A comprehensive review of clinical advances in the antifibrotic role of micro-RNA in pneumonia and pulmonary fibrosis

Background: Pneumonia is a common respiratory infection affecting millions of people worldwide and often leads to serious complications such as pulmonary fibrosis – a progressive disorder recognized by persistent scarring, alveolar thickening, impaired gas exchange, and reduced lung capacity. The pathogenesis of pulmonary fibrosis remains complex and poorly understood. A hallmark feature is the buildup of extracellular matrix disrupting the normal architecture and function of the lung parenchyma, ultimately causing irreversible lung damage. At present, there is no known remedy for pulmonary fibrosis, and the existing treatments are often limited in efficacy and associated with adverse effects. This underscores the urgent need to identify novel molecular targets and therapeutic approaches for this debilitating condition. Aim: This review summarizes recent advances in understanding the pharmacotherapeutic potential of microRNAs (miRNAs) in reducing fibrosis associated with pneumonia and pulmonary fibrosis. It highlights the signaling mechanisms through which miRNAs regulate gene expression, as well as their role in maintaining lung development and homeostasis. The review also identifies the specific miRNAs with antifibrotic effects as demonstrated in experimental models and clinical settings. Finally, it discusses the key challenges in developing miRNA-based therapies, including delivery strategies and off-target effects. Methods: The study entailed a thorough literature review on antifibrotic effect of mi-RNA in pneumonia and lung fibrosis, conducted through the electronic searches on Google, Google Scholar, and PubMed databases. Results: In his study we provide a recent finding on antifibrotic activity of miRNA in pulmonary complications. Moreover, the evidences from animal and clinical researches are also discussed. This may further help scholars, practitioners, and legislators who are interested to do the research on mi-RNA therapies in clinical practice. Conclusion: In conclusion, miRNA-based diagnostics and therapies represent a promising frontier for the management of pneumonia and pulmonary fibrosis. Further research is warranted to deepen our understanding of miRNA mechanisms in the therapeutic context. Relevance for patients: Advances in therapies for pneumonia and pulmonary fibrosis can enhance treatment efficacy, aiding in the mitigation and treatment of the disease.
- Gardiner SJ, Gavranich JB, Chang AB. Antibiotics for Community-Acquired Lower Respiratory Tract Infections Secondary to Mycoplasma pneumoniae in Children. Cochrane Database Syst Rev 2015;1:CD004875. doi: 10.1002/14651858.cd004875.pub5
- Steinhoff MC. Viral Vaccines for the Prevention of Childhood Pneumonia in Developing Nations: Priorities and Prospects. Rev Infect Dis 1991;13:S562-70. doi: 10.1093/clinids/13.supplement-6.s562
- Gereige RS, Laufer PM. Pneumonia Published Correction Appears in Pediatr Rev. 2014 Jan;35(1):29. Dosage Error in Article Text. Pediatr Rev 2013;34:438-56. doi: 10.1542/pir.34-10-438
- Arnold FW, Summersgill JT, Ramirez JA. Role of Atypical Pathogens in the Etiology of Community-Acquired Pneumonia. Semin Respir Crit Care Med 2016;37:819-28. doi: 10.1055/s-0036-1592121
- Pardo A, Selman M. Idiopathic Pulmonary Fibrosis: New Insights in its Pathogenesis. Int J Biochem Cell Biol 2002;34:1534-8. doi: 10.1016/s1357-2725(02)00091-2
- Padilla M. Idiopathic Pulmonary Fibrosis: The Role of Pathobiology in Making A Definitive Diagnosis. Am J Manag Care 2015;21:s276-83.
