Mitochondrial dysfunction as a mechanism of drug-induced hepatotoxicity: current understanding and future perspectives
Mitochondria are critical cellular organelles for energy generation and are now also recognized as playing important roles in cellular signaling. Their central role in energy metabolism, as well as their high abundance in hepatocytes, make them important targets for drug-induced hepatotoxicity. This review summarizes the current mechanistic understanding of the role of mitochondria in drug-induced hepatotoxicity caused by acetaminophen, diclofenac, anti-tuberculosis drugs such as rifampin and isoniazid, anti-epileptic drugs such as valproic acid and constituents of herbal supplements such as pyrrolizidine alkaloids. The utilization of circulating mitochondrial-specific biomarkers in understanding mechanisms of toxicity in humans will also be examined. In summary, it is well-established that mitochondria are central to acetaminophen-induced cell death. However, the most promising areas for clinically useful therapeutic interventions after acetaminophen toxicity may involve the promotion of adaptive responses and repair processes including mitophagy and mitochondrial biogenesis, In contrast, the limited understanding of the role of mitochondria in various aspects of hepatotoxicity by most other drugs and herbs requires more detailed mechanistic investigations in both animals and humans. Development of clinically relevant animal models and more translational studies using mechanistic biomarkers are critical for progress in this area.
Relevance for patients: This review focuses on the role of mitochondrial dysfunction in liver injury mechanisms of clinically important drugs like acetaminophen, diclofenac, rifampicin, isoniazid, amiodarone and others. A better understanding of the mechanisms in animal models and their translation to patients will be critical for the identification of new therapeutic targets.
[1] Larson AM, Polson J, Fontana RJ, Davern TJ, Lalani E, Hynan LS, et al. Acetaminophen-induced acute liver failure: results of a United States multicenter, prospective study. Hepatology 2005;42:1364-1372.
[2] McGill MR, Jaeschke H. Metabolism and disposition of acetami- nophen: recent advances in relation to hepatotoxicity and diagno- sis. Pharm Res 2013;30:2174-2187.
[3] Ramachandran A, Jaeschke H. Acetaminophen Toxicity: Novel Insights Into Mechanisms and Future Perspectives. Gene Expr 2018;18:19-30.
[4] Du K, Ramachandran A, McGill MR, Mansouri A, Asselah T, Farhood A, et al. Induction of mitochondrial biogenesis pro- tects against acetaminophen hepatotoxicity. Food Chem Toxicol 2017;108:339-350.
[5] Tirmenstein MA, Nelson SD. Subcellular binding and effects on calcium homeostasis produced by acetaminophen and a nonhepa- totoxic regioisomer, 3’-hydroxyacetanilide, in mouse liver. J Biol Chem 1989;264:9814-9815.
[6] Myers TG, Dietz EC, Anderson NL, Khairallah EA, Cohen SD, Nelson SD. A comparative study of mouse liver proteins ary- lated by reactive metabolites of acetaminophen and its nonhe- patotoxic regioisomer, 3’-hydroxyacetanilide. Chem Res Toxicol 1995;8:403-413.
[7] Matthews AM, Hinson JA, Roberts DW, Pumford NR. Com- parison of covalent binding of acetaminophen and the regioiso- mer 3’-hydroxyacetanilide to mouse liver protein. Toxicol Lett 1997;90:77-82.
[8] Hu J, Ramshesh VK, McGill MR, Jaeschke H, Lemasters JJ. Low Dose Acetaminophen Induces Reversible Mitochondrial Dysfunction Associated with Transient c-Jun N-Terminal Ki- nase Activation in Mouse Liver. Toxicol Sci 2016;150:204-215.
[9] Hadi M, Dragovic S, van Swelm R, Herpers B, van de Water B, Russel FG, et al. AMAP, the alleged non-toxic isomer of acetami- nophen, is toxic in rat and human liver. Arch Toxicol 2013;87:155- 165.
[10] Xie Y, McGill MR, Du K, DorkoK, Kumer SC, Schmitt TM, et al. Mitochondrial protein adducts formation and mitochondrial dys- function during N-acetyl-m-aminophenol (AMAP)-induced hepa- totoxicity in primary human hepatocytes. Toxicol Appl Pharmacol 2015;289:213-222.
[11] Rowe C, Shaeri M, Large E, Cornforth T, Robinson A, Kostrzew- ski T, et al. Perfused human hepatocyte microtissues identify re- active metabolite-forming and mitochondria-perturbing hepatotox-ins. Toxicol In Vitro 2018;46:29-38.
[12] Andringa KK, Bajt ML, Jaeschke H, Bailey SM. Mitochon- drial protein thiol modifications in acetaminophen hepatotoxi- city: effect on HMG-CoA synthase. ToxicolLett 2008;177:188-197.
[13] Bruderer R, Bernhardt OM, Gandhi T, Miladinovic SM, Cheng LY, Messner S, et al. Extending the limits of quantitative prote- ome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. Mol Cell Proteomics 2015;14:1400-1410.
[14] QiuY, Benet LZ, Burlingame AL. Identification of the hepatic pro- tein targets of reactive metabolites of acetaminophen in vivo in mice using two-dimensional gel electrophoresis and mass spectro- metry. J Biol Chem 1998;273:17940-17953.
[15] Tirmenstein MA, Nelson SD. Acetaminophen-induced oxidation of protein thiols. Contribution of impaired thiol-metabolizing en- zymes and the breakdown of adenine nucleotides. J Biol Chem 1990;265:3059-3065.
[16] Knight TR, Ho YS, Farhood A, Jaeschke H. Peroxynitrite is a cri- tical mediator of acetaminophen hepatotoxicity in murine livers: protection by glutathione. JPharmacolExp Ther 2002;303:468-475.
[17] Jaeschke H, Knight TR, Bajt ML. The role of oxidant stress and reactive nitrogen species in acetaminophen hepatotoxicity. Toxicol Lett 2003;144:279-288.
[18] Saito C, Zwingmann C, Jaeschke H. Novel mechanisms of protection against acetaminophen hepatotoxicity in mice by glutathione and N-acetylcysteine. Hepatology 2010;51:246-254.
[19] Yan HM, Ramachandran A, Bajt ML, Lemasters JJ, Jaeschke H. The oxygen tension modulates acetaminophen-induced mitochon- drial oxidant stress and cell injury in cultured hepatocytes. Toxicol Sci 2010;117:515-523.
[20] Meyers LL, Beierschmitt WP, Khairallah EA, Cohen SD. Acetaminophen-induced inhibition of hepatic mitochondrial respi- ration in mice. Toxicol Appl Pharmacol 1988;93:378-387.
[21] Barbier-Torres L, Iruzubieta P, Fernandez-Ramos D, Delgado TC, Taibo D, Guitierrez-de-Juan V, et al. The mitochondrial negative regulator MCJ is a therapeutic target for acetaminophen-induced liver injury. Nat Commun 2017;8:2068.
[22] RamachandranA, Lebofsky M, Weinman SA,JaeschkeH. The im- pact of partial manganese superoxide dismutase (SOD2)-deficiency on mitochondrial oxidant stress, DNA fragmentation and liver in- jury during acetaminophen hepatotoxicity. Toxicol Appl Pharma- col 2011;251:226-233.
