AccScience Publishing / JCTR / Online First / DOI: 10.36922/jctr.24.00061
REVIEW ARTICLE

Intracerebral drug delivery using microbubble/nanodroplet-assisted ultrasound to address neurodegenerative diseases

Karen Ea1 Nicolas Taulier2 Christiane Contino-Pépin3 Wladimir Urbach2,4 Stéphane Desgranges3 Hélène Blasco1,5 Yara Al-Ojaimi1 Philippe Corcia1,6 Patrick Vourc’h1,5†* Jean-Michel Escoffre1†*
Show Less
1 Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, Tours, France
2 Laboratoire d’Imagerie Biomédicale, LIB, Sorbonne Université, CNRS, INSERM, Paris, France
3 Équipe Systèmes Amphiphiles bioactifs et Formulations Eco-compatibles, UPRI, Université d’Avignon, Avignon, France
4 LPENS CNRS UMR 8023 PSL, Paris, France
5 Service de Biochimie et Biologie moléculaire, CHRU de Tours, Tours, France
6 Centre de référence SLA et autres maladies du neurone moteur, CHRU Tours, Tours, France
Submitted: 12 September 2024 | Revised: 18 January 2025 | Accepted: 9 February 2025 | Published: 27 February 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Background: The blood–brain barrier (BBB) is a selective and semi-permeable barrier essential for protecting the brain’s parenchyma against pathogens and toxic molecules present in the bloodstream. It consists of a monolayer of brain capillary endothelial cells, pericytes, astrocytic end-feet, and neurons. The tight junctions between endothelial cells prevent paracellular transport, further reinforcing its selectivity. However, this high level of selectivity represents a significant challenge for the delivery of therapeutic molecules to the central nervous system. Aim: Microbubble-assisted ultrasound (US) is a promising strategy for transiently permeabilizing the BBB to enable safe, non-invasive, localized, and efficient drug delivery to the brain. This approach enhances drug extravasation and bioavailability. Recently, nanodroplets (NDs) have emerged as good candidates to replace MBs. The aim of this review is to provide an updated overview of the rapidly expanding field of MB/ND-assisted US for the treatment of neurodegenerative diseases. This exciting field bridges research in biology and chemistry (MBs, NDs), US technology and the development of new drugs, small molecules, and biomedicines. The review begins with an update on MBs and NDs and discusses laboratory-manufactured and clinically approved devices such as Sonocloud®, NaviFUS®, and ExAblate Neuro®. It then focuses on the potential use of MB/ND-assisted US in treating neurodegenerative diseases, particularly Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and Huntington’s disease (HD). Relevance for patients: Acoustically mediated BBB opening is an innovative and rapidly advancing strategy that holds great promise for improving the efficacy of existing treatments for neurodegenerative diseases. It also facilitates the discovery of new therapeutic molecules by enhancing their delivery to the brain.

Graphical abstract
Keywords
Blood–brain barrier opening
Sonoporation
Ultrasound
Microbubbles
Nanodroplets
Neurodegenerative diseases
Funding
We would like to thank the Agence Nationale de la Recherche (ANR) for funding (ANR-22-CE19-0031) and the Région Centre-Val de Loire for the funding of PhD students (K.E.).
Conflict of interest
The authors declare no conflict of interest.
References
  1. Maladies Neurologiques : Une Approche Intégrée. Available from: https://www.elsevier.com/fr-fr/connect/les-maladies-neurodegeneratives-et-maladies-apparentees-en-pratique [Last accessed on 2024 Sep 11].

 

  1. Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2006;7(1):41-53. doi: 10.1038/nrn1824

 

  1. Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis. 2010;37(1):13-25. doi: 10.1016/j.nbd.2009.07.030

 

  1. Pardridge WM. The blood-brain barrier: Bottleneck in brain drug development. NeuroRx. 2005;2(1):3-14. doi: 10.1602/neurorx.2.1.3

 

  1. Hawkins BT, Davis TP. The blood-brain barrier/ neurovascular unit in health and disease. Pharmacol Rev. 2005;57(2):173-185. doi: 10.1124/pr.57.2.4

 

  1. Löscher W, Potschka H. Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx. 2005;2(1):86-98. doi: 10.1602/neurorx.2.1.86

 

  1. Mizee MR, Nijland PG, van der Pol SMA, et al. Astrocyte-derived retinoic acid: A novel regulator of blood-brain barrier function in multiple sclerosis. Acta Neuropathol. 2014;128(5):691-703. doi: 10.1007/s00401-014-1335-6

 

  1. Korczyn AD. Vascular parkinsonism--characteristics, pathogenesis and treatment. Nat Rev Neurol. 2015;11(6):319-326. doi: 10.1038/nrneurol.2015.61

 

  1. Drouin-Ouellet J, Sawiak SJ, Cisbani G, et al. Cerebrovascular and blood-brain barrier impairments in Huntington’s disease: Potential implications for its pathophysiology. Ann Neurol. 2015;78(2):160-177. doi: 10.1002/ana.24406

 

  1. Wijesuriya HC, Bullock JY, Faull RLM, Hladky SB, Barrand MA. ABC efflux transporters in brain vasculature of Alzheimer’s subjects. Brain Res. 2010;1358:228-238. doi: 10.1016/j.brainres.2010.08.034

 

