AccScience Publishing / JCTR / Volume 8 / Issue 1 / DOI: 10.18053/jctres.08.202201.002
REVIEW ARTICLE

Molecular insight of dyskeratosis congenita: Defects in telomere length homeostasis

Saeed Dorgaleleh1 Karim Naghipoor1 Zahra Hajimohammadi2 Farzad Dastaviz1 Morteza Oladnabi3,4*
Show Less
1 Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
2 Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
3 Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
4 Gorgan Congenital Malformations Research Center, Golestan University of Medical Sciences, Gorgan, Iran
Submitted: 28 February 2021 | Revised: 23 September 2021 | Accepted: 3 December 2021 | Published: 3 January 2022
© 2022 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Background: Dyskeratosis congenita (DC) is a rare disease and is a heterogenous disorder, with its inheritance patterns as autosomal dominant, autosomal recessive, and X-linked recessive. This disorder occurs due to faulty maintenance of telomeres in stem cells. This congenital condition is diagnosed with three symptoms: oral leukoplakia, nail dystrophy, and abnormal skin pigmentation. However, because it has a wide range of symptoms, it may have phenotypes similar to other diseases. For this reason, it is necessary to use methods of measuring the Telomere Length (TL) and determining the shortness of the telomere in these patients so that it can be distinguished from other diseases. Today, the Next Generation Sequencing technique accurately detects mutations in the target genes.
Aim: This work aims to review and summarize how each of the DC genes is involved in TL, and how to diagnose and differentiate the disease using clinical signs and methods to measure TL. It also offers treatments for DC patients, such as Hematopoietic Stem Cell Transplantation and Androgen therapy.
Relevance for Patients: In DC patients, the genes involved in telomere homeostasis are mutated. Because these patients may have an overlapping phenotype with other diseases, it is best to perform whole-exome sequencing after genetics counseling to find the relevant mutation. As DC is a multi-systemic disease, we need to monitor patients frequently through annual lung function tests, ultrasounds, gynecological examinations, and skin examinations.

Keywords
dyskeratosis congenita
shelterin
telomerase
diagnosis
treatment
Conflict of interest
The authors declare no conflict of interests.
References

[1] Martínez P, Blasco MA. Telomere-driven Diseases and Telomere-targeting Therapies. J Cell Biol 2017;216:875-87.
[2] Oganesian L, Karlseder J. Telomeric Armor: The Layers of End Protection. J Cell Sci 2009;122:4013-25.
[3] Maestroni L, Matmati S, Coulon S. Solving the Telomere Replication Problem. Genes 2017;8:55.
[4] Jafri MA, Ansari SA, Alqahtani MH, Shay JW. Roles of Telomeres and Telomerase in Cancer, and Advances in
Telomerase-targeted Therapies. Genome Med 2015;8:69.
[5] Wai LK. Telomeres, Telomerase, and Tumorigenesis a Review. Med Gen Med 2004;6:19.
[6] Calado RT, Young NS. Telomere diseases. N Engl J Med 2009;361:2353-65.
[7] Fiorini E, Santoni A, Colla S. Dysfunctional Telomeres and Hematological Disorders. Differentiation 2018;100:1-11.
[8] Huang Y, Liang P, Liu D, Huang J, Songyang Z. Telomere Regulation in Pluripotent Stem Cells. Protein Cell
2014;5:194-202.
[9] Schmidt JC, Cech TR. Human Telomerase: Biogenesis, Trafficking, Recruitment, and Activation. Genes Dev
2015;29:1095-105.
[10] Blasco MA. Telomeres and Human Disease: Ageing, Cancer and Beyond. Nat Rev Genet 2005;6:611-22.
[11] Diotti R, Loayza D. Shelterin Complex and Associated Factors at Human Telomeres. Nucleus 2011;2:119-35.
[12] Denchi EL, De Lange T. Protection of Telomeres through Independent Control of ATM and ATR by TRF2 and POT1. Nature 2007;448:1068-71.