[23] Fujimoto K, Kumagai K, Ito K, Arakawa S, Ando Y, Oda S, et al. Sensitivity of liver injury in heterozygous Sod2 knockout mice treated with troglitazone or acetaminophen. Toxicol Pathol 2009;37:193-200.
[24] Du K, Farhood A, Jaeschke H. Mitochondria-targeted antioxidant Mito-Tempo protects against acetaminophen hepatotoxicity. Arch Toxicol 2017;91:761-773.
[25] BartesaghiS, Radi R. Fundamentals on the biochemistry of peroxy- nitrite and protein tyrosine nitration. Redox Biol 2018;14:618-625.
[26] Radi R, PeluffoG, Alvarez MN, NaviliatM, Cayota A. Unraveling peroxynitrite formation in biological systems. FreeRadic Biol Med 2001;30:463-488.
[27] Cover C, Mansouri A, Knight TR, Bajt ML, Lemasters JJ, Pessayre D, et al. Peroxynitrite-induced mitochondrial and endonuclease-mediated nuclear DNA damage in acetaminop- hen hepatotoxicity. J Pharmacol Exp Ther 2005;315:879-887.
[28] Hinson JA, Pike SL, Pumford NR, Mayeux PR. Nitrotyrosine- protein adducts in hepatic centrilobular areas following toxic do- ses of acetaminophen in mice. Chem Res Toxicol 1998;11:604- 607.
[29] Knight TR, Kurtz A, Bajt ML, Hinson JA,JaeschkeH. Vascular and hepatocellular peroxynitrite formation during acetaminophen toxi- city: role of mitochondrial oxidant stress. Toxicol Sci 2001;62:212- 220.
[30] Gardner CR, Laskin JD, Dambach DM, Sacco M, Durham SK, Bruno MK, et al. Reduced hepatotoxicity of acetaminophen in mice lacking inducible nitric oxide synthase: potential role of tumor necrosis factor-alpha and interleukin-10. Toxicol Appl Pharmacol 2002;184:27-36.
[31] Salhanick SD, Orlow D, Holt DE, Pavlides S, Reenstra W, Buras JA. Endothelially derived nitric oxide affects the severity of early acetaminophen-induced hepatic injury in mice. Acad Emerg Med 2006;13:479-485.
[32] Agarwal R, Hennings L, Rafferty TM, Letzig LG, McCul- lough S, James LP, et al. Acetaminophen-induced hepatotox- icity and protein nitration in neuronal nitric-oxide synthase knockout mice. J Pharmacol Exp Ther 2012;340:134- 142.
[33] Saito C, Lemasters JJ, Jaeschke H. c-Jun N-terminal ki- nase modulates oxidant stress and peroxynitrite formation in- dependent of inducible nitric oxide synthase in acetaminop- hen hepatotoxicity. Toxicol Appl Pharmacol 2010;246:8-17.
[34] Banerjee S, Melnyk SB, Krager KJ, Aykin-Burns N, Letzig LG, James LP, et al. The neuronal nitric oxide synthase inhibitor NANT blocks acetaminophen toxicity and protein nitration in freshly isolated hepatocytes. Free Radic Biol Med 2015;89:750-757.
[35] Banerjee S, Melnyk SB, Krager KJ, Aykin-Burns N, McCul- lough SS, James LP, et al. Trifluoperazine inhibits acetaminophen- induced hepatotoxicity and hepatic reactive nitrogen formation in mice and in freshly isolated hepatocytes. Toxicol Rep 2017;4:134-142
[36] Moore M, Thor H, Moore G, Nelson S, MoldeusP, Orrenius S. The toxicity of acetaminophen and N-acetyl-p-benzoquinone imine in isolated hepatocytes is associated with thiol depletion and increa- sed cytosolic Ca2+. J Biol Chem 1985;260:13035-13040.
[37] Villanueva C, Giulivi C. Subcellular and cellular locati- ons of nitric oxide synthase isoforms as determinants of health and disease. Free Radic Biol Med 2010;49:307-316.
[38] Agarwal R, MacMillan-Crow LA, Rafferty TM, Saba H, Roberts DW, Fifer EK, et al. Acetaminophen-induced hepatotoxicity in mice occurs with inhibition of activity and nitration of mitochon- drial manganese superoxide dismutase. J Pharmacol Exp Ther 2011;337:110-116.
[39] Knight TR, Jaeschke H. Acetaminophen-induced inhibition of Fas receptor-mediated liver cell apoptosis: mitochondrial dys- function versus glutathione depletion. Toxicol Appl Pharmacol 2002;181:133-141.
[40] Bajt ML, Knight TR, Farhood A, Jaeschke H. Scavenging peroxy- nitrite with glutathione promotes regeneration and enhances survi- val during acetaminophen-induced liver injury in mice. J Pharma- col Exp Ther 2003;307:67-73.
[41] Hanawa N, Shinohara M, Saberi B, Gaarde WA, Han D, Kap- lowitz N. Role of JNK translocation to mitochondria leading to inhibition of mitochondria bioenergetics in acetaminophen- induced liver injury. J Biol Chem 2008;283:13565-13577.
[42] Xie Y, RamachandranA,BreckenridgeDG, Liles JT, Lebofsky M, Farhood A, et al. Inhibitor of apoptosis signal-regulating kinase 1 protects against acetaminophen-induced liver injury. Toxicol Appl Pharmacol 2015;286:1-9.
[43] Nakagawa H, Maeda S, Hikiba Y, Ohmae T, Shibata W, Ya- nai A, et al. Deletion of apoptosis signal-regulating kinase 1 at- tenuates acetaminophen-induced liver injury by inhibiting c-Jun N-terminal kinase activation. Gastroenterology 2008;135:1311-1321.
[44] Jan YH, Heck DE, Dragomir AC, Gardner CR, Laskin DL, Laskin JD. Acetaminophen reactive intermediates target hepa- tic thioredoxin reductase. Chem Res Toxicol 2014;27:882-894.
[45] Ramachandran A, Lebofsky M, Yan HM, Weinman SA, Jaeschke H. Hepatitis C virus structural proteins can exacerbate or ameli- orate acetaminophen-induced liver injury in mice. Arch Toxicol 2015;89:773-783.
[46] Sharma M, Gadang V, Jaeschke A. Critical role for mixed-lineage kinase 3 in acetaminophen-induced hepatotoxicity. Mol Pharmacol 2012;82:1001-1007.
[47] Zhang J, MinRWM, LeK, Zhou S, Aghajan M, ThanTA, et al. The role of MAP2 kinases and p38 kinase in acute murine liver injury models. Cell Death Dis 2017;8:e2903.
[48] Win S, Than TA, Han D, Petrovic LM, Kaplowitz N. c-Jun N- terminal kinase (JNK)-dependent acute liver injury from aceta- minophen or tumor necrosis factor (TNF) requires mitochondrial Sab protein expression in mice. J Biol Chem 2011;286:35071- 35078.
[49] Win S, Than TA, Min RW, Aghajan M, Kaplowitz N. c- Jun N-terminal kinase mediates mouse liver injury through a novel Sab (SH3BP5)-dependent pathway leading to inactiva- tion of intramitochondrial Src. Hepatology 2016;63:1987-2003.