  1. Palmer AM. The role of the blood-CNS barrier in CNS disorders and their treatment. Neurobiol Dis. 2010;37(1):3-12. doi: 10.1016/j.nbd.2009.07.029

 

  1. Alarcan H, Al Ojaimi Y, Lanznaster D, et al. Taking advantages of blood-brain or spinal cord barrier alterations or restoring them to optimize therapy in ALS? J Pers Med. 2022;12(7):1071. doi: 10.3390/jpm12071071

 

  1. Pardridge WM, Boado RJ. Reengineering biopharmaceuticals for targeted delivery across the blood-brain barrier. Methods Enzymol. 2012;503:269-292. doi: 10.1016/B978-0-12-396962-0.00011-2

 

  1. Chacko AM, Li C, Pryma DA, Brem S, Coukos G, Muzykantov V. Targeted delivery of antibody-based therapeutic and imaging agents to CNS tumors: Crossing the blood-brain barrier divide. Expert Opin Drug Deliv. 2013;10(7):907-926. doi: 10.1517/17425247.2013.808184

 

  1. Han L. Modulation of the blood-brain barrier for drug delivery to brain. Pharmaceutics. 2021;13(12):2024. doi: 10.3390/pharmaceutics13122024

 

  1. Al Ojaimi Y, Blin T, Lamamy J, et al. Therapeutic antibodies - natural and pathological barriers and strategies to overcome them. Pharmacol Ther. 2022;233:108022. doi: 10.1016/j.pharmthera.2021.108022

 

  1. Piper K, Kumar JI, Domino J, Tuchek C, Vogelbaum MA. Consensus review on strategies to improve delivery across the blood-brain barrier including focused ultrasound. Neuro Oncol. 2024;26(9):1545-1556. doi: 10.1093/neuonc/noae087

 

  1. Zhang Y, Liu Q, Zhang X, et al. Recent advances in exosome-mediated nucleic acid delivery for cancer therapy. J Nanobiotechnology. 2022;20(1):279. doi: 10.1186/s12951-022-01472-z

 

  1. Bouakaz A, Michel Escoffre J. From concept to early clinical trials: 30 years of microbubble-based ultrasound-mediated drug delivery research. Adv Drug Deliv Rev. 2024;206:115199. doi: 10.1016/j.addr.2024.115199

 

  1. Hynynen K. Focused ultrasound for blood-brain disruption and delivery of therapeutic molecules into the brain. Expert Opin Drug Deliv. 2007;4(1):27-35. doi: 10.1517/17425247.4.1.27

 

  1. Konofagou EE, Tung YS, Choi J, Deffieux T, Baseri B, Vlachos F. Ultrasound-induced blood-brain barrier opening. Curr Pharm Biotechnol. 2012;13(7):1332-1345. doi: 10.2174/138920112800624364

 

  1. Hynynen K, McDannold N, Vykhodtseva N, et al. Focal disruption of the blood-brain barrier due to 260-kHz ultrasound bursts: A method for molecular imaging and targeted drug delivery. J Neurosurg. 2006;105(3):445-454. doi: 10.3171/jns.2006.105.3.445

 

  1. Marquet F, Tung YS, Teichert T, Ferrera VP, Konofagou EE. Noninvasive, transient and selective blood-brain barrier opening in non-human primates in vivo. PLoS One. 2011;6(7):e22598. doi: 10.1371/journal.pone.0022598

 

  1. McDannold N, Arvanitis CD, Vykhodtseva N, Livingstone MS. Temporary disruption of the blood-brain barrier by use of ultrasound and microbubbles: Safety and efficacy evaluation in rhesus macaques. Cancer Res. 2012;72(14):3652-3663. doi: 10.1158/0008-5472.CAN-12-0128

 

  1. Rapoport N. Drug-loaded perfluorocarbon nanodroplets for ultrasound-mediated drug delivery. Adv Exp Med Biol. 2016;880:221-241. doi: 10.1007/978-3-319-22536-4_13

 

  1. Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA. Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology. 2001;220(3):640-646. doi: 10.1148/radiol.2202001804

 

  1. Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA. Non-invasive opening of BBB by focused ultrasound. Acta Neurochir Suppl. 2003;86:555-558. doi: 10.1007/978-3-7091-0651-8_113

 

  1. Ibsen S, Schutt CE, Esener S. Microbubble-mediated ultrasound therapy: A review of its potential in cancer treatment. Drug Des Devel Ther. 2013;7:375-388. doi: 10.2147/DDDT.S31564

 

  1. Tung YS, Vlachos F, Choi JJ, Deffieux T, Selert K, Konofagou EE. In vivo transcranial cavitation threshold detection during ultrasound-induced blood-brain barrier opening in mice. Phys Med Biol. 2010;55(20):6141-6155. doi: 10.1088/0031-9155/55/20/007

 

  1. Bettinger T, Tranquart F. Design of microbubbles for gene/ drug delivery. Adv Exp Med Biol. 2016;880:191-204. doi: 10.1007/978-3-319-22536-4_11

 

  1. Becher H, Lofiego C, Mitchell A, Timperley J. Current indications for contrast echocardiography imaging. Eur J Echocardiogr. 2005;6(Suppl 2):S1-S5. doi: 10.1016/s1525-2167(05)80722-x

 

  1. Klibanov AL. Ultrasound molecular imaging with targeted microbubble contrast agents. J Nucl Cardiol. 2007;14(6):876-884. doi: 10.1016/j.nuclcard.2007.09.008