[13] Konishi A, De Lange T. Cell Cycle Control of Telomere Protection and NHEJ Revealed by a TS Mutation in the DNAbinding Domain of TRF2. Genes Dev 2008;22:1221-30.
[14] Dyskeratosis Congenita Orphanet; 2021. Available from: https://www.orpha.net/consor/cgi-bin/OC_Exp. 
php?Lng=GB&Expert=1775 [Last accessed on 2021 Dec].
[15] Gu BW, Bessler M, Mason PJ. A Pathogenic Dyskerin Mutation Impairs Proliferation and Activates a DNA
Damage Response Independent of Telomere Length in Mice. Proc Natl Acad Sci U S A 2008;105:10173-8.
[16] Atkinson JC, Harvey KE, Domingo DL, Trujillo MI, Guadagnini JP, Gollins S, et al. Oral and Dental Phenotype
of Dyskeratosis Congenita. Oral Dis 2008;14:419-27.
[17] Ballew BJ, Savage SA. Updates on the Biology and Management of Dyskeratosis Congenita and Related Telomere Biology Disorders. Expert Rev Hematol 2013;6:327-37.
[18] Bergstrand S, Böhm S, Malmgren H, Norberg A, Sundin M, Nordgren A, et al. Biallelic Mutations in WRAP53 Result in Dysfunctional Telomeres, Cajal Bodies and DNA Repair, thereby Causing Hoyeraal-Hreidarsson Syndrome. Cell Death Dis 2020;11:238.
[19] National Center for Biotechnology Information: TERT Telomerase Reverse Transcriptase [Homo sapiens
(human)]; 2020.
[20] Gilson E, Géli V. How Telomeres are Replicated. Nat Rev Mol Cell Biol 2007;8:825-38.
[21] Blackburn EH, Collins K. Telomerase: An RNP Enzyme Synthesizes DNA. Cold Spring Harb Perspect Biol
2011;3:a003558.
[22] Lai CK, Mitchell JR, Collins K. RNA Binding Domain of Telomerase Reverse Transcriptase. Mol Cell Biol 2001;21:990-1000.
[23] Li Y, Tergaonkar V. Noncanonical Functions of Telomerase: Implications in Telomerase-targeted Cancer Therapies. Cancer Res 2014;74:1639-44.
[24] Leão R, Apolónio JD, Lee D, Figueiredo A, Tabori U, Castelo-Branco P. Mechanisms of Human Telomerase
Reverse Transcriptase (hTERT) Regulation: Clinical Impacts in Cancer. J Biomed Sci 2018;25:22. 
[25] Lamm N, Ordan E, Shponkin R, Richler C, Aker M, TzfatiY. Diminished Telomeric 3’ Overhangs are Associated with Telomere Dysfunction in Hoyeraal-Hreidarsson Syndrome. PLoS One 2009;4:e5666.
[26] Glousker G, Touzot F, Revy P, Tzfati Y, Savage SA. Unraveling the Pathogenesis of Hoyeraal-Hreidarsson
Syndrome, a Complex Telomere Biology Disorder. Br J Haematol 2015;170:457-71.
[27] Alter BP, Rosenberg PS, Giri N, Baerlocher GM, Lansdorp PM, Savage SA. Telomere Length is Associated
with Disease Severity and Declines with Age in Dyskeratosis Congenita. Haematologica 2012;97:353-9.
[28] National Center for Biotechnology Information: TERC Telomerase RNA Component [Homo sapiens (human)]; 2020. 
[29] Theimer CA, Feigon J. Structure and Function of Telomerase RNA. Curr Opin Struct Biol 2006;16:307-18.
[30] Cristofari G, Adolf E, Reichenbach P, Sikora K, Terns RM, Terns MP, et al. Human Telomerase RNA Accumulation in Cajal Bodies Facilitates Telomerase Recruitment to Telomeres and Telomere Elongation. Mol Cell 2007;27:882-9.
[31] National Center for Biotechnology Information: DKC1 Dyskerin Pseudouridine Synthase [Homo sapiens (human)]; 2020.