[50] Du K, Ramachandran A, Weemhoff JL, Chavan H, Xie Y, Krish- namurthy P, et al. Editor’s Highlight: Metformin Protects Against Acetaminophen Hepatotoxicity by Attenuation of Mitochondrial Oxidant Stress and Dysfunction. Toxicol Sci 2016;154:214-226.
[51] Bajt ML, Farhood A, Lemasters JJ,Jaeschke H. Mitochondrial bax translocation accelerates DNA fragmentation and cell necrosis in a murine model of acetaminophen hepatotoxicity. J Pharmacol Exp Ther 2008;324:8-14.
[52] El-Hassan H, Anwar K, Macanas-Pirard P, Crabtree M, Chow SC, Johnson VL, et al. Involvement of mitochondria in acetaminophen- induced apoptosis and hepatic injury: roles of cytochrome c, Bax, Bid, and caspases. Toxicol Appl Pharmacol 2003;191:118-129.
[53] Shinohara M, Ybanez MD, Win S, Than TA, Jain S, Gaarde WA, et al. Silencing glycogen synthase kinase-3beta inhibits acetami- nophen hepatotoxicity and attenuates JNK activation and loss of glutamate cysteine ligase and myeloid cell leukemia sequence 1. J Biol Chem 2010;285:8244-8255.
[54] Bhushan B, Poudel S, Manley MW, Jr., Roy N, Apte U. Inhibition of Glycogen Synthase Kinase 3 Accelerated Liver Regeneration af- ter Acetaminophen-Induced Hepatotoxicity in Mice. Am J Pathol 2017;187:543-552.
[55] Kon K, Kim JS, Uchiyama A,JaeschkeH, Lemasters JJ. Lysosomal iron mobilization and induction of the mitochondrial permeability transition in acetaminophen-induced toxicity to mouse hepatocytes. Toxicol Sci 2010;117:101-108.
[56] Amodeo GF, TorregrosaMES, Pavlov EV. From ATP synthase di- mers to C-ring conformational changes: unified model of the mi- tochondrial permeability transition pore. Cell Death Dis 2017;8:1.
[57] Kon K, Kim JS, Jaeschke H, Lemasters JJ. Mitochondrial perme- ability transition in acetaminophen-induced necrosis and apopto- sis of cultured mouse hepatocytes. Hepatology 2004;40:1170- 1179.
[58] Masubuchi Y, Suda C, Horie T. Involvement of mitochondrial per- meability transition in acetaminophen-induced liver injury in mice. J Hepatol 2005;42:110-116.
[59] RamachandranA, Lebofsky M, Baines CP, Lemasters JJ, Jaeschke H. Cyclophilin D deficiency protects against acetaminophen- induced oxidant stress and liver injury. Free Radic Res 2011;45:156-164.
[60] LoGuidiceA, BoelsterliUA. Acetaminophen overdose-induced li- ver injury in mice is mediated by peroxynitrite independently of the cyclophilin D-regulated permeability transition. Hepatology 2011;54:969-978.
[61] Karch J, Molkentin JD. Identifying the components of the elusive mitochondrial permeability transition pore. Proc Natl Acad Sci U S A 2014;111:10396-10397.
[62] Karch J, Kwong JQ, Burr AR,Sargent MA, Elrod JW, Peixoto PM, et al. Bax and Bak function as the outer membrane component of the mitochondrial permeability pore in regulating necrotic cell de- ath in mice. eLife 2013;2:e00772.
[63] Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Ham- bleton MA, et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 2005;434:658-662.
[64] Richardson DR, Lane DJ, Becker EM, Huang ML, Whitnall M, Suryo Rahmanto Y, et al. Mitochondrial iron trafficking and the integration of iron metabolism between the mitochondrion and cytosol. Proc Natl Acad Sci U S A 2010;107:10775-10782.
[65] Gall J, Skrha J, Jr., Buchal R, Sedlackova E, Verebova K, Plate- nik J. Induction of the mitochondrial permeability transition (MPT) by micromolar iron: liberation of calcium is more important than NAD(P)H oxidation. Biochim Biophys Acta 2012;1817:1537-1549.
[66] Woolbright BL, RamachandranA, McGill MR, Yan HM, Bajt ML, Sharpe MR, et al. Lysosomal instability and cathepsin B releasedu- ring acetaminophen hepatotoxicity. Basic Clin Pharmacol Toxicol 2012;111:417-425.
[67] Hu J, Kholmukhamedov A, Lindsey CC, Beeson CC, Jaeschke H, Lemasters JJ. Translocation of iron from lysosomes to mitochon- dria during acetaminophen-induced hepatocellular injury: Pro- tection by starch-desferal and minocycline. Free Radic Biol Med 2016;97:418-426.
[68] Norberg E, Orrenius S, Zhivotovsky B. Mitochondrial regu- lation of cell death: processing of apoptosis-inducing fac- tor (AIF). Biochem Biophys Res Commun 2010;396:95-100.
[69] Bajt ML, Cover C, Lemasters JJ, Jaeschke H. Nuclear translo- cation of endonuclease G and apoptosis-inducing factor during acetaminophen-induced liver cell injury. Toxicol Sci 2006;94:217- 225.
[70] Bajt ML, RamachandranA, Yan HM, Lebofsky M, Farhood A, Le- masters JJ, et al. Apoptosis-inducing factor modulates mitochon- drial oxidant stress in acetaminophen hepatotoxicity. Toxicol Sci 2011;122:598-605.
[71] Ni HM, Williams JA, Jaeschke H, Ding WX. Zonated induction of autophagy and mitochondrial spheroids limits acetaminophen- induced necrosis in the liver. Redox Biol 2013;1:427-432.
[72] NiHM, BoggessN, McGill MR, Lebofsky M, Borude P, ApteU, et al. Liver-specific loss of Atg5 causes persistent activation of Nrf2 and protects against acetaminophen-induced liver injury. Toxicol Sci 2012;127:438-450.
[73] Baulies A, Ribas V, Nunez S, Torres S, Alarcon-Vila C, Marti- nez L, et al. Lysosomal Cholesterol Accumulation Sensitizes To Acetaminophen Hepatotoxicity by Impairing Mitophagy. Sci Rep 2015;5:18017.
[74] Ni HM, Bockus A, BoggessN, Jaeschke H, Ding WX. Activation of autophagy protects against acetaminophen-induced hepatotoxi- city. Hepatology 2012;55:222-232.
[75] Derry P, Derry S, MooreRA, McQuay HJ. Single dose oraldiclofe- nac for acute postoperative pain in adults. Cochrane Database Syst Rev 2009;7:CD004768.
[76] Mardini IA, FitzGerald GA. Selective inhibitors of cyclooxygenase-2: a growing class of anti-inflammatory drugs. Mol Interv 2001; 1:30-38.
[77] Forrest JB, Camu F, Greer IA, Kehlet H, Abdalla M, Bonnet F, et al. Ketorolac, diclofenac, and ketoprofen are equally safe for pain relief after major surgery. Br J Anaesth 2002;88:227-233.
[78] Hernandez-Diaz S, Garcia-Rodriguez LA. Epidemiologic asses- sment of the safety of conventional nonsteroidal anti-inflammatory drugs. Am J Med 2001;110 Suppl 3A:20S-7S.
[79] Helfgott SM, Sandberg-Cook J, Zakim D, Nestler J. Diclofenac- associated hepatotoxicity. JAMA 1990;264:2660-2662.