 

  1. McMahon D, O’Reilly MA, Hynynen K. Therapeutic agent delivery across the blood-brain barrier using focused ultrasound. Annu Rev Biomed Eng. 2021;23:89-113. doi: 10.1146/annurev-bioeng-062117-121238

 

  1. Yang FY, Fu WM, Yang RS, Liou HC, Kang KH, Lin WL. Quantitative evaluation of focused ultrasound with a contrast agent on blood-brain barrier disruption. Ultrasound Med Biol. 2007;33(9):1421-1427. doi: 10.1016/j.ultrasmedbio.2007.04.006

 

  1. McDannold N, Vykhodtseva N, Hynynen K. Effects of acoustic parameters and ultrasound contrast agent dose on focused-ultrasound induced blood-brain barrier disruption. Ultrasound Med Biol. 2008;34(6):930-937. doi: 10.1016/j.ultrasmedbio.2007.11.009

 

  1. van Rooy I, Mastrobattista E, Storm G, Hennink WE, Schiffelers RM. Comparison of five different targeting ligands to enhance accumulation of liposomes into the brain. J Control Release. 2011;150(1):30-36. doi: 10.1016/j.jconrel.2010.11.014

 

  1. Kucharz K, Kristensen K, Johnsen KB, et al. Post-capillary venules are the key locus for transcytosis-mediated brain delivery of therapeutic nanoparticles. Nat Commun. 2021;12(1):4121. doi: 10.1038/s41467-021-24323-1

 

  1. Shpak O, Verweij M, de Jong N, Versluis M. Droplets, Bubbles and ultrasound interactions. Adv Exp Med Biol. 2016;880:157-174. doi: 10.1007/978-3-319-22536-4_9

 

  1. Chen H, Konofagou EE. The size of blood-brain barrier opening induced by focused ultrasound is dictated by the acoustic pressure. J Cereb Blood Flow Metab. 2014;34(7):1197-1204. doi: 10.1038/jcbfm.2014.71

 

  1. Schutt EG, Klein DH, Mattrey RM, Riess JG. Injectable microbubbles as contrast agents for diagnostic ultrasound imaging: The key role of perfluorochemicals. Angew Chem Int Ed Engl. 2003;42(28):3218-3235. doi: 10.1002/anie.200200550

 

  1. Klibanov AL. Microbubble contrast agents: Targeted ultrasound imaging and ultrasound-assisted drug-delivery applications. Invest Radiol. 2006;41(3):354-362. doi: 10.1097/01.rli.0000199292.88189.0f

 

  1. Solans C, Izquierdo P, Nolla J, Azemar N, Garcia-Celma MJ. Nano-emulsions. Curr Opin Colloid Interface Sci. 2005;10(3):102-110. doi: 10.1016/j.cocis.2005.06.004

 

  1. Rapoport N, Nam KH, Gupta R, et al. Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions. J Control Release. 2011;153(1):4-15. doi: 10.1016/j.jconrel.2011.01.022

 

  1. Apfel RE. Activatable Infusable Dispersions Containing Drops of Superheated Liquid for Methods of Therapy and Diagnosis. Patent Number: 5,840,276; 1998

 

  1. Kripfgans OD, Fowlkes JB, Miller DL, Eldevik OP, Carson PL. Acoustic droplet vaporization for therapeutic and diagnostic applications. Ultrasound Med Biol. 2000;26(7):1177-1189. doi: 10.1016/s0301-5629(00)00262-3

 

  1. Vlatakis S, Zhang W, Thomas S, et al. Effect of phase-change nanodroplets and ultrasound on blood-brain barrier permeability in vitro. Pharmaceutics. 2023;16(1):51. doi: 10.3390/pharmaceutics16010051

 

  1. Wasielewska JM, White AR. Focused ultrasound-mediated drug delivery in humans - a path towards translation in neurodegenerative diseases. Pharm Res. 2022;39(3):427-439. doi: 10.1007/s11095-022-03185-2

 

  1. Song R, Zhang C, Teng F, et al. Cavitation-facilitated transmembrane permeability enhancement induced by acoustically vaporized nanodroplets. Ultrason Sonochem. 2021;79:105790. doi: 10.1016/j.ultsonch.2021.105790

 

  1. Husseini GA, Diaz de la Rosa MA, Richardson ES, Christensen DA, Pitt WG. The role of cavitation in acoustically activated drug delivery. J Control Release. 2005;107(2):253-261. doi: 10.1016/j.jconrel.2005.06.015

 

  1. Meijering BDM, Juffermans LJM, van Wamel A, et al. Ultrasound and microbubble-targeted delivery of macromolecules is regulated by induction of endocytosis and pore formation. Circ Res. 2009;104(5):679-687. doi: 10.1161/CIRCRESAHA.108.183806

 

  1. Tran TA, Roger S, Le Guennec JY, Tranquart F, Bouakaz A. Effect of ultrasound-activated microbubbles on the cell electrophysiological properties. Ultrasound Med Biol. 2007;33(1):158-163. doi: 10.1016/j.ultrasmedbio.2006.07.029

 

  1. Sheikov N, McDannold N, Vykhodtseva N, Jolesz F, Hynynen K. Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles. Ultrasound Med Biol. 2004;30(7):979-989. doi: 10.1016/j.ultrasmedbio.2004.04.010