[32] Mochizuki Y, He J, Kulkarni S, Bessler M, Mason PJ. Mouse Dyskerin Mutations Affect Accumulation of
Telomerase RNA and Small Nucleolar RNA, Telomerase Activity, and Ribosomal RNA Processing. Proc Natl Acad Sci U S A 2004;101:10756-61.
[33] Brault ME, Lauzon C, Autexier C. Dyskeratosis Congenita Mutations in Dyskerin SUMOylation Consensus Sites Lead to Impaired Telomerase RNA Accumulation and Telomere Defects. Hum Mol Genet 2013;22:3498-507. 
[34] Mason PJ, Bessler M. The Genetics of Dyskeratosis Congenita. Cancer Genet 2011;204:635-45.
[35] National Center for Biotechnology Information: NOP10 Ribonucleoprotein [Homo sapiens (human)]; 2020.
[36] Vulliamy T, Beswick R, Kirwan M, Marrone A, Digweed M, Walne A, et al. Mutations in the Telomerase Component NHP2 Cause the Premature Ageing Syndrome Dyskeratosis Congenita. Proc Natl Acad Sci U S A 2008;105:8073-8. 
[37] National Center for Biotechnology Information: NHP2 Ribonucleoprotein [Homo sapiens (human)]; 2020.
[38] Benyelles M, O’Donohue MF, Kermasson L, Lainey E, Borie R, Lagresle-Peyrou C, et al. NHP2 Deficiency Impairs rRNA Biogenesis and Causes Pulmonary Fibrosis and HøyeraalHreidarsson Syndrome. Hum Mol Genet 2020;29:907-22.
[39] National Center for Biotechnology Information: TINF2 TERF1 Interacting Nuclear Factor [Homo sapiens
(human)]; 2020. 
[40] Bianchi A, Shore D. How Telomerase Reaches its End: Mechanism of Telomerase Regulation by the Telomeric Complex. Mol Cell 2008;31:153-65.
[41] Ye JZ, Donigian JR, Van Overbeek M, Loayza D, Luo Y, Krutchinsky AN, et al. TIN2 binds TRF1 and TRF2
Simultaneously and Stabilizes the TRF2 Complex on Telomeres. J Biol Chem 2004;279:47264-71.
[42] Bhanot M, Smith S. TIN2 Stability is Regulated by the E3 Ligase Siah2. Mol Cell Biol 2012;32:376-84.
[43] Pereboeva L, Hubbard M, Goldman FD, Westin ER. Robust DNA Damage Response and Elevated Reactive Oxygen Species in TINF2-Mutated Dyskeratosis Congenita Cells. PLoS One 2016;11:e0148793.
[44] Walne AJ, Vulliamy T, Beswick R, Kirwan M, Dokal I. TINF2 Mutations Result in Very Short Telomeres: Analysis of a Large Cohort of Patients with Dyskeratosis Congenita and Related Bone Marrow Failure Syndromes. Blood 2008;112:3594-600.
[45] Chen LY, Zhang Y, Zhang Q, Li H, Luo Z, Fang H, et al. Mitochondrial Localization of Telomeric Protein TIN2
Links Telomere Regulation to Metabolic Control. Mol Cell 2012;47:839-50.
[46] National Center for Biotechnology Information: ACD ACD Shelterin Complex Subunit and Telomerase Recruitment Factor [Homo sapiens (human)]; 2020.
[47] Liu D, Safari A, O’Connor MS, Chan DW, Laegeler A. PTOP Interacts with POT1 and Regulates its Localization to Telomeres. Nat Cell Biol 2004;6:673-80.
[48] Bisht K, Smith EM, Tesmer VM, Nandakumar J. Structural and Functional Consequences of a Disease Mutation in the Telomere Protein TPP1. Proc Natl Acad Sci U S A 2016;113:13021-6.
[49] Kocak H, Ballew BJ, Bisht K, Eggebeen R, Hicks BD, O’Neil A, et al. Hoyeraal-Hreidarsson Syndrome Caused
by a Germline Mutation in the TEL Patch of the Telomere Protein TPP1. Genes Dev 2014;28:2090-102.
