AccScience Publishing / JCTR / Volume 4 / Issue 2 / DOI: 10.18053/jctres.04.201802.004
ORIGINAL ARTICLE

The effects of trans-resveratrol on insulin resistance, inflammation, and  microbiota in men with the metabolic syndrome: A pilot randomized,  placebo-controlled clinical trial

Jeanne M Walker1* Patricia Eckardt1 Jose O Aleman2,3 Joel Correa da Rosa1 Yupu Liang1 Tadasu Iizumi3 Stephane Etheve4 Martin J Blaser3 Jan L Breslow2 Peter R Holt2
Show Less
1 The Rockefeller University Hospital, The Rockefeller University Hospital
2 Laboratory of Biochemical Genetics and Metabolism, Rockefeller University
3 Department of Medicine, New York University School of Medicine, New York
4 DNP R&D Analytics, DSM Nutritional Products LTD, Kaiseraugst, Switzerland
Submitted: 21 August 2018 | Revised: 18 October 2018 | Accepted: 4 December 2018 | Published: 7 December 2018
© 2018 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Background and Aim: The metabolic syndrome (MetS) is a pathological condition comprised of abdominal obesity, insulin resistance, hypertension and hyperlipidemia. It has become a major threat globally, resulting in rapidly increasing rates of diabetes, coronary heart disease and stroke. The polyphenol resveratrol (RES) is believed to improve glucose homeostasis and insulin resistance by activating sirtuin, which acetylates and co-activates downstream targets and affects glucose and lipid homeostasis in the liver, insulin secretion in the pancreas, and glucose uptake in skeletal muscle. We studied the effects of RES on insulin resistance, glucose homeostasis and concomitant effects on adipose tissue metabolism and fecal microbiota in insulin resistant subjects with the metabolic syndrome. 

Methods: Twenty-eight obese men with the metabolic syndrome were studied during a 35-day stay in the Rockefeller University Hospital metabolic unit. Subjects were randomized to receive resveratrol 1 gram orally twice daily or placebo, while kept weight stable and consuming a Western style diet. At baseline, and after 30 days of resveratrol or placebo administration, subjects underwent testing that included a euglycemic, hyperinsulinemic clamp, 2- hour oral glucose tolerance test, resting energy expenditure (REE), daily blood pressure monitoring, abdominal adipose tissue biopsy, and fecal and blood collections. 

Results: RES induced no changes in insulin resistance, but reduced the 120-minute time point and the area under the curve for glucose concentration in the two-hour glucose tolerance test (GTT). In post hoc analysis, Caucasian subjects showed a significant improvement in insulin sensitivity and glucose homeostasis after GTT, whereas non-Caucasians showed no similar effects. Levels of fasting plasma RES and its primary metabolite dihydroresveratrol (DHR) were variable, and did not explain the racial differences in glucose homeostasis. RES administration to Caucasian subjects lead to an increase in several taxa including Akkermansia mucinophila. 

Conclusions: Resveratrol 2 grams administered orally to obese men with metabolic syndrome and insulin resistance marginally altered glucose homeostasis. However, in a small group of Caucasians, insulin resistance and glucose homeostasis improved. No concomitant changes in adipose tissue metabolism occurred, but fecal microbiota showed RES-induced changes. 

Relevance for patients: The metabolic syndrome increases the risk of diabetes, heart disease and stroke. A major component of the syndrome is insulin resistance, resulting in systemic inflammation and hyperinsulinemia. The primary treatment consists of lifestyle changes, improved diet and increased physical activity. This is often unsuccessful. In this study, RES was well tolerated. In Caucasian men it significantly improved insulin sensitivity and glucose homeostasis. Similar results were found in studies that consisted exclusively of Caucasian men. However, RES presents a novel addition to the current treatment of the MetS and its sequelae.

Keywords
metabolic syndrome
euglycemic hyperinsulinemic clamp
insulin resistance
resveratrol
dihydroresveratrol
fecal microbiota
akkermansia muciniphila
adipose tissue gene expression
Conflict of interest
The authors declare they have no competing interests.
References

[1] Beilby J. Definition of metabolic syndrome: Report of the national heart, lung and blood institute/American heart association conference on scientific issues related to definition. Clin Biochem Rev 2004;25:195-8.

[2] Aguilar M,BhuketT, Torres S, Liu B, WongRJ. Prevalence of the metabolic syndrome in the United States, 2003-2012. JAMA 2015;313:1973-4.

[3] Ervin RB. Prevalence of metabolic syndrome among adults 20 years of age and over, by sex, age, race and ethnicity, and body mass index: United States, 2003-2006. Natl Health Stat Report 2009;13:1-7.

[4] Johnson AR, Milner JJ, Makowski L. The inflammation highway: Metabolism accelerates inflammatory traffic in obesity. Immunol Rev 2012;249:218-38.

[5] Chen H, Tuck T, Ji X, Zhou X, Kelly G, Cuerrier A, et al. Quality assessment of Japanese knotweed (Fallopia japonica) grown on prince Edward Island as a source of resveratrol. JAgric Food Chem 2013;61:6383-92.