- Thannickal VJ, Toews GB, White ES, Lynch JP 3rd, Martinez FJ. Mechanisms of Pulmonary Fibrosis. Annu Rev Med 2004;55:395-417. doi: 10.1146/annurev.med.55.091902.103810
- Lu TX, Rothenberg ME. MicroRNA. J Allergy Clin Immunol 2018;141:1202-7. doi: 10.1016/j.jaci.2017.08.034
- Bushati N, Cohen SM. Microrna Functions. Annu Rev Cell Dev Biol 2007;23:175-205. doi: 10.1146/annurev.cellbio.23.090506.123406
- Mohr AM, Mott JL. Overview of MicroRNA Biology. Semin Liver Dis 2015;35:3-11. doi: 10.1055/s-0034-1397344
- Romero-Cordoba SL, Salido-Guadarrama I, Rodriguez- Dorantes M, Hidalgo-Miranda A. MiRNA Biogenesis: Biological Impact in the Development of Cancer. Cancer Biol Ther 2014;15:1444-55. doi: 10.4161/15384047.2014.955442
- O’Carroll D, Schaefer A. General Principals of MiRNA Biogenesis and Regulation in the Brain. Neuropsychopharmacology 2013;38:39-54. doi: 10.1038/npp.2012.87
- Michlewski G, Cáceres JF. Post-Transcriptional Control of MiRNA Biogenesis. RNA 2019;25:1-16. doi: 10.1261/rna.068692.118
- Young NA, Valiente GR, Hampton JM, Wu LC, Burd CJ, Willis WL, et al. Estrogen-Regulated STAT1 Activation Promotes TLR8 Expression to Facilitate Signaling Via MicroRNA-21 in Systemic Lupus Erythematosus. Clin Immunol 2017;176:12-22. doi: 10.1016/j.clim.2016.12.005
- Dempsey TM, Payne S, Sangaralingham L, Yao X, Shah ND, Limper AH. Adoption of the Antifibrotic Medications Pirfenidone and Nintedanib for Patients with Idiopathic Pulmonary Fibrosis. Ann Am Thorac Soc 2021;18:1121-8. doi: 10.1513/AnnalsATS.202007-901OC
- Allegra A, Ettari R, Innao V, Bitto A. Potential Role of MicroRNAs in Inducing Drug Resistance in Patients with Multiple Myeloma. Cells 2021;10:448. doi: 10.3390/cells10020448
- Catalanotto C, Cogoni C, Zardo G. MicroRNA in Control of Gene Expression: An Overview of Nuclear Functions. Int J Mol Sci 2016;17:1712. doi: 10.3390/ijms17101712
- Budak H, Akpinar BA. Plant MiRNAs: Biogenesis, Organization and Origins. Funct Integr Genomics 2015;15:523-31. doi: 10.1007/s10142-015-0451-2
- Tang HB, DiMango E, Bryan R, Gambello M, Iglewski BH, Goldberg JB, et al. Contribution of Specific Pseudomonas aeruginosa Virulence Factors to Pathogenesis of Pneumonia in a Neonatal Mouse Model of Infection. Infect Immun 1996;64:37-43. doi: 10.1128/iai.64.1.37-43.1996
- Rider AC, Frazee BW. Community-Acquired Pneumonia. Emerg Med Clin North Am 2018;36:665-83. doi: 10.1016/j.emc.2018.07.001
- McCullers JA, Tuomanen EI. Molecular Pathogenesis of Pneumococcal Pneumonia. Front Biosci 2001;6:D877-89. doi: 10.2741/mccullers
- Song Y, Li X, Du X. Exposure to Nanoparticles is Related to Pleural Effusion, Pulmonary Fibrosis and Granuloma. Eur Respir J 2009;34:559-67. doi: 10.1183/09031936.00178308
- López A, Martinson SA. Respiratory System, Mediastinum, and Pleurae. In: Pathologic Basis of Veterinary Disease. Amsterdam, Netherlands: Elsevier; 2017. p. 471-560.e1. doi: 10.1016/B978-0-323-35775-3.00009-6
- Arshad H, Fasanya A, Cheema T, Singh AC. Acute Pneumonia. Crit Care Nurs Q 2016;39:148-60. doi: 10.1097/CNQ.0000000000000108