[80] Thompson RA, Isin EM, Li Y, Weidolf L, Page K, Wilson I, et al. In vitro approach to assess the potential for risk of idiosyncra- tic adverse reactions caused by candidate drugs. Chem Res Toxicol 2012;25:1616-1632.
[81] BoelsterliUA. Diclofenac-induced liver injury: a paradigm of idio- syncratic drug toxicity. ToxicolAppl Pharmacol 2003;192:307-322.
[82] Smith DA, Jones BC. Speculations on the Substrate Structure Activity Relationship (Ssar) of Cytochrome-P450 Enzymes. Bio- chemical Pharmacology 1992;44:2089-2098.
[83] Leemann T, Transon C, Dayer P. Cytochrome-P450tb (Cyp2c) - a Major Monooxygenase Catalyzing Diclofenac 4’-Hydroxylation in Human Liver. Life Sciences 1993;52:29-34.
[84] Riess W, Stierlin H, Degen P, Faigle JW, Gerardin A, Moppert J, et al. Pharmacokinetics and metabolism of the anti-inflammatory agent Voltaren. Scand J Rheumatol Suppl 1978:17-29.
[85] Faigle JW, Bottcher I, Godbillon J, Kriemler HP, Schlumpf E, Schneider W, et al. A new metabolite of diclofenac sodium in human plasma. Xenobiotica 1988;18:1191-1197.
[86] Stierlin H, Faigle JW, Sallmann A, Kung W, Richter WJ, Kriem- ler HP, et al. Biotransformation of diclofenac sodium (Voltaren) in animals and in man. I. Isolation and identification of principal me- tabolites. Xenobiotica 1979;9:601-610.
[87] Bort R, Ponsoda X, Jover R, Gomez-Lechon MJ, Castell JV. Di- clofenac toxicity to hepatocytes: a role for drug metabolism in cell toxicity. J Pharmacol Exp Ther 1999;288:65-72.
[88] Syed M, Skonberg C, Hansen SH. Mitochondrial toxicity of di- clofenac and its metabolites via inhibition of oxidative phosphory- lation (ATP synthesis) in rat liver mitochondria: Possible role in drug induced liver injury (DILI). Toxicol In Vitro 2016;31:93-102.
[89] Ponsoda X, BortR, Jover R, Gomez-Lechon MJ, Castell JV. Mole- cular mechanism of diclofenac hepatotoxicity: Association of cell injury with oxidative metabolism and decrease in ATP levels. Tox- icol In Vitro 1995;9:439-444.
[90] Jurima-Romet M, Crawford K, Huang HS. Comparative cytotox- icity of non-steroidal anti-inflammatory drugs in primary cultures of rat hepatocytes. Toxicol In Vitro 1994;8:55-66.
[91] Kretz-Rommel A, Boelsterli UA. Diclofenac covalent protein bin- ding is dependent on acyl glucuronide formation and is inversely related to P450-mediated acute cell injury in cultured rat hepatocy- tes. Toxicol Appl Pharmacol 1993;120:155-161.
[92] Grillo MP, Knutson CG, Sanders PE, Waldon DJ, Hua F, Ware JA. Studies on the chemical reactivity of diclofenac acyl glu- curonide with glutathione: identification of diclofenac-S-acyl- glutathione in rat bile. Drug Metab Dispos 2003;31:1327-1336.
[93] Lemasters JJ, Nieminen AL, Qian T, Trost LC, Herman B. The mi- tochondrial permeability transition in toxic, hypoxic and reperfu- sion injury. Mol Cell Biochem 1997;174:159-165.
[94] Masubuchi Y, Nakayama S, Horie T. Role of mitochondrial per- meability transition in diclofenac-induced hepatocyte injury in rats. Hepatology 2002;35:544-551.
[95] Lim MS, Lim PL, Gupta R, Boelsterli UA. Critical role of free cy- tosolic calcium, but not uncoupling, in mitochondrial permeability transition and cell death induced by diclofenac oxidative metabo- lites in immortalized human hepatocytes. Toxicol Appl Pharmacol 2006;217:322-331.
[96] Poon GK, Chen Q, TefferaY, Ngui JS, Griffin PR, Braun MP, et al. Bioactivation of diclofenac via benzoquinone imine intermediates- identification of urinary mercapturic acid derivatives in rats andhu- mans. Drug Metab Dispos 2001;29:1608-1613.
[97] Gomez-Lechon MJ, Ponsoda X, O’Connor E, Donato T, Castell JV, Jover R. Diclofenac induces apoptosis in hepatocytes by alte- ration of mitochondrial function and generation of ROS. Biochem Pharmacol 2003;66:2155-2167.
[98] Masubuchi Y, Saito H, Horie T. Structural requirements for the he- patotoxicity of nonsteroidal anti-inflammatory drugs in isolated rat hepatocytes. J Pharmacol Exp Ther 1998;287:208-213.
[99] Gomez-Lechon MJ, Ponsoda X, O’Connor E, Donato T, Jover R, Castell JV. Diclofenac induces apoptosis in hepatocytes. Toxicol In Vitro 2003;17:675-680.
[100] Inoue A, Muranaka S, Fujita H, Kanno T, TamaiH, Utsumi K. Mo- lecular mechanism of diclofenac-induced apoptosis of promyelo- cytic leukemia: Dependency on reactive oxygen species,Akt, Bid, cytochrome c, and caspase pathway. Free Radic Biol Med 2004;37:1290-1299.
[101] Uyemura SA, Santos AC, Mingatto FE, Jordani MC, Curti C. Di- clofenac sodium and mefenamic acid: potent inducers of the mem- brane permeability transition in renal cortex mitochondria. Arch Bi- ochem Biophys 1997;342:231-235.
[102] Goda K, Takahashi T, Kobayashi A, Shoda T, Kuno H, Sugai S. Usefulness of in vitro combination assays of mitochondrial dys- function and apoptosis for the estimation of potential risk of idio- syncratic drug induced liver injury. J Toxicol Sci 2016;41:605-615.
[103] Tatematsu Y, Hayashi H, Taguchi R, Fujita H, Yamamoto A, Ohkura K. Effect of N-Phenylanthranilic Acid Scaffold Nonste- roidal Anti-inflammatory Drugs on the Mitochondrial Permeability Transition. BiolPharm Bull 2016;39:278-284.
[104] Kang SW, Haydar G, Taniane C, Farrell G, Arias IM, Lippincott- Schwartz J, et al. AMPK Activation Prevents and Reverses Drug- Induced Mitochondrial and Hepatocyte Injury by Promoting Mi-tochondrial Fusion and Function. PLoS One 2016;11:e0165638.
[105] van Leeuwen JS, Orij R, Luttik MA, Smits GJ, Vermeulen NP, Vos JC. Subunits Rip1p and Cox9p of the respiratory chain con- tribute to diclofenac-induced mitochondrial dysfunction. Microbi- ology 2011;157:685-694.
[106] Siu WP, Pun PB, Latchoumycandane C, Boelsterli UA. Bax- mediated mitochondrial outer membrane permeabilization (MOMP), distinct from the mitochondrial permeability transition, is a key mechanism in diclofenac-induced hepatocyte injury: Mul- tiple protective roles of cyclosporin A. Toxicol Appl Pharmacol 2008;227:451-461.
