AccScience Publishing / JCTR / Volume 5 / Issue 2 / DOI: 10.18053/jctres.05.201902.005
ORIGINAL ARTICLE

Relationship between brain-derived neurotrophic factor and immune  function during dietary supplement treatment of elderly with Alzheimer’s  dementia

Jordan Stillman1 Alicia Martin1 Maria-Jose Miguez2 H. Reginald McDaniel3 Janet Konefal4 Judi M Woolger5 John E Lewis1*
Show Less
1 Departments of 1 Psychiatry and Behavioral Sciences, Departments of 1 Psychiatry and Behavioral Sciences
2 School of Integrated Science and Humanity International University, Miami, Florida
3 Fisher Institute for Medical Research, Grand Prairie, Texas, United States
4 Family Medicine and Community Health, Family Medicine and Community Health
5 Medicine, University of Miami Miller School of Medicine
Submitted: 26 May 2019 | Revised: 27 November 2019 | Accepted: 1 December 2019 | Published: 29 January 2020
© 2020 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Background and Aim: The objective of the present study was to investigate the relationships among pro brain-derived neurotrophic factor (BDNF) and mature BDNF and immune functioning during aloe polymannose multinutrient complex (APMC) treatment in persons with moderate to severe Alzheimer’s dementia (AD). 

Methods: An open label trial of twelve months was used to execute the study. Thirty-four adults with AD were enrolled and consumed 4 teaspoons/day of APMC for 12 months. Subjects were assessed at baseline and twelve months follow-up for proBDNF and BDNF and cytokines, growth factors, T-cell and B-cell subsets, and complete blood count to measure immune functioning. All biomarkers were inter-correlated. 

Results: Several relationships were identified between proBDNF, BDNF, and BDNF/proBDNF ratio and immune function at 12 months, particularly BDNF with VEGF (= 0.55, = 0.03), EGF (= 0.74, = 0.001), and CD95+CD3+ (%) (= –0.64, = 0.03) and proBDNF with VEGF (= 0.64, = 0.02), EGF (= 0.86, < 0.001), and CD16+56+ (%) (= –0.78, < 0.01). Other correlations were noted for various immune function variables with BDNF, proBDNF, and/or BDNF/proBDNF ratio at baseline and 12 months. Dichotomizing subjects on BDNF above and below 5000 pg/mL revealed additional relationships with platelets and neutrophils. 

Conclusions: The associations between BDNF and proBDNF and various immune markers, such as VEGF, EGF, and CD95+CD3+ ratio, provide insight into the link between neurological function and the immune system. These relationships were even stronger in response to APMC treatment, which lends support to previous findings showing improved immune function after dietary supplementation. 

Relevance for patients: Alzheimer's dementia patients have conventional treatment options with limited efficacy for counteracting the deleterious effects of the disease on neurological function. The link between neurological and immune function has been understudied in this population. Overall, our results showed significant beneficial relationships between immune and neurological function, particularly in response to 12 months of treatment with an all-natural polysaccharide-based dietary supplement that is a known immunomodulator. Thus, the use of this dietary supplement may benefit these patients by simultaneously improving immune and neurological function.

Keywords
aloe polymannose
Alzheimer’s dementia
brain-derived neurotrophic factor
CD95+CD3
dietary supplementation
epidermal growth factor
immune function
polysaccharide
vascular endothelial growth factor
Conflict of interest
The authors declare they have no competing interests.
References

[1] Xie H, Yung WH. Chronic Intermittent Hypoxia-induced  Deficits in Synaptic Plasticity and Neurocognitive  Functions: A Role for Brain-Derived Neurotrophic Factor.  Acta Pharmacol Sin 2012;33:5-10.

[2] Meis S, Endres T, Lessmann V. Postsynaptic BDNF  Signalling Regulates Long-term Potentiation at Thalamoamygdala Afferents. J Physiol 2012;590:193-208.

[3] Bramham CR, Messaoudi E. BDNF Function in  Adult Synaptic Plasticity: The Synaptic Consolidation  Hypothesis. Prog Neurobiol 2005;76:99-125.

[4] Nagahara AH, Merrill DA, Coppola G, Tsukada S,  Schroeder BE, Shaked GM, et al. Neuroprotective  Effects of Brain-derived Neurotrophic Factor in Rodent  and Primate Models of Alzheimer’s Disease. Nat Med  2009;15:331-7.