[6] Wenzel E, Somoza V. Metabolism and bioavailability of trans-resveratrol. Mol Nutr Food Res 2005;49:472-81.

[7] Zamora-Ros R, Rothwell JA, Achaintre D, Ferrari P, Boutron-Ruault MC, Mancini FR, et al. Evaluation of urinary resveratrol as a biomarker of dietary resveratrol intake in the European prospective investigation into cancer and nutrition (EPIC) study. Br J Nutr 2017;117:1596-602.

[8] Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 2006;127:1109-22.

[9] Fröjdö S, Durand C, Pirola L. Metabolic effects of resveratrol in mammals a link between improved insulin action and aging. CurrAging Sci 2008;1:145-51.

[10] Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006;444:337-42.

[11] Crandall JP, Oram V, Trandafirescu G, Reid M, Kishore P, Hawkins M, et al. Pilot study of resveratrol in older adults with impaired glucose tolerance. J Gerontol A Biol Sci Med Sci 2012;67:1307-12.

[12] Wahab A, Gao K, Jia C, Zhang F, Tian G, Murtaza G, et al. Significance of resveratrol in clinical management of chronic diseases. Molecules 2017;22:E1329.

[13] Knop FK, Konings E, Timmers S, Schrauwen P, Holst JJ, Blaak EE, et al. Thirty days of resveratrol supplementation does not affect postprandial incretin hormone responses, but suppresses postprandial glucagon in obese subjects. Diabet Med 2013;30:1214-8.

[14] Liu K, Zhou R, Wang B, Mi MT. Effect of resveratrol on glucose control and insulin sensitivity: A meta-analysis of 11 randomized controlled trials. Am J Clin Nutr 2014;99:1510-9.

[15] Singh CK, Ndiaye MA, Ahmad N. Resveratrol and cancer: Challenges for clinical translation. Biochim Biophys Acta 2015;1852:1178-85.

[16] Bode LM, Bunzel D, Huch M, Cho GS, Ruhland D, Bunzel M, et al. In vivo and in vitro metabolism of trans- resveratrol by human gut microbiota. Am J Clin Nutr 2013;97:295-309.

[17] Qiao Y, Sun J, Xia S, Tang X, Shi Y, Le G, et al. Effects of resveratrol on gut microbiota and fat storage in a mouse model with high-fat-induced obesity. Food Funct 2014;5:1241-9.

[18] Chen ML, Yi L, Zhang Y, Zhou X, Ran L, Yang J, et al. Resveratrol attenuates trimethylamine-N-oxide (TMAO)- induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota. MBio 2016;7:e02210-15.

[19] Ding S, Jiang J, Wang Z, Zhang G, Yin J, Wang X, et al. Resveratrol reduces the inflammatory response in adipose tissue and improves adipose insulin signaling in high-fat diet-fed mice. PeerJ 2018;6:e5173.

[20] Jung MJ, Lee J, Shin NR, Kim MS, Hyun DW, Yun JH, et al. Chronic repression of mTOR complex 2 induces changes in the gut microbiota of diet-induced obese mice. Sci Rep 2016;6:30887.

[21] Huang PL. A comprehensive definition for metabolic syndrome. Dis Model Mech 2009;2:231-7.

[22] Pendyala S, Walker JM, Holt PR. A high-fat diet is associated with endotoxemia that originates from the gut. Gastroenterology 2012;142:1100-100.

[23] Amri A, Chaumeil JC, Sfar S, CharrueauC. Administration of resveratrol: What formulation solutions to bioavailability limitations? J Control Release 2012;158:182-93.

[24] Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol 2011;12:R60.

[25] Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 2013;31:814-21.

[26] Andrews S. Fast QC: A Quality Control Tool for High Throughput Sequence Data; 2010. Available from: http:// www.bioinformatics.babraham.ac.uk/projects/fastqc. [Last accessed on 2018 Aug 08].

[27] Martin M. Cutadapt removes adapter sequences from high- throughput sequencing reads. EMB Net J 2011;17:10-2. Available from: http://www.journal.embnet.org/index.php/ embnetjournal/article/view/200/458. [Last accessed on 2018 Aug 08].

[28]Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013;29:15-21.

[29]García-Alcalde F, OkonechnikovK, Carbonell J, Cruz LM, Götz  S,  Tarazona  S,  et  al.  Qualimap:  Evaluating  next- generation  sequencing  alignment  data.  Bioinformatics 2012;28:2678-9.

[30]Liao  Y,  Smyth  GK,  Shi  W.  FeatureCounts: An  efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014;30:923-30.

[31]McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-seq experiments with respect to biological variation. NucleicAcids Res 2012;40:4288-97.

[32]Thazhath SS, Wu T, Bound MJ, ChecklinHL, Standfield S, Jones  KL,  et  al.  Administration   of  resveratrol   for  5 wk has no  effect  on  glucagon-like  peptide  1  secretion, gastric   emptying,   or   glycemic    control    in   Type    2 diabetes: A randomized controlled trial. Am J Clin Nutr 2016;103:66-70.