[107] Moreno-Sanchez R, Bravo C, Vasquez C, Ayala G, Silveira LH, Martinez-Lavin M. Inhibition and uncoupling of oxidative phosp- horylation by nonsteroidal anti-inflammatory drugs: study in mito- chondria, submitochondrial particles, cells, and whole heart. Bio- chem Pharmacol 1999;57:743-752.
[108] Petrescu I, TarbaC. Uncoupling effects of diclofenac and aspirin in the perfused liver and isolated hepatic mitochondria of rat. Biochim Biophys Acta 1997;1318:385-394.
[109] Moorthy M, Fakurazi S, Ithnin H. Morphological alteration in mi- tochondria following diclofenac and ibuprofen administration. Pak J Biol Sci 2008;11:1901-1908.
[110] Gangadharam PR. Isoniazid, rifampin, and hepatotoxicity. Am Rev Respir Dis 1986;133:963-965.
[111] Yue J, Peng R, Chen J, Liu Y, Dong G. Effects of rifampin on CYP2E1-dependent hepatotoxicity of isoniazid in rats. Pharmacol Res 2009;59:112-119.
[112] Russo MW, Galanko JA, Shrestha R, Fried MW, Watkins P. Li- ver transplantation for acute liver failure from drug induced li- ver injury in the United States. Liver Transpl 2004;10:1018-1023.
[113] Hernandez N, Bessone F, Sanchez A, di Pace M, Brahm J, Za- pata R, et al. Profile of idiosyncratic drug induced liver injury in Latin America: an analysis of published reports. Ann Hepatol 2014;13:231-239.
[114] Hassan HM, GuoHL, Yousef BA, Luyong Z, Zhenzhou J. Hepato- toxicity mechanisms of isoniazid: A mini-review. J Appl Toxicol 2015;35:1427-1432.
[115] Ahadpour M, Eskandari MR, Mashayekhi V, Haj Mohammad Ebrahim Tehrani K, Jafarian I, Naserzadeh P, et al. Mitochon- drial oxidative stress and dysfunction induced by isoniazid: study on isolated rat liver and brain mitochondria. Drug Chem Toxicol 2016;39:224-232.
[116] Ramappa V, Aithal GP. Hepatotoxicity Related to Anti- tuberculosis Drugs: Mechanisms and Management. Jour- nal of Clinical and Experimental Hepatology 2013;3:37-49.
[117] van den Brande P, van Steenbergen W, Vervoort G, Demedts M. Aging and hepatotoxicity of isoniazid and rifampin in pulmo- nary tuberculosis. Am J Respir Crit Care Med 1995;152:1705-1708.
[118] Wu JC, Lee SD, Yeh PF, Chan CY, Wang YJ, Huang YS, et al. Isoniazid-rifampin-induced hepatitis in hepatitis B carriers. Gas- troenterology 1990;98:502-504.
[119] NicodL, Viollon C, RegnierA, Jacqueson A, RichertL. Rifampicin and isoniazid increase acetaminophen and isoniazid cytotoxicity in human HepG2 hepatoma cells. Hum Exp Toxicol 1997;16:28-34.
[120] Kumar A, Misra PK, Mehotra R, GovilYC, Rana GS. Hepatotoxi- city of rifampin and isoniazid. Is it all drug-induced hepatitis? Am Rev Respir Dis 1991;143:1350-1352.
[121] Smith J, Tyrell WF, Gow A, Allan GW, Lees AW. Hepatotoxicity in rifampin-isoniazid treated patients related to their rate of isonia- zid inactivation. Chest 1972;61:587-588.
[122] Lesobre R, Ruffino J, Teyssier L, Achard F, Brefort G. [Jaundice during treatment with rifampicin (12 cases)]. Rev Tuberc Pneumol (Paris) 1969;33:393-403.
[123] Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacte- ria and tuberculosis. Lancet Infect Dis 2017.
[124] Lesobre R, Ruffino J, Teyssier L, Drutel P, Brefort G. [Jaun- dice epidemiology in 1,974 hospitalized tubercular patients, tre- ated or untreated by rifampicin]. Rev Tuberc Pneumol (Paris) 1970;34:296-304.
[125] Metushi IG, Cai P, Zhu X, Nakagawa T, Uetrecht JP. A Fresh Look at the Mechanism of Isoniazid-Induced Hepato- toxicity. Clinical Pharmacology & Therapeutics 2011;89:911-914.
[126] Liu X, Zhao M, Mi J, Chen H, Sheng L, Li Y. Protective Effect of Bicyclol on Anti-Tuberculosis Drug Induced Liver Injury in Rats. Molecules 2017;22: e524.
[127] Valencia-Olvera AC, Moran J, Camacho-Carranza R, Prospero- Garcia O, Espinosa-Aguirre JJ. CYP2E1 induction leads to oxidative stress and cytotoxicity in glutathione-depleted ce- rebellar granule neurons. Toxicol In Vitro 2014;28:1206-1214.
[128] Chowdhury A, Santra A, Bhattacharjee K, Ghatak S, Saha DR, Dhali GK. Mitochondrial oxidative stress and permeability tran- sition in isoniazid and rifampicin induced liver injury in mice. J Hepatol 2006;45:117-126.
[129] Attri S, Rana SV, Vaiphei K, Sodhi CP, Katyal R, Goel RC, et al. Isoniazid- and rifampicin-induced oxidative hepatic injury– protection by N-acetylcysteine. HumExp Toxicol 2000;19:517-522.
[130] Liao Y, Peng SQ, Yan XZ, Zhang LS. [Metabonomics profile of urine from rats administrated with different treatment period of iso- niazid]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2007;29:730-737.
[131] Ito K, Yamamoto K, Kawanishi S. Manganese-mediated oxidative damage of cellular and isolated DNA by isoniazid and related hy- drazines: non-Fenton-type hydroxyl radical formation. Biochemi- stry 1992;31:11606-11613.
[132] Bhadauria S, Mishra R, Kanchan R, Tripathi C, Srivastava A, Ti- wari A, et al. Isoniazid-induced apoptosis in HepG2 cells: genera- tion of oxidative stress and Bcl-2 down-regulation. Toxicol Mech Methods 2010;20:242-251.
[133] Yue J, Peng RX, Yang J, Kong R, Liu J. CYP2E1 media- ted isoniazid-induced hepatotoxicity in rats. Acta Pharmacol Sin 2004;25:699-704.
[134] Elmorsy E, Attalla SM, Fikry E, Kocon A, Turner R, Chris- tie D, et al. Adverse effects of anti-tuberculosis drugs on HepG2 cell bioenergetics. Hum Exp Toxicol 2017;36:616-625.
[135] Lee KK, Fujimoto K, Zhang C, Schwall CT, Alder NN, Pinkert CA, et al. Isoniazid-induced cell death is precipi- tated by underlying mitochondrial complex I dysfunction in mouse hepatocytes. Free Radic Biol Med 2013;65:584- 594.
[136] Zhang T, Ikejima T, Li L, Wu R, Yuan X, Zhao J, et al. Impairment of Mitochondrial Biogenesis and Dynamics Invol- ved in Isoniazid-Induced Apoptosis of HepG2 Cells Was Al- leviated by p38 MAPK Pathway. Front Pharmacol 2017;8:753.