[5] Islam O, Loo TX, Heese K. Brain-derived Neurotrophic  Factor (BDNF) has Proliferative Effects on Neural Stem  Cells through the Truncated TRK-B Receptor, MAP  Kinase, AKT, and STAT-3 Signaling Pathways. Curr  Neurovasc Res 2009;6:42-53.

[6] Schneider LS, Sano M. Current Alzheimer’s Disease  Clinical Trials: Methods and Placebo Outcomes.  Alzheimers Dement 2009;5:388-97.

[7] Mizui T, Ishikawa Y, Kumanogoh H, Lume M,  Matsumoto T, Hara T, et al. BDNF Pro-peptide Actions  Facilitate Hippocampal LTD and are Altered by the  Common BDNF Polymorphism Val66Met. Proc Natl Acad  Sci U S A 2015;112:E3067-74.

[8] Chao CC, Ma YL, Lee EH. Brain-derived Neurotrophic  Factor Enhances Bcl-xL Expression through Protein  Kinase Casein Kinase 2-Activated and Nuclear Factor  Kappa B-mediated Pathway in Rat Hippocampus. Brain  Pathol 2011;21:150-62.

[9] Cunha C, Brambilla R, Thomas KL. A Simple Role for  BDNF in Learning and Memory? Front Mol Neurosci  2010;3:1.

[10] Kairisalo M, Korhonen L, Sepp M, Pruunsild P,  Kukkonen JP, Kivinen J, et al. NF-kappaB-dependent  Regulation of Brain-derived Neurotrophic Factor in  Hippocampal Neurons by X-linked Inhibitor of Apoptosis  Protein. Eur J Neurosci 2009;30:958-66.

[11] Marini AM, Jiang X, Wu X, Tian F, Zhu D, Okagaki P,  et al. Role of Brain-derived Neurotrophic Factor and NFkappaB in Neuronal Plasticity and Survival: From Genes  to Phenotype. Restor Neurol Neurosci 2004;22:121-30.

[12] Je HS, Yang F, Ji Y, Nagappan G, Hempstead BL, Lu B.  Role of Pro-brain-derived Neurotrophic Factor (proBDNF)  to Mature BDNF Conversion in Activity-dependent  Competition at Developing Neuromuscular Synapses. Proc

[13] Lu B, Pang PT, Woo NH. The Yin and Yang of Neurotrophin  Action. Nat Rev Neurosci 2005;6:603-14.

[14] Alzheimer’s Association. Alzheimer’s Disease Facts and  Figures. Chicago, Illinois, United States: Alzheimer’s  Association; 2017.

[15] Saha RN, Liu X, Pahan K. Up-regulation of BDNF in  Astrocytes by TNF-Alpha: A Case for the Neuroprotective  Role of Cytokine. J Neuroimmune Pharmacol 2006;1:212-22.

[16] Wang TY, Lee SY, Chen SL, Chang YH, Wang LJ, Chen PS,  et al. Comparing Clinical Responses and the Biomarkers  of BDNF and Cytokines between Subthreshold Bipolar  Disorder and Bipolar II Disorder. Sci Rep 2016;6:27431.

[17] Rahvar M, Nikseresht M, Shafiee SM, Naghibalhossaini F,  Rasti M, Panjehshahin MR, et al. Effect of Oral Resveratrol  on the BDNF Gene Expression in the Hippocampus of the  Rat Brain. Neurochem Res 2011;36:761-5.

[18] Wu A, Ying Z, Gomez-Pinilla F. Dietary Omega-3 Fatty  Acids Normalize BDNF Levels, Reduce Oxidative Damage,  and Counteract Learning Disability after Traumatic Brain  Injury in Rats. J Neurotrauma 2004;21:1457-67.

[19] Liang S, Huang R, Lin X, Huang J, Huang Z, Liu H.  Effects of Yulangsan Polysaccharide on Monoamine  Neurotransmitters, Adenylate Cyclase Activity and Brainderived Neurotrophic Factor Expression in a Mouse Model  of Depression Induced by Unpredictable Chronic Mild  Stress. Neural Regen Res 2012;7:191-6.

[20] Nelson ED, Ramberg JE, Best T, Sinnott RA. Neurologic  Effects of Exogenous Saccharides: A Review of Controlled  Human, Animal, and In Vitro Studies. Nutr Neurosci  2012;15:149-62.