[50] Han X, Liu D, Zhang Y, Li Y, Lu W, Chen J, et al. Akt Regulates TPP1 Homodimerization and Telomere
Protection. Aging Cell 2013;12:1091-9.
[51] Latrick CM, Cech TR. POT1-TPP1 Enhances Telomerase Processivity by Slowing Primer Dissociation and Aiding Translocation. EMBO J 2010;29:924-33.
[52] Sexton AN, Regalado SG, Lai CS, Cost GJ, O’Neil CM, Urnov FD, et al. Genetic and Molecular Identification
of Three Human TPP1 Functions in Telomerase Action: Recruitment, Activation, and Homeostasis Set Point
Regulation. Genes Dev 2014;28:1885-99. 
[53] National Center for Biotechnology Information: WRAP53 WD Repeat Containing Antisense to TP53 [Homo sapiens (human)]; 2020.
[54] Venteicher AS, Artandi SE. TCAB1: Driving Telomerase to Cajal Bodies. Cell Cycle 2009;8:1329-31.
[55] Stern JL, Zyner KG, Pickett HA, Cohen SB, Bryan TM. Telomerase Recruitment Requires Both TCAB1 and Cajal Bodies Independently. Mol Cell Biol 2012;32:2384-95.
[56] Coucoravas C, Dhanjal S, Henriksson S, Böhm S, Farnebo M. Phosphorylation of the Cajal Body Protein
WRAP53β by ATM Promotes its Involvement in the DNA Damage Response. RNA Biol 2017;14:804-13.
[57] National Center for Biotechnology Information: RTEL1 Regulator of Telomere Elongation Helicase 1 [Homo
sapiens (human)]; 2020.
[58] Porreca RM, Glousker G, Awad A, Fernandez MI, Gibaud A, Naucke C, et al. Human RTEL1 Stabilizes Long G-overhangs Allowing Telomerase-dependent Overextension. Nucleic Acids Res 2018;46:4533-45.
[59] Sarek G, Vannier JB, Panier S, Petrini JH, Boulton SJ. TRF2 Recruits RTEL1 to Telomeres in S Phase to Promote T-Loop Unwinding. Mol Cell 2015;57:622-35.
[60] National Center for Biotechnology Information: PARN Poly (A)-specific Ribonuclease [Homo sapiens (human)]; 2020.
[61] Balatsos NA, Maragozidis P, Anastasakis D, StathopoulosC. Modulation of Poly(A)-specific Ribonuclease (PARN): Current Knowledge and Perspectives. Curr Med Chem 2012;19:4838-49.
[62] Shukla S, Parker R. PARN Modulates Y RNA Stability and its 3’-End Formation. Mol Cell Biol 2017;37:e00264-17.
[63] National Center for Biotechnology Information: STN1 Subunit of CST Complex [Homo sapiens (human)]; 2020.. 
[64] Lue NF, Zhou R, Chico L, Mao N, Steinberg-Neifach O, Ha T. The Telomere Capping Complex CST Has an
Unusual Stoichiometry, Makes Multipartite Interaction with G-Tails, and Unfolds Higher-Order G-Tail Structures.
PLoS Genet 2013;9:e1003145.
[65] Huang C, Dai X, Chai W. Human Stn1 Protects Telomere Integrity by Promoting Efficient Lagging-strand Synthesis at Telomeres and Mediating C-strand Fill-in. Cell Res 2012;22:1681-95.
[66] STN1 Function; 2021. Available from: https://www.nextprot.org/entry/NX_Q9H668 [Last accessed on 2021 Dec].
[67] Feng X, Hsu SJ, Kasbek C, Chaiken M, Price CM. CTC1- mediated C-strand Fill-in is an Essential Step in Telomere Length Maintenance. Nucleic Acids Res 2017;45:4281-93.
[68] National Center for Biotechnology Information: Protection of Telomeres [Homo sapiens (human)]; 2020..
[69] Mir SM, Tehrani SS, Goodarzi G, Jamalpoor Z, Asadi J, Khelghati N, et al. Shelterin Complex at Telomeres:
Implications in Ageing. Clin Interv Aging 2020;15:827-39.