[137] Wu RH, Zeng YM, Chen XY. Intermittent hypoxia and isoniazid plus rifampicin affect hepatic ultrastructure in mice. Chin Med J (Engl) 2011;124:4034-4038.
[138] Schwab CE, Tuschl H. In vitro studies on the toxicity of iso- niazid in different cell lines. Hum Exp Toxicol 2003;22:607-615.
[139] Zhang TG, Ikejima T, Hayashi T, Zhao J, Wang YM, Peng SQ. AMPK activator acadesine fails to alleviate isoniazid-caused mito- chondrial instability in HepG2 cells. JAppl Toxicol 2017;37:1219- 1224.
[140] Verma AK, Yadav A, Singh SV, Mishra P, Rath SK. Isoniazid in- duces apoptosis: Role of oxidative stress and inhibition of nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2). Life Sci 2018;199:23-33.
[141] Yamasaki Y, Kobayashi K, InabaA, Uehara D, Tojima H, Kakizaki S, et al. Indirect activation of pregnane X receptor in the induction of hepatic CYP3A11 by high-doserifampicin in mice. Xenobiotica 2017:1-8.
[142] Huang JH, Zhang C, Zhang DG, Li L, Chen X, Xu DX. Rifampicin-induced hepatic lipid accumulation: association with up-regulation of peroxisome proliferator-activated re-ceptor gamma in mouse liver. PLoS One 2016;11:e0165787.
[143] Chen J, Raymond K. Roles of rifampicin in drug-drug interacti- ons: underlying molecular mechanisms involving the nuclear pregnane X receptor. Ann Clin Microbiol Antimicrob 2006;5:3.
[144] Nannelli A, Rossignolo F, Tolando R, Rossato P, Pellegatti M, Longo V, et al. Expression and distribution of CYP3A genes, CYP2B22, and MDR1, MRP1, MRP2, LRP efflux transporters in brain of control and rifampicin-treated pigs. Mol Cell Biochem 2010;337:133-143.
[145] O’Brien RJ, Long MW, Cross FS, Lyle MA, Snider DE, Jr. Hepa- totoxicity from isoniazid and rifampin among children treated for tuberculosis. Pediatrics 1983;72:491-499.
[146] Ozick LA, Jacob L, Comer GM, LeeTP, Ben-Zvi J, Donelson SS, et al. Hepatotoxicity from isoniazid and rifampin in inner-city AIDS patients. Am J Gastroenterol 1995;90:1978-1980.
[147] Pessayre D, Bentata M, Degott C, Nouel O, Miguet JP, Rueff B, et al. Isoniazid-rifampin fulminant hepatitis. A possible conse- quence of the enhancement of isoniazid hepatotoxicity by enzyme induction. Gastroenterology 1977;72:284-289.
[148] Erokhina MV, Kurynina AV, Onishchenko GE. Mitochondria are targets for the antituberculosis drug rifampicin in cul- tured epithelial cells. Biochemistry (Mosc) 2013;78:1155-1163.
[149] ItaiB,Idan S, Dorit S, Ann S. The Effect of Antiepileptic Drugs on Mitochondrial Activity: A Pilot Study. Journal of Child Neurology 2010;25:541-545.
[150] Falco-Walter JJ, Scheffer IE, Fisher RS. The new definition and classification of seizures and epilepsy. Epilepsy Res 2017;139:73- 79.
[151] Glauser T, Ben-Menachem E, Bourgeois B, Cnaan A, Chadwick D, GuerreiroC, et al. ILAE Treatment Guidelines: Evidence-based Analysis of Antiepileptic Drug Efficacy and Effectiveness as Ini- tial Monotherapy for Epileptic Seizures and Syndromes. Epilepsia 2006;47:1094-1120.
[152] Privitera M. Current challenges in the management of epilepsy. Am J Manag Care 2011;17 Suppl 7:S195-203.
[153] Bjornsson E, Kalaitzakis E, Olsson R. The impact of eosinophi- lia and hepatic necrosis on prognosis in patients with drug- induced liver injury. Aliment Pharmacol Ther 2007;25:1411-1421.
[154] Bjornsson E. Hepatotoxicity associated with antiepileptic drugs. Acta Neurol Scand 2008;118:281-290.
[155] Bjornsson ES. Epidemiology and risk factors for idiosyncra- tic drug-induced liver injury. Semin Liver Dis 2014;34:115-122.
[156] Finsterer J, Scorza FA. Effects of antiepileptic drugs on mito- chondrial functions, morphology, kinetics, biogenesis, and sur- vival. Epilepsy Research 2017;136:5-11.
[157] Boelsterli UA, Lim PL. Mitochondrial abnormalities–a link to idiosyncratic drug hepatotoxicity? Toxicol Appl Pharmacol 2007;220:92-107.
[158] Luis PB, Ruiter JP, Aires CC, Soveral G, de Almeida IT, Duran M, et al. Valproic acid metabolites inhibit dihydrolipoyl dehydro- genase activity leading to impaired 2-oxoglutarate-driven oxida- tive phosphorylation. Biochim Biophys Acta 2007;1767:1126-1133.
[159] Santos NA, Medina WS, Martins NM, Mingatto FE, Curti C, San- tos AC. Aromatic antiepileptic drugs and mitochondrial toxicity: effects on mitochondria isolated from rat liver. Toxicol In Vitro 2008;22:1143-1152.
[160] Tong V, Teng XW, Chang TK, Abbott FS. Valproic acid II: ef- fects on oxidative stress, mitochondrial membrane potential, and cytotoxicity in glutathione-depleted rat hepatocytes. Toxicol Sci 2005;86:436-443.
[161] Chalasani N, Bonkovsky HL, Fontana R, Lee W, Stolz A, Talwal- kar J, et al. Features and Outcomes of 899 Patients With Drug- Induced Liver Injury: The DILIN Prospective Study. Gastroente- rology 2015;148:1340-52 e7.
[162] Wallace SJ. A comparative review of the adverse effects of anti- convulsants in children with epilepsy. Drug Saf 1996;15:378-393.
[163] Jaeschke H, McGill MR, Ramachandran A. Oxidant stress, mito- chondria, and cell death mechanisms in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity. Drug Metab Rev 2012;44:88-106.
[164] McGill MR, Sharpe MR, Williams CD, Taha M, Curry SC, Jaes- chke H. The mechanism underlying acetaminophen-induced he- patotoxicity in humans and mice involves mitochondrial damage and nuclear DNA fragmentation. J Clin Invest 2012;122:1574-1583.
[165] Boland ML, Chourasia AH, Macleod KF. Mitochondrial dys- function in cancer. Front Oncol 2013;3:292.
[166] Hroudova J, Fisar Z. Activities of respiratory chain complexes and citrate synthase influenced by pharmacologically different antidepressants and mood stabilizers. Neuro Endocrinol Lett 2010;31:336-342.
[167] Komulainen T, Lodge T, Hinttala R, Bolszak M, Pietila M, Koi- vunen P, et al. Sodium valproate induces mitochondrial respiration dysfunction in HepG2 in vitro cell model. Toxicology 2015;331:47-56.