- Chugh K, Talwar N. Bronchoscopy in Pediatric Critical Care. J Pediatr Crit Care. 2015;2:100. doi: 10.21304/2015.0201.00057
- Sun Y, Xian Y, Duan Z, Wan Z, Li J, Liao Y, et al. Diagnostic Potential of MicroRNAs in Extracellular Vesicles Derived from Bronchoalveolar Lavage Fluid for Pneumonia-a Preliminary Report. Cells 2022;11:2961. doi: 10.3390/cells11192961
- Drury RE, O’Connor D, Pollard AJ. The Clinical Application of MicroRNAs in Infectious Disease. Front Immunol 2017;8:1182. doi: 10.3389/fimmu.2017.01182
- Abu-Izneid T, AlHajri N, Ibrahim AM, Javed N, Salem KM, Pottoo FH, et al. Micro-RNAs in the Regulation of Immune Response Against SARS CoV-2 and Other Viral Infections. J Adv Res 2021;30:133-45. doi: 10.1016/j.jare.2020.11.013
- Zhou X, Li X, Wu M. MiRNAs Reshape Immunity and Inflammatory Responses in Bacterial Infection. Signal Transduct Target Ther 2018;3:14. doi: 10.1038/s41392-018-0006-9
- Ojha R, Nandani R, Pandey RK, Mishra A, Prajapati VK. Emerging Role of Circulating MicroRNA in the Diagnosis of Human Infectious Diseases. J Cell Physiol 2019;234:1030-43. doi: 10.1002/jcp.27127
- Zhang F, Zhou Y, Ding J. The Current Landscape of MicroRNAs (MiRNAs) in Bacterial Pneumonia: Opportunities and Challenges. Cell Mol Biol Lett 2022;27:70. doi: 10.1186/s11658-022-00368-y
- Ayoub SE, Ahmed AM, Abdelwahed MY, Khalefa AA, Awaji AA, Zekry SS, et al. Biochemical Analysis of MiR-217 and MiR-532 in Patients with Fibromyalgia. Eur J Med Res 2025;30:85. doi: 10.1186/s40001-025-02330-y
- Podsiad A, Standiford TJ, Ballinger MN, Eakin R, Park P, Kunkel SL, et al. MicroRNA-155 Regulates Host Immune Response to Postviral Bacterial Pneumonia Via IL-23/ IL-17 Pathway. Am J Physiol Lung Cell Mol Physiol 2016;310:L465-75. doi: 10.1152/ajplung.00224.2015
- Mowery NT, Terzian WT, Nelson AC. Acute Lung Injury. Curr Probl Surg 2020;57:100777. doi: 10.1016/j.cpsurg.2020.100777
- Torres A, Serra-Batlles J, Ferrer A, Jiménez P, Celis R, Cobo E, et al. Severe Community-Acquired Pneumonia. Epidemiology and Prognostic Factors. Am Rev Respir Dis 1991;144:312-8. doi: 10.1164/ajrccm/144.2.312
- Adhanom G, Gebreegziabiher D, Weldu Y, Wasihun AG, Araya T, Legese H, et al. Species, Risk Factors, and Antimicrobial Susceptibility Profiles of Bacterial Isolates from HIV-Infected Patients Suspected to Have Pneumonia in Mekelle Zone, Tigray, Northern Ethiopia. Biomed Res Int 2019;2019:8768439. doi: 10.1155/2019/8768439
- Huang S, Feng C, Zhai YZ, Zhou X, Li B, Wang LL, et al. Identification of MiRNA Biomarkers of Pneumonia using RNA-Sequencing and Bioinformatics Analysis. Exp Ther Med 2017;13:1235-44. doi: 10.3892/etm.2017.4151
- Wuyts WA, Agostini C, Antoniou KM, Bouros D, Chambers RC, Cottin V, et al. The Pathogenesis of Pulmonary Fibrosis: A Moving Target. Eur Respir J 2013;41:1207-18. doi: 10.1183/09031936.00073012
- Marshall RP, McAnulty RJ, Laurent GJ. The Pathogenesis of Pulmonary Fibrosis: Is there a Fibrosis Gene? Int J Biochem Cell Biol 1997;29:107-20. doi: 10.1016/s1357-2725(96)00141-0
- She YX, Yu QY, Tang XX. Role of Interleukins in the Pathogenesis of Pulmonary Fibrosis. Cell Death Discov 2021;7:52. doi: 10.1038/s41420-021-00437-9