[21] Lewis JE, McDaniel HR, Agronin ME, Loewenstein DA,  Riveros J, Mestre R, et al. The Effect of an Aloe  Polymannose Multinutrient Complex on Cognitive and  Immune Functioning in Alzheimer’s Disease. J Alzheimers  Dis 2013;33:393-406. 

[22] Ali K, Melillo A, Leonard S, Asthana D, Woolger J,  Wolfson A, et al. An Open-label, Randomized Clinical  Trial to Assess the Immunomodulatory Activity of a Novel  Oligosaccharide Compound in Healthy Adults. Functional  Foods in Health and Disease 2012;2:265-279.

[23] Lages LC, Lopez J, Lopez-Medrano AM, Atlas SE,  Martinez AH, Woolger JM, et al. A Double-blind,  Randomized Trial on the Effect of a Broad-spectrum Dietary  Supplement on Key Biomarkers of Cellular aging Including  Inflammation, Oxidative Stress, and DNA Damage in  Healthy Adults. J Clin Transl Res 2017;2:135-43.

[24] Lewis JE, Melillo AB, Tiozzo E, Chen L, Leonard S,  Howell M, et al. A Double-Blind, Randomized Clinical  Trial of Dietary Supplementation on Cognitive and Immune  Functioning in Healthy Older Adults. BMC Complement  Altern Med 2014;14:43.

[25] Martin A, Stillman J, Miguez MJ, McDaniel HR, Konefal J,  Woolger JM, et al. The Effect of Dietary Supplementation  on Brain-derived Neurotrophic Factor and Cognitive  Functioning in Alzheimer’s Dementia. J Clin Transl Res  2018;3:337-43.

[26] Fahnestock M, Marchese M, Head E, Pop V, Michalski B,  Milgram WN, et al. BDNF Increases with Behavioral  Enrichment and an Antioxidant Diet in the Aged Dog.  Neurobiol Aging 2012;33:546-54.

[27] Folstein MF, Folstein SE, McHugh PR. “Mini-Mental  State”. APractical Method for Grading the Cognitive State of  Patients for the Clinician. J Psychiatr Res 1975;12:189-98.

[28] Teixeira AL, Barbosa IG, Diniz BS, Kummer A. Circulating  Levels of Brain-derived Neurotrophic Factor: Correlation  with Mood, Cognition and Motor Function. Biomark Med  2010;4:871-87.

[29] Sachdeva N, Yoon HS, Oshima K, Garcia D, Goodkin K,  Asthana D. Biochip array-based Analysis of Plasma  Cytokines in HIV Patients with Immunological and  Virological Discordance. Scand J Immunol 2007;65:549-54. 

[30] Chidlow JH Jr., Glawe JD, Alexander JS, Kevil CG.  VEGF164 Differentially Regulates Neutrophil and T  Cell Adhesion through ItgaL- and ItgaM-Dependent  Mechanisms. Am J Physiol Gastrointest Liver Physiol  2010;299:G1361-7.

[31] Healy ME, Bergin R, Mahon BP, English K. Mesenchymal  stromal Cells Protect Against Caspase 3-Mediated  Apoptosis of CD19(+) Peripheral B cells Through ContactDependent Upregulation of VEGF. Stem Cells Dev  2015;24:2391-402.

[32] Kassan M, Ait-Aissa K, Ali M, Trebak M, Matrougui K.  Augmented EGF Receptor Tyrosine Kinase Activity  Impairs Vascular Function by NADPH Oxidase-Dependent  Mechanism in Type 2 Diabetic Mouse. Biochim Biophys  Acta 2015;1853:2404-10.

[33] Mulligan JK, Rosenzweig SA, Young MR. Tumor Secretion  of VEGF Induces Endothelial Cells to Suppress T Cell  Functions through the Production of PGE2. J Immunother  2010;33:126-35.

[34] Vial D, McKeown-Longo PJ. Role of EGFR Expression  Levels in the Regulation of Integrin Function by EGF. Mol  Carcinog 2016;55:1118-23.

[35] Zadran S, Jourdi H, Rostamiani K, Qin Q, Bi X, Baudry M.  Brain-derived Neurotrophic Factor and Epidermal Growth  Factor Activate Neuronal m-calpain via Mitogen-Activated  Protein Kinase-dependent Phosphorylation. J Neurosci  2010;30:1086-95.