[168] Li S, Guo J, Ying Z, Chen S, Yang L, Chen K, et al. Valproic acid- induced hepatotoxicity in alpers syndrome is associated with mito- chondrial permeability transition pore opening-dependent apopto- tic sensitivity in an induced pluripotent stem cell model. Hepato- logy 2015;61:1730-1739.
[169] Natarajan SK, Eapen CE, Pullimood AB, Balasubramanian KA. Oxidative stress in experimental liver microvesicular steatosis: role of mitochondria and peroxisomes. J Gastroenterol Hepatol 2006;21:1240-1249.
[170] Santos NA, Medina WS, Martins NM, Rodrigues MA, Curti C, Santos AC. Involvement of oxidative stress in the hepatotoxi- city induced by aromatic antiepileptic drugs. Toxicol In Vitro 2008;22:1820-1824.
[171] Zhang C, Liu S, Yuan X, Hu Z, Li H, Wu M, et al. Valproic Acid Promotes Human Glioma U87 Cells Apoptosis and Inhibits Glyco- gen Synthase Kinase-3beta Through ERK/Akt Signaling. Cell Phy- siol Biochem 2016;39:2173-2185.[172] Heidari R, Jafari F, Khodaei F, Shirazi Yeganeh B, Niknahad H. Mechanism of valproic acid-induced Fansyndrome invol- ves mitochondrial dysfunction and oxidative stress in rat kidney. Nephrology (Carlton) 2018;23:351-361.
[173] Tein I, Xie ZW. Reversal of valproic acid-associated impairment of carnitine uptake in cultured human skin fibroblasts. Biochem Biop- hys Res Commun 1994;204:753-758.
[174] LaubMC, Paetzke-Brunner I, JaegerG. Serum carnitine during val- proic acid therapy. Epilepsia 1986;27:559-562.
[175] DeVivo DC. Effect of L-carnitine treatment for valproate-induced hepatotoxicity. Neurology 2002;58:507-508.
[176] Raskind JY, El-Chaar GM. The role of carnitine supplementation during valproic acid therapy. Ann Pharmacother
2000;34:630-638.
[177] Davis D, Farrington E. Role of carnitine supplementation in pediatric patients receiving valproic acid therapy. Pediatr Nurs 1992;18:264-265.
[178] Krosschell KJ, Kissel JT, Townsend EL, Simeone SD, Zhang RZ, Reyna SP, et al. Clinical trial of L-Carnitine and valproic acid in spinal muscular atrophy type I. Muscle Nerve 2018;57:193-199.
[179] Bohan TP, Helton E, McDonald I, Konig S, Gazitt S, Sugimoto T, et al. Effect of L-carnitine treatment for valproate-induced hepato- toxicity. Neurology 2001;56:1405-1409.
[180] Eghbal MA, Taziki S, Sattari MR. Mechanisms of Phenytoin- Induced Toxicity in Freshly Isolated Rat Hepatocytes and the Pro- tective Effects of Taurine and/or Melatonin. Journal of Biochemical and Molecular Toxicology 2014;28:111-118.
[181] Medina-Caliz I, Robles-Diaz M, Garcia-Munoz B, Stephens C, Ortega-Alonso A, Garcia-Cortes M, et al. Definition and risk fac- tors for chronicity following acute idiosyncratic drug-induced liver injury. J Hepatol 2016;65:532-542.
[182] Chalasani N, Bjornsson E. Risk factors for idiosyncratic drug- induced liver injury. Gastroenterology 2010;138:2246-2259.
[183] Camfield P, Camfield C, Dooley J, Farrell K, HumphreysP, Lange- vin P. Routine screening of blood and urine for severe reactions to anticonvulsant drugs in asymptomatic patients is of doubtful value. CMAJ: Canadian Medical Association Journal 1989;140:1303-1305.
[184] Buggey J, Kappus M, Lagoo AS, Brady CW. Amiodarone- Induced Liver Injury and Cirrhosis. ACG Case Rep J 2015;2:116- 118.
[185] Spaniol M, Bracher R, Ha HR, Follath F, Krahenbuhl S. Toxicity of amiodarone and amiodarone analogues on isolated rat liver mi- tochondria. J Hepatol 2001;35:628-636.
[186] Takai S, Oda S, Tsuneyama K, Fukami T, Nakajima M, Yokoi T. Establishment of a mouse model for amiodarone-induced liver in-jury and analyses of its hepatotoxic mechanism. J Appl Toxicol 2016;36:35-47.
[187] Serviddio G, Bellanti F, Giudetti AM, Gnoni GV, Capitanio N, Tamborra R, et al. Mitochondrial oxidative stress and respira- tory chain dysfunction account for liver toxicity during amioda- rone but not dronedarone administration. Free Radic Biol Med 2011;51:2234-2242.
[188] Waldhauser KM, Torok M, Ha HR, Thomet U, Konrad D, Brecht K, et al. Hepatocellular toxicity and pharmacological effect of amiodarone and amiodarone derivatives. J Pharmacol Exp Ther 2006;319:1413-1423.
[189] Card JW, Lalonde BR, Rafeiro E, Tam AS, Racz WJ, Brien JF, et al. Amiodarone-induced disruption of hamster lung and liver mi- tochondrial function: lack of association with thiobarbituric acid-reactive substance production. Toxicol Lett 1998;98:41-50.
[190] Berson A, De Beco V, Letteron P, Robin MA, Moreau C, El Kahwaji J, et al. Steatohepatitis-inducing drugs cause mitochon- drial dysfunction and lipid peroxidation in rat hepatocytes. Gas- troenterology 1998;114:764-774.
[191] FromentyB,FischC, LabbeG, Degott C, Deschamps D, Berson A, et al. Amiodarone inhibits the mitochondrial beta-oxidation of fatty acids and produces microvesicular steatosis of the liver in mice. J Pharmacol Exp Ther 1990;255:1371-1376.
[192] FromentyB, Fisch C, Berson A, Letteron P, Larrey D,Pessayre D. Dual effect of amiodarone on mitochondrial respiration. Initial pro- tonophoricuncoupling effect followed by inhibition oftherespira- tory chain at the levels of complex I and complex II. J Pharmacol Exp Ther 1990;255:1377-1384.
[193] Goncalves DF, de Carvalho NR, Leite MB, Courtes AA, Hartmann DD, Stefanello ST, et al. Caffeine and acetaminophen association: Effects on mitochondrial bioenergetics. Life Sci 2018;193:234-241.
[194] Sato C, Lieber CS. Mechanism of the preventive effect of etha- nol on acetaminophen-induced hepatoxicity. JPharmacolExp Ther 1981;218:811-815.
[195] Thummel KE, Slattery JT, Nelson SD. Mechanism by which etha- nol diminishes the hepatotoxicity of acetaminophen. J Pharmacol Exp Ther 1988;245:129-136.
[196] Zhao P, Kalhorn TF, Slattery JT. Selective mitochondrial glutathi- one depletion by ethanol enhances acetaminophen toxicity in rat liver. Hepatology 2002;36:326-335.
[197] Zhao P, Slattery JT. Effects of ethanol dose and ethanol withdra- wal on rat liver mitochondrial glutathione: implication of poten- tiated acetaminophen toxicity in alcoholics. Drug Metab Dispos 2002;30:1413-1417.