- Sgalla G, Iovene B, Calvello M, Ori M, Varone F, Richeldi L. Idiopathic Pulmonary Fibrosis: Pathogenesis and Management. Respir Res 2018;19:32. doi: 10.1186/s12931-018-0730-2
- Bellaye PS, Kolb M. Why Do Patients Get Idiopathic Pulmonary Fibrosis? Current Concepts in the Pathogenesis of Pulmonary Fibrosis. BMC Med 2015;13:176. doi: 10.1186/s12916-015-0412-6
- Oikonomou N, Mouratis MA, Tzouvelekis A, Kaffe E, Valavanis C, Vilaras G, et al. Pulmonary Autotaxin Expression Contributes to the Pathogenesis of Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2012;47:566-74. doi: 10.1165/rcmb.2012-0004OC
- Bozyk PD, Moore BB. Prostaglandin E2 and the Pathogenesis of Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2011;45:445-52. doi: 10.1165/rcmb.2011-0025RT
- Goodwin A, Jenkins G. Role of Integrin-Mediated TGFbeta Activation in the Pathogenesis of Pulmonary Fibrosis. Biochem Soc Trans 2009;37:849-54. doi: 10.1042/BST0370849
- Radisky DC. Epithelial-Mesenchymal Transition. J Cell Sci 2005;118:4325-6. doi: 10.1242/jcs.02552
- Selman M, Thannickal VJ, Pardo A, Zisman DA, Martinez FJ, Lynch JP 3rd. Idiopathic Pulmonary Fibrosis: Pathogenesis and Therapeutic Approaches. Drugs 2004;64:405-30. doi: 10.2165/00003495-200464040-00005
- Kim KK, Kugler MC, Wolters PJ, Robillard L, Galvez MG, Brumwell EN, et al. Alveolar Epithelial Cell Mesenchymal Transition Develops in vivo During Pulmonary Fibrosis and is Regulated by the Extracellular Matrix. Proc Natl Acad Sci U S A 2006;103:13180-5. doi: 10.1073/pnas.0605669103
- Cadena-Suárez AR, Hernández-Hernández HA, Alvarado- Vásquez N, Rangel-Escareño C, Sommer B, Negrete- García MC. Role of MicroRNAs in Signaling Pathways Associated with the Pathogenesis of Idiopathic Pulmonary Fibrosis: A Focus on Epithelial-Mesenchymal Transition. Int J Mol Sci 2022;23:6613. doi: 10.3390/ijms23126613
- Condrat CE, Thompson DC, Barbu MG, Bugnar OL, Boboc A, Cretoiu D, et al. MiRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells 2020;9:276. doi: 10.3390/cells9020276
- Rajasekaran S, Rajaguru P, Sudhakar Gandhi PS. MicroRNAs as Potential Targets for Progressive Pulmonary Fibrosis. Front Pharmacol 2015;6:254. doi: 10.3389/fphar.2015.00254
- Liu B, Jiang T, Hu X, Liu Z, Zhao L, Liu H, et al. Downregulation of MicroRNA-30a in Bronchoalveolar Lavage Fluid from Idiopathic Pulmonary Fibrosis Patients. Mol Med Rep 2018;18:5799-806. doi: 10.3892/mmr.2018.9565
- Wang M, Huang Y, Liang Z, Liu D, Lu Y, Dai Y, et al. Plasma MiRNAs Might Be Promising Biomarkers of Chronic Obstructive Pulmonary Disease. Clin Respir J 2016;10:104-11. doi: 10.1111/crj.12194
- Njock MS, Guiot J, Henket MA, Nivelles O, Thiry M, Dequiedt F, et al. Sputum Exosomes: Promising Biomarkers for Idiopathic Pulmonary Fibrosis. Thorax 2019;74:309-12. doi: 10.1136/thoraxjnl-2018-211897
- O’Reilly S. MicroRNAs in Fibrosis: Opportunities and Challenges. Arthritis Res Ther 2016;18:11. doi: 10.1186/s13075-016-0929-x
- Li H, Zhao X, Shan H, Liang H. MicroRNAs in Idiopathic Pulmonary Fibrosis: Involvement in Pathogenesis and Potential use in Diagnosis and Therapeutics. Acta Pharm Sin B 2016;6:531-9. doi: 10.1016/j.apsb.2016.06.010