 

  1. Sheeran PS, Matsuura N, Borden MA, et al. Methods of generating submicrometer phase-shift perfluorocarbon droplets for applications in medical ultrasonography. IEEE Trans Ultrason Ferroelectr Freq Control. 2017;64(1):252-263. doi: 10.1109/TUFFC.2016.2619685

 

  1. Ramesh R, Thimonier C, Desgranges S, et al. Acoustic droplet vaporization of perfluorohexane emulsions induced by heterogeneous nucleation at an ultrasonic frequency of 1.1 MHz. Langmuir. 2023;39(44):15716-15729. doi: 10.1021/acs.langmuir.3c02272

 

  1. Zhou Y. Application of acoustic droplet vaporization in ultrasound therapy. J Ther Ultrasound. 2015;3:20. doi: 10.1186/s40349-015-0041-8

 

  1. Almarghalani DA, Boddu SHS, Ali M, et al. Small interfering RNAs based therapies for intracerebral hemorrhage: Challenges and progress in drug delivery systems. Neural Regen Res. 2022;17(8):1717-1725. doi: 10.4103/1673-5374.332129

 

  1. Chen CC, Sheeran PS, Wu SY, Olumolade OO, Dayton PA, Konofagou EE. Targeted drug delivery with focused ultrasound-induced blood-brain barrier opening using acoustically-activated nanodroplets. J Control Release. 2013;172(3):795-804. doi: 10.1016/j.jconrel.2013.09.025

 

  1. Maghsoudinia F, Akbari-Zadeh H, Aminolroayaei F, Birgani FF, Shanei A, Samani RK. Ultrasound responsive Gd-DOTA/doxorubicin-loaded nanodroplet as a theranostic agent for magnetic resonance image-guided controlled release drug delivery of melanoma cancer. Eur J Pharm Sci. 2022;174:106207. doi: 10.1016/j.ejps.2022.106207

 

  1. Amir N, Green D, Kent J, et al. 18F-Labeled perfluorocarbon droplets for positron emission tomography imaging. Nucl Med Biol. 2017;54:27-33. doi: 10.1016/j.nucmedbio.2017.07.001

 

  1. Cheng X, Li H, Chen Y, et al. Ultrasound-triggered phase transition sensitive magnetic fluorescent nanodroplets as a multimodal imaging contrast agent in rat and mouse model. PLoS One. 2013;8(12):e85003. doi: 10.1371/journal.pone.0085003

 

  1. Kong C, Yang EJ, Shin J, et al. Enhanced delivery of a low dose of aducanumab via FUS in 5×FAD mice, an AD model. Transl Neurodegener. 2022;11(1):57. doi: 10.1186/s40035-022-00333-x

 

  1. Gouveia FV, Lea-Banks H, Aubert I, Lipsman N, Hynynen K, Hamani C. Anesthetic-loaded nanodroplets with focused ultrasound reduces agitation in Alzheimer’s mice. Ann Clin Transl Neurol. 2023;10(4):507-519. doi: 10.1002/acn3.51737

 

  1. Choi JJ, Wang S, Brown TR, Small SA, Duff KEK, Konofagou EE. Noninvasive and transient blood-brain barrier opening in the hippocampus of Alzheimer’s double transgenic mice using focused ultrasound. Ultrason Imaging. 2008;30(3):189-200. doi: 10.1177/016173460803000304

 

  1. Zhang DY, Dmello C, Chen L, et al. Ultrasound-mediated delivery of paclitaxel for glioma: A comparative study of distribution, toxicity, and efficacy of albumin-bound versus cremophor formulations. Clin Cancer Res. 2020;26(2):477-486. doi: 10.1158/1078-0432.CCR-19-2182

 

  1. Ahmed MH, Hernández-Verdin I, Quissac E, et al. Low-intensity pulsed ultrasound-mediated blood-brain barrier opening increases anti-programmed death-ligand 1 delivery and efficacy in Gl261 mouse model. Pharmaceutics. 2023;15(2):455. doi: 10.3390/pharmaceutics15020455

 

  1. Carpentier A, Canney M, Vignot A, et al. Clinical trial of blood-brain barrier disruption by pulsed ultrasound. Sci Transl Med. 2016;8(343):343re2. doi: 10.1126/scitranslmed.aaf6086

 

  1. Idbaih A, Canney M, Belin L, et al. Safety and feasibility of repeated and transient blood-brain barrier disruption by pulsed ultrasound in patients with recurrent glioblastoma. Clin Cancer Res. 2019;25(13):3793-3801. doi: 10.1158/1078-0432.CCR-18-3643

 

  1. Sonabend AM, Gould A, Amidei C, et al. Repeated blood-brain barrier opening with an implantable ultrasound device for delivery of albumin-bound paclitaxel in patients with recurrent glioblastoma: A phase 1 trial. Lancet Oncol. 2023;24(5):509-522. doi: 10.1016/S1470-2045(23)00112-2

 

  1. Epelbaum S, Burgos N, Canney M, et al. Pilot study of repeated blood-brain barrier disruption in patients with mild Alzheimer’s disease with an implantable ultrasound device. Alzheimers Res Ther. 2022;14(1):40. doi: 10.1186/s13195-022-00981-1

 