[33] Kjær    TN,    Ornstrup   MJ,    Poulsen    MM,    Stødkilde- Jørgensen H, Jessen N, Jørgensen JO, et al. No beneficial effects   of   resveratrol    on   the   metabolic    syndrome: A  Randomized  placebo-controlled  clinical  trial.  J  Clin Endocrinol Metab 2017;102:1642-51.

[34] Poulsen   MM,   Vestergaard   PF,   Clasen  BF,  Radko  Y, Christensen LP, Stødkilde-Jørgensen H, et al. High-dose resveratrol supplementation in obese men: An investigator- initiated,  randomized,  placebo-controlled  clinical  trial of  substrate  metabolism,   insulin  sensitivity,  and  body composition. Diabetes 2013;62:1186-95.

[35] Bhatt  JK, Thomas  S,  Nanjan   MJ.  Resveratrol supplementation  improves glycemic  control  in  Type  2 diabetes mellitus. Nutr Res 2012;32:537-41.

[36] Crandall JP, BarzilaiN. Exploring the promise of resveratrol: Where do we go from here? Diabetes 2013;62:1022-3.

[37]    Korsholm  AS,  Kjær  TN,   Ornstrup  MJ,  Pedersen   SB. Comprehensive  metabolomic   analysis  in  blood,  urine, fat,   and   muscle   in   men   with   metabolic   syndrome: A Randomized,  placebo-controlled  clinical  trial  on  the effects of resveratrol after four months’ treatment. Int J Mol Sci 2017;18:E554.

[38]    Frendo-Cumbo S, MacPherson RE, Wright DC. Beneficial effects  of combined  resveratrol  and  metformin  therapy in  treating  diet-induced  insulin  resistance.  Physiol  Rep 2016;4:e12877.

[39]    VangO, Ahmad N, Baile CA, Baur JA, Brown K, CsiszarA, et al. What is new for an old molecule? Systematic review and recommendations on the use of resveratrol. PLoS One

[40]   Timmers  S,  Konings  E,  Bilet  L,  Houtkooper  RH,  van de Weijer T, Goossens GH, et al. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab 2011;14:612-22.

[41]   Wu C, Hwang SH, Jia Y, Choi J, Kim YJ, Choi D, et al. Olfactory receptor 544 reduces adiposity by steering fuel preference toward fats. J Clin Invest 2017;127:4118-23.

[42]    Alberdi  G,  Rodríguez  VM,  Miranda  J,  Macarulla  MT, Arias  N,  Andrés-Lacueva  C,  et  al.  Changes  in  white adipose tissue metabolism induced by resveratrol in rats. Nutr Metab (Lond) 2011;8:29.

[43]    Konings E, Timmers S, Boekschoten MV, Goossens GH, Jocken  JW,  Afman  LA,  et  al.  The  effects  of 30  days resveratrol supplementation on adipose tissue morphology and gene expression patterns in obese men. Int J Obes (Lond) 2014;38:470-3.

[44]    Sharma  AK,  Jaiswal   SK,  Chaudhary  N,   Sharma  VK. A novel  approach for the prediction  of species-specific biotransformation  of  xenobiotic/drug  molecules  by  the human gut microbiota. Sci Rep 2017;7:9751.

[45]    Koppel   N,   Maini   Rekdal   V,   Balskus   EP.   Chemical transformation of xenobiotics by the human gut microbiota. Science 2017;356:2770.

[46]    Bird    JK,    Raederstorff   D,    Weber    P,    Steinert   RE. Cardiovascular   and   antiobesity   effects   of   resveratrol mediated    through    the    gut    microbiota.    Adv    Nutr 2017;8:839-49.

[47]    Wilson  ID,  Nicholson  JK.  Gut  microbiome interactions with drug metabolism, efficacy, and toxicity. Transl Res 2017;179:204-22.

[48]    Meehan    CJ,   Beiko   RG.   A   phylogenomic   view    of ecological specialization in the Lachnospiraceae, a family of   digestive   tract-associated   bacteria.    Genome   Biol Evol 2014;6:703-13.

[49]    CaniPD, deVos WM. Next-generation beneficial microbes: The  case of Akkermansia muciniphila. Front Microbiol 2017;8:1765.

[50]    Plovier  H,  Everard  A,  Druart   C,  Depommier   C,  Van Hul M, Geurts L, et al. A purified membrane protein from Akkermansia  muciniphila  or  the  pasteurized  bacterium improves metabolism in obese and diabetic mice. Nat Med 2017;23:107-13.

[51]    Guarente  L.  Sirtuins  as  potential  targets  for  metabolic syndrome. Nature 2006;444:868-74.

[52]    Xia X, Weng J. Targeting metabolic syndrome: Candidate natural agents. J Diabetes 2010;2:243-9.

 

Share
Back to top
Journal of Clinical and Translational Research, Electronic ISSN: 2424-810X Print ISSN: 2382-6533, Published by AccScience Publishing