[36] Zhang Q, Liu G, Wu Y, Sha H, Zhang P, Jia J. BDNF  Promotes EGF-induced Proliferation and Migration of  Human Fetal Neural Stem/Progenitor Cells via the PI3K/ Akt Pathway. Molecules 2011;16:10146-56.

[37] Chen NN, Wang JP, Liu HF, Zhang M, Zhao YZ, Fu XJ,  et al. The Bone Marrow Mononuclear Cells Reduce theOxidative Stress of Cerebral Infarction through PI3K/ AKT/NRF2 Signaling Pathway. Eur Rev Med Pharmacol  Sci 2017;21:5729-35.

[38] Nagahara AH, Tuszynski MH. Potential Therapeutic Uses  of BDNF in Neurological and Psychiatric Disorders. Nat  Rev Drug Discov 2011;10:209-19.

[39] Li B, Gao Y, Zhang W, Xu JR. Regulation and Effects  of Neurotrophic Factors after Neural Stem Cell  Transplantation in a Transgenic Mouse Model of Alzheimer  Disease. J Neurosci Res 2018;96:828-40.

[40] Tauber SC, Harms K, Falkenburger B, Weis J, Sellhaus B,  Nau R, et al. Modulation of Hippocampal Neuroplasticity  by Fas/CD95 Regulatory Protein 2 (Faim2) in the Course of  Bacterial Meningitis. J Neuropathol Exp Neurol 2014;73:2-13.

[41] Reich A, Spering C, Schulz JB. Death Receptor Fas  (CD95) Signaling in the Central Nervous System: Tuning  Neuroplasticity? Trends Neurosci 2008;31:478-86.

[42] Vaisid T, Barnoy S, Kosower NS. Calpain Activates  Caspase-8 in Neuron-like Differentiated PC12 Cells via the  Amyloid-beta-peptide and CD95 Pathways. Int J Biochem  Cell Biol 2009;41:2450-8.

[43] Chiappelli M, Nasi M, Cossarizza A, Porcellini E, TuminiE,  Pinti M, et al. Polymorphisms of Fas Gene: Relationship  with Alzheimer’s Disease and Cognitive Decline. Dement  Geriatr Cogn Disord 2006;22:296-300.

[44] Jabir NR, Firoz CK, Ahmed F, Kamal MA, Hindawi S,  Damanhouri GA, et al. Reduction in CD16/CD56 and  CD16/CD3/CD56 Natural Killer Cells in Coronary Artery  Disease. Immunol Invest 2017;46:526-35.

[45] Lübbers J, van Beers-Tas MH, Vosslamber S, Turk SA,  de Ridder S, Mantel E, et al. Changes in Peripheral Blood  Lymphocyte Subsets during Arthritis Development in  Arthralgia Patients. Arthritis Res Ther 2016;18:205.

[46] Wang J, Han W, Gao Z, Wang Y, Wu L, Zhang J,  et al. Elevation of CD16+  CD56+  NK-cells and Downregulation of Serum Interleukin-21 (IL-21) and IL- 1α after Splenectomy in Relapsed Hemophagocytic  Lymphohistiocytosis of Unknown Cause. Hematology  2017;22:477-83.

[47] Schindowski K, Peters J, Gorriz C, Schramm U, WeinandiT,  Leutner S, et al. Apoptosis of CD4+  T and Natural Killer  Cells in Alzheimer’s Disease. Pharmacopsychiatry  2006;39:220-8.

[48] Laske C, Stransky E, Leyhe T, Eschweiler GW, Schott K,  Langer H, et al. Decreased Brain-derived Neurotrophic  Factor (BDNF) and Beta-thromboglobulin (beta-TG)  Blood Levels in Alzheimer’s Disease. Thromb Haemost  2006;96:102-3.

[49] Zenaro E, Pietronigro E, Della Bianca V, Piacentino G,  Marongiu L, Budui S, et al. Neutrophils Promote  Alzheimer’s Disease-like Pathology and Cognitive Decline  via LFA-1 Integrin. Nat Med 2015;21:880-6.

Share
Back to top
Journal of Clinical and Translational Research, Electronic ISSN: 2424-810X Print ISSN: 2382-6533, Published by AccScience Publishing