  1. Wei KC, Chu PC, Wang HYJ, et al. Focused ultrasound-induced blood-brain barrier opening to enhance temozolomide delivery for glioblastoma treatment: A preclinical study. PLoS One. 2013;8(3):e58995. doi: 10.1371/journal.pone.0058995

 

  1. Chen KT, Wei KC, Liu HL. Focused ultrasound combined with microbubbles in central nervous system applications. Pharmaceutics. 2021;13(7):1084. doi: 10.3390/pharmaceutics13071084

 

  1. Chen KT, Lin YJ, Chai WY, et al. Neuronavigation-guided focused ultrasound (NaviFUS) for transcranial blood-brain barrier opening in recurrent glioblastoma patients: Clinical trial protocol. Ann Transl Med. 2020;8(11):673. doi: 10.21037/atm-20-344

 

  1. Huang Y, Hynynen K. MR-guided focused ultrasound for brain ablation and blood-brain barrier disruption. Methods Mol Biol. 2011;711:579-593. doi: 10.1007/978-1-61737-992-5_30

 

  1. Lipsman N, Meng Y, Bethune AJ, et al. Blood-brain barrier opening in Alzheimer’s disease using MR-guided focused ultrasound. Nat Commun. 2018;9(1):2336. doi: 10.1038/s41467-018-04529-6

 

  1. Mainprize T, Lipsman N, Huang Y, et al. Blood-brain barrier opening in primary brain tumors with non-invasive MR-guided focused ultrasound: A clinical safety and feasibility study. Sci Rep. 2019;9(1):321. doi: 10.1038/s41598-018-36340-0

 

  1. Abrahao A, Meng Y, Llinas M, et al. First-in-human trial of blood-brain barrier opening in amyotrophic lateral sclerosis using MR-guided focused ultrasound. Nat Commun. 2019;10(1):4373. doi: 10.1038/s41467-019-12426-9

 

  1. Soria Lopez JA, González HM, Léger GC. Alzheimer’s disease. Handb Clin Neurol. 2019;167:231-255. doi: 10.1016/B978-0-12-804766-8.00013-3

 

  1. Wimo A, Winblad B, Aguero-Torres H, von Strauss E. The magnitude of dementia occurrence in the world. Alzheimer Dis Assoc Disord. 2003;17(2):63-67. doi: 10.1097/00002093-200304000-00002

 

  1. Cummings J, Lee G, Ritter A, Sabbagh M, Zhong K. Alzheimer’s disease drug development pipeline: 2020. Alzheimers Dement (N Y). 2020;6(1):e12050. doi: 10.1002/trc2.12050

 

  1. Choi JJ, Pernot M, Small SA, Konofagou EE. Noninvasive, transcranial and localized opening of the blood-brain barrier using focused ultrasound in mice. Ultrasound Med Biol. 2007;33(1):95-104. doi: 10.1016/j.ultrasmedbio.2006.07.018

 

  1. Burns S, Selman A, Sehar U, Rawat P, Reddy AP, Reddy PH. Therapeutics of Alzheimer’s disease: Recent developments. Antioxidants (Basel). 2022;11(12):2402. doi: 10.3390/antiox11122402

 

  1. Khan T, Waseem R, Shahid M, et al. Recent advancement in therapeutic strategies for Alzheimer’s disease: Insights from clinical trials. Ageing Res Rev. 2023;92:102113. doi: 10.1016/j.arr.2023.102113

 

  1. Raymond SB, Treat LH, Dewey JD, McDannold NJ, Hynynen K, Bacskai BJ. Ultrasound enhanced delivery of molecular imaging and therapeutic agents in Alzheimer’s disease mouse models. PLoS One. 2008;3(5):e2175. doi: 10.1371/journal.pone.0002175

 

  1. Liu Y, Gong Y, Xie W, et al. Microbubbles in combination with focused ultrasound for the delivery of quercetin-modified sulfur nanoparticles through the blood brain barrier into the brain parenchyma and relief of endoplasmic reticulum stress to treat Alzheimer’s disease. Nanoscale. 2020;12(11):6498-6511. doi: 10.1039/c9nr09713a

 

  1. Sun T, Shi Q, Zhang Y, et al. Focused ultrasound with anti-pGlu3 Aβ enhances efficacy in Alzheimer’s disease-like mice via recruitment of peripheral immune cells. J Control Release. 2021;336:443-456. doi: 10.1016/j.jconrel.2021.06.037

 

  1. Bathini P, Sun T, Schenk M, Schilling S, McDannold NJ, Lemere CA. Acute effects of focused ultrasound-induced blood-brain barrier opening on anti-pyroglu3 A beta antibody delivery and immune responses. Biomolecules. 2022;12(7):951. doi: 10.3390/biom12070951

 

  1. Burgess A, Dubey S, Yeung S, et al. Alzheimer disease in a mouse model: MR imaging-guided focused ultrasound targeted to the hippocampus opens the blood-brain barrier and improves pathologic abnormalities and behaviour. Radiology. 2014;273(3):736-745. doi: 10.1148/radiol.14140245

 

  1. Jordão JF, Ayala-Grosso CA, Markham K, et al. Antibodies targeted to the brain with image-guided focused ultrasound reduces amyloid-beta plaque load in the TgCRND8 mouse model of Alzheimer’s disease. PLoS One. 2010;5(5):e10549. doi: 10.1371/journal.pone.0010549

 