[70] National Center for Biotechnology Information: CST Telomere Replication Complex Component [Homo
sapiens (human)]; 2020. 
[71] Lim CJ, Cech TR. Shaping Human Telomeres: From Shelterin and CST Complexes to Telomeric Chromatin
Organization. Nat Rev Mol Cell Biol 2021;22:283-98.
[72] Stewart JA, Wang Y, Ackerson SM, Schuck PL. Emerging Roles of CST in Maintaining Genome Stability and Human Disease. Front Biosci (Landmark Ed) 2018;23:1564-86.
[73] Kirwan M, Dokal I. Dyskeratosis Congenita: A Genetic Disorder of Many Faces. Clin Genet 2008;73:103-12.
[74] Dorgaleleh S, Naghipoor K, Hajimohammadi Z, Oladnabi M. Molecular Basis of Ectodermal Dysplasia:
A Comprehensive Review of the Literature. Egypt J Dermatol Venereol 2021;41:55-66.
[75] Trotta L, Norberg A, Taskinen M, Béziat V, Degerman S, Wartiovaara-Kautto U, Välimaa H, et al. Diagnostics of Rare Disorders: Whole-exome Sequencing Deciphering Locus Heterogeneity in Telomere Biology Disorders.
Orphanet J Rare Dis 2018;13:139.
[76] Ferreira MS, Kirschner M, Halfmeyer I, Estrada N, Xicoy B, Isfort S, et al. Comparison of Flow-FISH and
MM-qPCR Telomere Length Assessment Techniques for the Screening of Telomeropathies. Ann N Y Acad Sci 2020;1466:93-103.
[77] Morinha F, Magalhães P, Blanco G. Standard Guidelines for the Publication of Telomere qPCR Results in Evolutionary Ecology. Mol Ecol Resour 2020;20:635-48.
[78] De Pedro N, Díez M, García I, García J, Otero L, Fernández L, et al. Analytical Validation of Telomere Analysis Technology® for the High-Throughput Analysis of Multiple Telomere-Associated Variables. Biol Proc Online 2020;22:2.
[79] Aubert G, Hills M, Lansdorp PM. Telomere Length Measurement-caveats and a Critical Assessment of the
Available Technologies and Tools. Mutat Res 2012;730:59-67.
[80] Kimura M, Stone RC, Hunt SC, Skurnick J, Lu X, Cao X, et al. Measurement of Telomere Length by the Southern Blot Analysis of Terminal Restriction Fragment Lengths. Nat Protoc 2010;5:1596-607.
[81] Savage SA, Alter BP. Dyskeratosis Congenita. Hematol Oncol Clin North Am 2009;23:215-31.
[82] García MS, Teruya-Feldstein J. The Diagnosis and Treatment of Dyskeratosis Congenita: A Review. J Blood
Med 2014;5:157-67.
[83] Agarwal S. Evaluation and Management of Hematopoietic Failure in Dyskeratosis Congenita. Hematol Oncol Clin North Am 2018;32:669-85.
[84] Gadalla SM, Sales-Bonfim C, Carreras J, Alter BP, Antin JH, Ayas M, et al. Outcomes of Allogeneic Hematopoietic Cell Transplant in Patients with Dyskeratosis Congenita. Biol Blood Marrow Transplant 2013;19:1238-43.
[85] Comoli P, Basso S, Huanga GC. Intensive Immunosuppression Therapy for Aplastic Anemia Associated with Dyskeratosis Congenita: Report of a Case. Int J Hematol 2005;82:35-7.
[86] Erduran E, Hacisalihoglu S, Ozoran Y. Treatment of Dyskeratosis Congenita with Granulocyte-macrophage 
Colony-stimulating Factor and Erythropoietin. J Pediatr Hematol Oncol 2003;25:333-5.
[87] Giri N, Pitel PA, Green D, Alter BP. Splenic Peliosis and Rupture in Patients with Dyskeratosis Congenita on
Androgens and Granulocyte Colony-stimulating Factor. Br J Haematol 2007;138:815-7.