- Chen X, Shi C, Wang C, Liu W, Chu Y, Xiang Z, et al. The Role of MiR-497-5p in Myofibroblast Differentiation of LR-MSCs and Pulmonary Fibrogenesis. Sci Rep 2017;7:40958. doi: 10.1038/srep40958
- Gao X, Xu D, Li S, Wei Z, Li S, Cai W, et al. Pulmonary Silicosis Alters MicroRNA Expression in Rat Lung and miR- 411-3p Exerts Anti-fibrotic Effects by Inhibiting MRTF-A/ SRF Signaling. Mol Ther Nucleic Acids 2020;20:851-65. doi: 10.1016/j.omtn.2020.05.005
- Ji X, Wu B, Fan J, Han R, Luo C, Wang T, et al. The Anti-fibrotic Effects and Mechanisms of MicroRNA-486-5p in Pulmonary Fibrosis. Sci Rep 2015;5:14131. doi: 10.1038/srep14131
- Nath A, Rayabaram J, Ijee S, Bagchi A, Chaudhury AD, Roy D, et al. Comprehensive Analysis of MicroRNAs in Human Adult Erythropoiesis. Cells 2021;10:3018. doi: 10.3390/cells10113018
- Leng Q, Lin Y, Jiang F, Lee CJ, Zhan M, Fang H, et al. A Plasma MiRNA Signature for Lung Cancer Early Detection. Oncotarget 2017;8:111902-11. doi: 10.18632/oncotarget.22950
- Han R, Ji X, Rong R, Li Y, Yao W, Yuan J, et al. MiR-449a Regulates Autophagy to Inhibit Silica-Induced Pulmonary Fibrosis through Targeting Bcl2. J Mol Med (Berl) 2016;94:1267-79. doi: 10.1007/s00109-016-1441-0
- Yuan J, Li P, Pan H, Xu Q, Xu T, Li Y, et al. MiR-770-5p Inhibits the Activation of Pulmonary Fibroblasts and Silica- Induced Pulmonary Fibrosis Through Targeting TGFBR1. Ecotoxicol Environ Saf 2021;220:112372. doi: 10.1016/j.ecoenv.2021.112372
- Degryse AL, Lawson WE. Progress toward Improving Animal Models for Idiopathic Pulmonary Fibrosis. Am J Med Sci 2011;341:444-9. doi: 10.1097/MAJ.0b013e31821aa000
- Murchison EP, Hannon GJ. MiRNAs on the Move: MiRNA Biogenesis and the RNAi Machinery. Curr Opin Cell Biol 2004;16:223-9. doi: 10.1016/j.ceb.2004.04.003
- Pandit KV, Milosevic J, Kaminski N. MicroRNAs in Idiopathic Pulmonary Fibrosis. Transl Res 2011;157:191-9. doi: 10.1016/j.trsl.2011.01.012
- Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, et al. The MiR-200 Family and MiR-205 Regulate Epithelial to Mesenchymal Transition by Targeting ZEB1 and SIP1. Nat Cell Biol 2008;10:593-601. doi: 10.1038/ncb1722
- Chao CM, Carraro G, Rako ZA, Kolck J, Sedighi J, Zimmermann V, et al. Failure to Down-Regulate MiR- 154 Expression in Early Postnatal Mouse Lung Epithelium Suppresses Alveologenesis, with Changes in Tgf-β Signaling Similar to those Induced by Exposure to Hyperoxia. Cells 2020;9:859. doi: 10.3390/cells9040859
- Boon RA, Vickers KC. Intercellular Transport of MicroRNAs. Arterioscler Thromb Vasc Biol 2013;33:186-92. doi: 10.1161/ATVBAHA.112.300139
- Zhang X, Guo J, Fan S, Li Y, Wei L, Yang X, et al. Screening and Identification of Six Serum MicroRNAs as Novel Potential Combination Biomarkers for Pulmonary Tuberculosis Diagnosis. PLoS One 2013;8:e81076. doi: 10.1371/journal.pone.0081076
- Jin BX, Zhang YH, Jin WJ, Sun XY, Qiao GF, Wei YY, et al. MicroRNA Panels as Disease Biomarkers Distinguishing Hepatitis B Virus Infection Caused Hepatitis and Liver Cirrhosis. Sci Rep 2015;5:15026. doi: 10.1038/srep15026