  1. Dubey S, Heinen S, Krantic S, et al. Clinically approved IVIg delivered to the hippocampus with focused ultrasound promotes neurogenesis in a model of Alzheimer’s disease. Proc Natl Acad Sci U S A. 2020;117(51):32691-32700. doi: 10.1073/pnas.1908658117

 

  1. Antoniou A, Stavrou M, Evripidou N, et al. FUS-mediated blood-brain barrier disruption for delivering anti-Aβ antibodies in 5XFAD Alzheimer’s disease mice. J Ultrasound. 2024;27(2):251-262. doi: 10.1007/s40477-023-00805-4

 

  1. Nisbet RM, Van der Jeugd A, Leinenga G, Evans HT, Janowicz PW, Götz J. Combined effects of scanning ultrasound and a tau-specific single chain antibody in a tau transgenic mouse model. Brain. 2017;140(5):1220-1230. doi: 10.1093/brain/awx052

 

  1. Janowicz PW, Leinenga G, Götz J, Nisbet RM. Ultrasound-mediated blood-brain barrier opening enhances delivery of therapeutically relevant formats of a tau-specific antibody. Sci Rep. 2019;9(1):9255. doi: 10.1038/s41598-019-45577-2

 

  1. Bajracharya R, Cruz E, Götz J, Nisbet RM. Ultrasound-mediated delivery of novel tau-specific monoclonal antibody enhances brain uptake but not therapeutic efficacy. J Control Release. 2022;349:634-648. doi: 10.1016/j.jconrel.2022.07.026

 

  1. Mehta RI, Carpenter JS, Mehta RI, et al. Blood-brain barrier opening with mri-guided focused ultrasound elicits meningeal venous permeability in humans with early Alzheimer disease. Radiology. 2021;298(3):654-662. doi: 10.1148/radiol.2021200643

 

  1. Rezai AR, Ranjan M, D’Haese PF, et al. Noninvasive hippocampal blood-brain barrier opening in Alzheimer’s disease with focused ultrasound. Proc Natl Acad Sci U S A. 2020;117(17):9180-9182. doi: 10.1073/pnas.2002571117

 

  1. Rezai AR, D’Haese PF, Finomore V, et al. Ultrasound blood-brain barrier opening and aducanumab in Alzheimer’s disease. N Engl J Med. 2024;390(1):55-62. doi: 10.1056/NEJMoa2308719

 

  1. Götz J, Padmanabhan P. Ultrasound and antibodies - a potentially powerful combination for Alzheimer disease therapy. Nat Rev Neurol. 2024;20(5):257-258. doi: 10.1038/s41582-024-00943-1

 

  1. Bae S, Liu K, Pouliopoulos AN, et al. Transcranial blood-brain barrier opening in Alzheimer’s disease patients using a portable focused ultrasound system with real-time 2-D cavitation mapping. medRxiv [Preprint]. 2024. doi: 10.1101/2023.12.21.23300222

 

  1. Hayes MT. Parkinson’s disease and parkinsonism. Am J Med. 2019;132(7):802-807. doi: 10.1016/j.amjmed.2019.03.001

 

  1. Tysnes OB, Storstein A. Epidemiology of Parkinson’s disease. J Neural Transm (Vienna). 2017;124(8):901-905. doi: 10.1007/s00702-017-1686-y

 

  1. Beitz JM. Parkinson’s disease: A review. Front Biosci (Schol Ed). 2014;6(1):65-74. doi: 10.2741/s415

 

  1. Reich SG, Savitt JM. Parkinson’s disease. Med Clin North Am. 2019;103(2):337-350. doi: 10.1016/j.mcna.2018.10.014

 

  1. Pérez-Arancibia R, Cisternas-Olmedo M, Sepúlveda D, Troncoso-Escudero P, Vidal RL. Small molecules to perform big roles: The search for Parkinson’s and Huntington’s disease therapeutics. Front Neurosci. 2022;16:1084493. doi: 10.3389/fnins.2022.1084493

 

  1. Prasad EM, Hung SY. Current therapies in clinical trials of Parkinson’s disease: A 2021 update. Pharmaceuticals (Basel). 2021;14(8):717. doi: 10.3390/ph14080717

 

  1. Fan CH, Ting CY, Lin CY, et al. Noninvasive, targeted, and non-viral ultrasound-mediated GDNF-plasmid delivery for treatment of Parkinson’s disease. Sci Rep. 2016;6:19579. doi: 10.1038/srep19579

 

  1. Yue P, Miao W, Gao L, Zhao X, Teng J. Ultrasound-triggered effects of the microbubbles coupled to GDNF plasmid-loaded PEGylated liposomes in a rat model of Parkinson’s disease. Front Neurosci. 2018;12:222. doi: 10.3389/fnins.2018.00222

 

  1. Lin CY, Hsieh HY, Chen CM, et al. Non-invasive, neuron-specific gene therapy by focused ultrasound-induced blood-brain barrier opening in Parkinson’s disease mouse model. J Control Release. 2016;235:72-81. doi: 10.1016/j.jconrel.2016.05.052

 

  1. Zhang N, Yan F, Liang X, et al. Localized delivery of curcumin into brain with polysorbate 80-modified cerasomes by ultrasound-targeted microbubble destruction for improved Parkinson’s disease therapy. Theranostics. 2018;8(8):2264-2277. doi: 10.7150/thno.23734

 