[88] Khincha PP, Wentzensen IM, Giri N, Alter BP, Savage SA. Response to Androgen Therapy in Patients with
Dyskeratosis Congenita. Br J Haematol 2014;165:349-57.
[89] Islam A, Rafiq S, Kirwan M, Walne A, Cavenagh J, Vulliamy T, et al. Haematological Recovery in Dyskeratosis Congenita Patients Treated with Danazol. Br J Haematol 2013;162:854-6.
[90] Nobili B, Rossi G, De Stefano P, Zecca M, Giorgiani G, Perrotta S, et al. Successful Umbilical Cord Blood
Transplantation in a Child with Dyskeratosis Congenita after a Fludarabine-based Reduced-intensity Conditioning Regimen. Br J Haematol 2002;119:573-4.
[91] Shahidi NT. A Review of the Chemistry, Biological Action, and Clinical Applications of Anabolic-androgenic Steroids. Clin Ther 2001;23:1355-90.
[92] Maggio M, Snyder PJ, Ceda GP, Milaneschi Y, Luci M, Cattabiani C, et al. Is the Haematopoietic Effect of
Testosterone Mediated by Erythropoietin? The Results of a Clinical Trial in Older Men. Andrology 2013;1:24-8.
[93] Gadalla SM, Aubert G, Wang T, Haagenson M, SpellmanSR, Wang L, et al. Donor Telomere Length and Causes of Death after Unrelated Hematopoietic Cell Transplantation in Patients with Marrow Failure. Blood 2018;131:2393-8.
[94] Dokal I. Dyskeratosis Congenita. Hematol Am Soc Hematol Educ Program 2011;2011:480-6.
[95] Nelson AS, Marsh RA, Myers KC, Davies SM, Jodele S, O’Brien TA, et al. A Reduced-Intensity Conditioning
Regimen for Patients with Dyskeratosis Congenita Undergoing Hematopoietic Stem Cell Transplantation.
Biol Blood Marrow Transplant 2016;22:884-8.
[96] Al-Rahawan MM, Giri N, Alter BP. Intensive Immunosuppression Therapy for Aplastic Anemia Associated
with Dyskeratosis Congenita. Int J Hematol 2006;83:275-6.
[97] Kharfan-Dabaja MA, Otrock ZK, Bacigalupo A, MahfouzRA, Geara F, Bazarbachi A. A Reduced Intensity Conditioning Regimen of Fludarabine, Cyclophosphamide, Antithymocyte Globulin, Plus 2 Gy TBI Facilitates Successful Hematopoietic Cell Engraftment in an Adult with Dyskeratosis Congenita. Bone Marrow Transplant 2012;47:1254-5.
[98] Barbaro P, Vedi A. Survival after Hematopoietic Stem Cell Transplant in Patients with Dyskeratosis Congenita: Systematic Review of the Literature. Biol Blood Marrow Transplant 2016;22:1152-8.
[99] De la Fuente J, Dokal I. Dyskeratosis Congenita: Advances in the Understanding of the Telomerase Defect and the Role of Stem Cell Transplantation. Pediatr Transplant 2007;11:584-94.
[100] Balakumaran A, Mishra PJ, Pawelczyk E, Yoshizawa S, Sworder BJ, Cherman N, et al. Bone Marrow Skeletal 
Stem/Progenitor Cell Defects in Dyskeratosis Congenita and Telomere Biology Disorders. Blood 2015;125:793-802. 
[101] Bessler M, Wilson DB, Mason PJ. Dyskeratosis Congenita. FEBS Lett 2010;584:3831-8.
[102] Nagpal N, Wang J, Zeng J, Lo E, Moon DH, Luk K, et al. Small-Molecule PAPD5 Inhibitors Restore
Telomerase Activity in Patient Stem Cells. Cell Stem Cell 2020;26:896-909. 

Share
Back to top
Journal of Clinical and Translational Research, Electronic ISSN: 2424-810X Print ISSN: 2382-6533, Published by AccScience Publishing