016/j.arabjc.2017.03.001

 

  1. Zhang X, Li Z, Tong C, et al. Novel use of waste iron scraps to enhance anammox nitrogen removal from weakly acidic wastewater. J Environ Chem Eng. 2023;13:118477. doi: 10.1016/j.jece.2025.118477

 

  1. Scherer CE, Barreto-Rodrigues M. Combination of catalytic ozonation and fungal bioremediation for treatment of effluent from the laminate production industry. Rev Ambiente Água. 2022;17(6):e2817. doi: 10.4136/ambi-agua.2817

 

  1. Faisal AAH, Rashid HM, Sharma G, Al-Ansari N, Saleh B. A mathematical model for simulation of cadmium and chromium removal from groundwater using scrap iron and aluminum as a permeable reactive barrier. Desalination Water Treat. 2022;261:28483. doi: 10.5004/dwt.2022.28483

 

  1. Ardelean E, Socalici A, Lupu O, Bistrian D, Dobrescu C, Constantin N. Recovery of waste with a high iron content in the context of the circular economy. Materials. 2022;15(14):4995. doi: 10.3390/ma15144995

 

  1. Puls RW, Paul CJ, Powell RM. The application of in situ permeable reactive (zero-valent iron) barrier technology for the remediation of chromate-contaminated groundwater: A field test. Appl Geochem. 1999;14:989-1000. doi: 10.1016/S0883-2927(99)00010-4

 

  1. Luo L, He Q, Yi D, Zu D, Ma J, Chen Y. Ferrous industrial wastes-valuable resources for water and wastewater decontamination. Int J Environ Res Public Health. 2022;19:13951. doi: 10.3390/ijerph192113951

 

  1. Kumar N, Amritphale SS, Matthews JC, Lynam JG, Alam S, Abdulkareem OA. Synergistic utilization of diverse industrial wastes for reutilization in steel production and their geopolymerization potential. Waste Manag. 2021;126:728-736. doi: 10.1016/j.wasman.2021.03.014

 

  1. Visentin F, Rubino FM, Marvuglia A, et al. Life cycle sustainability assessment of the nanoscale zero-valent iron synthesis process for application in contaminated site remediation. Environ Pollut. 2020;266(Pt 3):115915. doi: 10.1016/j.envpol.2020.115915

 

  1. GilPavas E, Correa-Sánchez S. Optimization of the heterogeneous electro-Fenton process assisted by scrap zero-valent iron for treating textile wastewater: Assessment of toxicity and biodegradability. J Water Process Eng. 2019;32:100924. doi: 10.1016/j.jwpe.2019.100924

 

  1. Gao Y, Wei X, Sun J, Ouyang S. Adsorption, transformation, biodegradation and potential ecological toxicity of iron-based nanoparticles in the aqueous environment. Chem Commun Lett. 2025;1:111600. doi: 10.1016/j.cclet.2025.111600

 

  1. Karmodak N, Andreussi O. Effect of the solvent on the oxygen evolution reaction at the TiO₂. J Phys Chem Lett. 2021;12(25):5909-5918. doi: 10.1021/acs.jpclett.1c01497.

 

  1. Orege JI, Kifle GA, Yu Y, Wei J, Ge Q, Sun J. Emerging spinel ferrite catalysts for driving CO₂ hydrogenation to high-value chemicals. Matter. 2023;6(5):1404-1434. doi: 10.1016/j.matt.2023.03.024

 

  1. Nagajyothi PC, Devarayapalli KC, Vattikuti SVP. Highly efficient white-LED-light-driven photocatalytic hydrogen production using highly crystalline ZnFe₂O₄/ MoS₂ nanocomposites. Int J Hydrogen Energy. 2020;45(57):32756-32769. doi: 10.1016/j.ijhydene.2020.03.047.

 

  1. Mirshafiee F, Rezaei M. Engineering of the ferrite-based support for enhanced performance of supported Pt, Pd, Ru, and Rh catalysts in hydrogen generation from NaBH₄ hydrolysis. Sci Rep. 2024;14:20818. doi: 10.1038/s41598-024-71501-4.
Share
Back to top
Journal of Energy and Sustainability, Published by AccScience Publishing