  1. Karakatsani ME, Wang S, Samiotaki G, et al. Amelioration of the nigrostriatal pathway facilitated by ultrasound-mediated neurotrophic delivery in early Parkinson’s disease. J Control Release. 2019;303:289-301. doi: 10.1016/j.jconrel.2019.03.030

 

  1. Lin CY, Lin YC, Huang CY, Wu SR, Chen CM, Liu HL. Ultrasound-responsive neurotrophic factor-loaded microbubble- liposome complex: Preclinical investigation for Parkinson’s disease treatment. J Control Release. 2020;321:519-528. doi: 10.1016/j.jconrel.2020.02.044

 

  1. Blesa J, Pineda-Pardo JA, Inoue KI, et al. BBB opening with focused ultrasound in nonhuman primates and Parkinson’s disease patients: Targeted AAV vector delivery and PET imaging. Sci Adv. 2023;9(16):eadf4888. doi: 10.1126/sciadv.adf4888

 

  1. Wang Y, Luo K, Li J, et al. Focused ultrasound promotes the delivery of gastrodin and enhances the protective effect on dopaminergic neurons in a mouse model of Parkinson’s disease. Front Cell Neurosci. 2022;16:884788. doi: 10.3389/fncel.2022.884788

 

  1. Feng Y, An R, Zhang Y, et al. AHNAK-modified microbubbles for the intracranial delivery of triptolide: In-vitro and in-vivo investigations. Int J Pharm. 2022;629:122351. doi: 10.1016/j.ijpharm.2022.122351

 

  1. Xhima K, Nabbouh F, Hynynen K, Aubert I, Tandon A. Noninvasive delivery of an α-synuclein gene silencing vector with magnetic resonance-guided focused ultrasound. Mov Disord. 2018;33(10):1567-1579. doi: 10.1002/mds.101

 

  1. Lin CY, Tsai CH, Feng LY, et al. Focused ultrasound-induced blood brain-barrier opening enhanced vascular permeability for GDNF delivery in Huntington’s disease mouse model. Brain Stimul. 2019;12(5):1143-1150. doi: 10.1016/j.brs.2019.04.011

 

  1. Lin CY, Huang CY, Chen CM, Liu HL. Focused ultrasound-induced blood-brain barrier opening enhanced α-synuclein expression in mice for modeling Parkinson’s disease. Pharmaceutics. 2022;14(2):444. doi: 10.3390/pharmaceutics14020444

 

  1. Gasca-Salas C, Fernández-Rodríguez B, Pineda-Pardo JA, et al. Blood-brain barrier opening with focused ultrasound in Parkinson’s disease dementia. Nat Commun. 2021;12(1):779. doi: 10.1038/s41467-021-21022-9

 

  1. Pineda-Pardo JA, Gasca-Salas C, Fernández-Rodríguez B, et al. Striatal blood-brain barrier opening in Parkinson’s disease dementia: A pilot exploratory study. Mov Disord. 2022;37(10):2057-2065. doi: 10.1002/mds.29134

 

  1. Gasca-Salas C, Pineda-Pardo JA, Del Álamo M, et al. Nigrostriatal blood-brain barrier opening in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2024;95:1089-1092. doi: 10.1136/jnnp-2023-332967

 

  1. Huang Y, Meng Y, Pople CB, et al. Cavitation feedback control of focused ultrasound blood-brain barrier opening for drug delivery in patients with Parkinson’s disease. Pharmaceutics. 2022;14(12):2607. doi: 10.3390/pharmaceutics14122607

 

  1. Meng Y, Pople CB, Huang Y, et al. Putaminal recombinant glucocerebrosidase delivery with magnetic resonance-guided focused ultrasound in Parkinson’s disease: A phase I study. Mov Disord. 2022;37(10):2134-2139. doi: 10.1002/mds.29190

 

  1. Lu H, Le WD, Xie YY, Wang XP. Current therapy of drugs in amyotrophic lateral sclerosis. Curr Neuropharmacol. 2016;14(4):314-321. doi: 10.2174/1570159x14666160120152423

 

  1. Hardiman O, Al-Chalabi A, Chio A, et al. Amyotrophic lateral sclerosis. Nat Rev Dis Primers. 2017;3:17071. doi: 10.1038/nrdp.2017.71

 

  1. Al-Chalabi A, Andrews J, Farhan S. Recent advances in the genetics of familial and sporadic ALS. Int Rev Neurobiol. 2024;176:49-74. doi: 10.1016/bs.irn.2024.04.007

 

  1. Van Daele SH, Moisse M, van Vugt JJFA, et al. Genetic variability in sporadic amyotrophic lateral sclerosis. Brain. 2023;146(9):3760-3769. doi: 10.1093/brain/awad120

 

  1. Nijs M, Van Damme P. The genetics of amyotrophic lateral sclerosis. Curr Opin Neurol. 2024;37(5):560-569. doi: 10.1097/WCO.0000000000001294

 

  1. Maurel C, Dangoumau A, Marouillat S, et al. Causative genes in amyotrophic lateral sclerosis and protein degradation pathways: A link to neurodegeneration. Mol Neurobiol. 2018;55(8):6480-6499. doi: 10.1007/s12035-017-0856-0

 

  1. Bradford D, Rodgers KE. Advancements and challenges in amyotrophic lateral sclerosis. Front Neurosci. 2024;18:1401706. doi: 10.3389/fnins.2024.1401706