[198] Chan SL, Chua APG, Aminkeng F, Chee CBE, Jin S, Loh M, et al. Association and clinical utility of NAT2 in the prediction of isoniazid-induced liver injury in Singaporean patients. PLoS One 2017;12:e0186200.
[199] Sun Q, Liu HP, Zheng RJ, Wang P, Liu ZB, Sha W, et al. Genetic polymorphisms of SLCO1B1, CYP2E1 and UGT1A1 and suscep- tibility to anti-tuberculosis drug-induced hepatotoxicity: A Chi-nese population-based prospective case-control study. Clin Drug Investig 2017;37:1125-1136.
[200] Kazuno AA, Munakata K, Kato N, Kato T. Mitochondrial DNA- dependent effects of valproate on mitochondrial calcium le- vels in transmitochondrial cybrids. Int J Neuropsychopharmacol 2008;11:71-78.
[201] LucenaMI, Garcia-Martin E, AndradeRJ, Martinez C, Stephens C, Ruiz JD, et al. Mitochondrial superoxide dismutase and glutathione peroxidase in idiosyncratic drug-induced liver injury. Hepatology 2010;52:303-312.
[202] Ekor M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Phar- macol 2014;4:177.
[203] WHO. World Health Organization. WHO Traditional Medicines Strategy 2002-2005. Geneva, 2002.
[204] WHO. Guideline on good agricultural and collection practices (GACP) for medicinal plants. Geneva, 2003.
[205] Lindstrom A, Ooyen C, Lynch ME, Blumenthal M, Kawa K. Sales of herbal dietary supplements increase by 7.9% in 2013,marking a decade of rising sales. HerbalGram 2014;103:52-56.
[206] Stedman C. Herbal hepatotoxicity. Semin Liver Dis 2002;22:195- 206.
[207] Navarro VJ, Barnhart H, Bonkovsky HL, Davern T, Fontana RJ, Grant L, et al. Liver injury from herbals and dietary supple- ments in the U.S. Drug-Induced Liver Injury Network. Hepatology 2014;60:1399-1408.
[208] Rossi S, Navarro VJ. Herbs and liver injury: a clinical perspective. Clin Gastroenterol Hepatol 2014;12:1069- 1076.
[209] Timcheh-Hariri A, Balali-Mood M, Aryan E, Sadeghi M, Riahi- Zanjani B. Toxic hepatitis in a group of 20 male body-builders taking dietary supplements. Food Chem Toxicol 2012;50:3826-3832.
[210] Fong TL, Klontz KC, Canas-Coto A, Casper SJ, Durazo FA, Davern TJ, et al. Hepatotoxicity Due to Hydroxycut: A Case Series. Am J Gastroenterol 2010;105:1561-1566.
[211] Stournaras E, Tziomalos K. Herbal medicine-related hepato- toxicity. World J Hepatol 2015;7:2189-2193.
[212] Ji LL, Zhao XG, Chen L, Zhang M, Wang ZT. Pyrrolizidine al- kaloid clivorine inhibits human normal liver L-02 cells growth and activates p38 mitogen-activated protein kinase in L-02 cells. Toxicon 2002;40:1685-1690.
[213] Chou MW, Fu PP. Formation of DHP-derived DNA adducts in vivo from dietary supplements and Chinese herbal plant extracts contai- ning carcinogenic pyrrolizidine alkaloids. Toxicology and Indus- trial Health 2006;22:321-327.
[214] Roeder E. Medicinal plants in China containing pyrrolizidine alka- loids. Pharmazie 2000;55:711-726.
[215] Mattocks AR, Jukes R, Brown J. Simple Procedures for Prepa- ring Putative Toxic Metabolites of Pyrrolizidine Alkaloids. Toxicon 1989;27:561-567.
[216] Huan JY, Miranda CL, Buhler DR, Cheeke PR. Species diffe- rences in the hepatic microsomal enzyme metabolism of the pyr- rolizidine alkaloids. Toxicology Letters 1998;99:127-137.
[217] Lin G, Cui YY, Hawes EM. Microsomal formation of a pyrrolic al- cohol glutathione conjugate of clivorine firm evidence for the for- mation of a pyrrolic metabolite of an otonecine-type pyrrolizidine alkaloid. Drug Metabolism and Disposition 1998;26:181-184.
[218] Ji L, Chen Y, Liu T, Wang Z. Involvement of Bcl-xL degra- dation and mitochondrial-mediated apoptotic pathway in pyrroli- zidine alkaloids-induced apoptosis in hepatocytes. Toxicol Appl Pharmacol 2008;231:393-400.
[219] Ji LL, Liu TY, Chen Y, Wang ZT. Protective Mechanisms of N- Acetyl-Cysteine Against Pyrrolizidine Alkaloid Clivorine-Induced Hepatotoxicity. J Cell Biochem 2009;108:424-432.
[220] Ji LL, Liu TY, Wang ZT. Protection of Epidermal Growth Fac- tor Against Clivorine-Induced Mitochondrial-Mediated Apopto- sis in Hepatocytes. Environment Toxicol 2010;25:304-309.
[221] Kuhara K, Takanashi H, Hirono I, Furuya T, Asada Y. Carci- nogenic activity of clivorine, a pyrrolizidine alkaloid isolated from Ligularia-Dentata. Cancer Lett 1980;10:117-122.
[222] Li SL, Lin G, Fu PP, Chan CL, Li M, Jiang ZH, et al. Identifi- cation of five hepatotoxic pyrrolizidine alkaloids in a commonly used traditional Chinese medicinal herb, Herba Senecionis scan- dentis (Qianliguang). Rapid Communications in Mass Spectrome- try 2008;22:591-602.
[223] Wiedenfeld H, Montes C, Tawil B, Contin A, Wynsma R. Pyrroli- zidine alkaloid level in Senecio bicolor (Wilid.) Tod, ssp. cineraria (DC.) from middle Europe. Pharmazie 2006;61:559-561.
[224] Walsh RB, Dingwell RT. Beef herd poisoning due to ingestion of tansy ragwort in southwestern Ontario. Canadian Veterinary Journal-Revue Veterinaire Canadienne 2007;48:737-740.
[225] Delaveau P. La Germandree petit-chene (Wild germander). Actual Pharm 1986;238:34-39.
[226] Castot A, Larrey D. [Hepatitis observed during a treatment with a drug or tea containing Wild Germander. Evaluation of 26 cases reported to the Regional Centers of Pharmacovigilance]. Gastroen- terol Clin Biol 1992;16:916-922.
[227] Kouzi SA, McMurtry RJ, Nelson SD. Hepatotoxicity of germander (Teucrium chamaedrys L.) and one of its constituent neoclerodane diterpenes teucrin A in the mouse. Chem Res Toxicol 1994;7:850-856.
[228] Lekehal M, Pessayre D, Lereau JM, Moulis C, Fouraste I, Fau D. Hepatotoxicity of the herbal medicine germander: Metabolic acti- vation of its furano diterpenoids by cytochrome P450 3A deple- tes cytoskeleton-associated protein thiols and forms plasma mem- braneblebs in rathepatocytes. Hepatology 1996;24:212-218.
[229] FauD, Lekehal M, Farrell G, Moreau A, Moulis C, FeldmannG, et al. Diterpenoids from germander, an herbal medicine, induce apop- tosis in isolated rat hepatocytes. Gastroenterol 1997;113:1334-1346.