 

  1. Corcia P, Lunetta C, Vourc’h P, Pradat PF, Blasco H. Time for optimism in amyotrophic lateral sclerosis. Eur J Neurol. 2023;30(5):1459-1464. doi: 10.1111/ene.15738

 

  1. Sun Z, Zhang B, Peng Y. Development of novel treatments for amyotrophic lateral sclerosis. Metab Brain Dis. 2024;39(3):467-482. doi: 10.1007/s11011-023-01334-z

 

  1. Wei Y, Zhong S, Yang H, et al. Current therapy in amyotrophic lateral sclerosis (ALS): A review on past and future therapeutic strategies. Eur J Med Chem. 2024;272:116496. doi: 10.1016/j.ejmech.2024.116496

 

  1. Shen Y, Zhang J, Xu Y, et al. Ultrasound-enhanced brain delivery of edaravone provides additive amelioration on disease progression in an ALS mouse model. Brain Stimul. 2023;16(2):628-641. doi: 10.1016/j.brs.2023.03.006

 

  1. Peggion C, Scalcon V, Massimino ML, et al. SOD1 in ALS: Taking stock in pathogenic mechanisms and the role of glial and muscle cells. Antioxidants (Basel). 2022;11(4):614. doi: 10.3390/antiox11040614

 

  1. Burgess A, Huang Y, Querbes W, Sah DW, Hynynen K. Focused ultrasound for targeted delivery of siRNA and efficient knockdown of Htt expression. J Control Release. 2012;163(2):125-129. doi: 10.1016/j.jconrel.2012.08.012

 

  1. Owusu-Yaw BS, Zhang Y, Garrett L, et al. Focused ultrasound-mediated disruption of the blood-brain barrier for AAV9 delivery in a mouse model of Huntington’s disease. Pharmaceutics. 2024;16(6):710. doi: 10.3390/pharmaceutics16060710

 

  1. Vonsattel JP, DiFiglia M. Huntington disease. J Neuropathol Exp Neurol. 1998;57(5):369-384. doi: 10.1097/00005072-199805000-00001

 

  1. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell. 1993;72(6):971-983. doi: 10.1016/0092-8674(93)90585-e

 

  1. Rosenblatt A. Neuropsychiatry of Huntington’s disease. Dialogues Clin Neurosci. 2007;9(2):191-197. doi: 10.31887/DCNS.2007.9.2/arosenblatt

 

  1. Saade J, Mestre TA. Huntington’s disease: Latest frontiers in therapeutics. Curr Neurol Neurosci Rep. 2024;24(8):255-264. doi: 10.1007/s11910-024-01345-y

 

  1. Singh K, Jain D, Sethi P, et al. Emerging pharmacological approaches for Huntington’s disease. Eur J Pharmacol. 2024;980:176873. doi: 10.1016/j.ejphar.2024.176873

 

  1. DiFiglia M, Sena-Esteves M, Chase K, et al. Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits. Proc Natl Acad Sci U S A. 2007;104(43):17204-17209. doi: 10.1073/pnas.0708285104

 

  1. Chen KT, Chai WY, Lin YJ, et al. Neuronavigation-guided focused ultrasound for transcranial blood-brain barrier opening and immunostimulation in brain tumors. Sci Adv. 2021;7(6):eabd0772. doi: 10.1126/sciadv.abd0772

 

  1. O’Reilly MA, Waspe AC, Ganguly M, Hynynen K. Focused-ultrasound disruption of the blood-brain barrier using closely-timed short pulses: Influence of sonication parameters and injection rate. Ultrasound Med Biol. 2011;37(4):587-594. doi: 10.1016/j.ultrasmedbio.2011.01.008

 

  1. Baghbani F, Moztarzadeh F. Bypassing multidrug resistant ovarian cancer using ultrasound responsive doxorubicin/ curcumin co-deliver alginate nanodroplets. Colloids Surf B Biointerfaces. 2017;153:132-140. doi: 10.1016/j.colsurfb.2017.01.051

 

  1. Yang T, Ming X, Jie L, et al. Ultrasound-triggered nanodroplets for targeted co-delivery of sorafenib/ doxorubicin for hepatocellular carcinoma therapy. J Biomed Nanotechnol. 2019;15(9):1881-1896. doi: 10.1166/jbn.2019.2823

 

  1. Silverman RH, Urs R, Burgess M, Ketterling JA, Tezel G. High-frequency ultrasound activation of perfluorocarbon nanodroplets for treatment of glaucoma. IEEE Trans Ultrason Ferroelectr Freq Control. 2022;69(6):1910-1916. doi: 10.1109/TUFFC.2022.3142679

 

  1. Cao Y, Chen Y, Yu T, et al. Drug release from phase-changeable nanodroplets triggered by low-intensity focused ultrasound. Theranostics. 2018;8(5):1327-1339. doi: 10.7150/thno.21492

 

  1. Lee JY, Crake C, Teo B, et al. Ultrasound-enhanced siRNA delivery using magnetic nanoparticle-loaded chitosan-deoxycholic acid nanodroplets. Adv Healthc Mater. 2017;6(8): 1601246. doi: 10.1002/adhm.201601246
Share
Back to top
Journal of Clinical and Translational Research, Electronic ISSN: 2424-810X Print ISSN: 2382-6533, Published by AccScience Publishing