AccScience Publishing / JCTR / Volume 2 / Issue 1 / DOI: 10.18053/jctres.02.201601.003
REVIEW

Detection of misfolded protein aggregates from a clinical perspective

Øyvind Strømland§ , Martin Jakubec§ Samuel Furse1 Øyvind Halskau*
Show Less
1 Department of Molecular Biology, University of Bergen, Bergen, Norway
Submitted: 24 December 2015 | Revised: 22 March 2016 | Accepted: 22 March 2016 | Published: 22 March 2016
© 2016 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Neurodegenerative Protein Misfolding Diseases (PMDs), such as Alzheimer’s (AD), Parkinson’s (PD) and prion diseases, are generally difficult to diagnose before irreversible damage to the central nervous system damage has occurred. Detection of the misfolded proteins that ultimately lead to these conditions offers a means for providing early detection and diagnosis of this class of disease. In this review, we discuss recent developments surrounding protein misfolding diseases with emphasis on the cytotoxic oligomers implicated in their aetiology. We also discuss the relationship of misfolded proteins with biological membranes. Finally, we discuss how far techniques for providing early diagnoses for PMDs have advanced and describe promising clinical approaches. We conclude that antibodies with specificity towards oligomeric species of AD and PD and lectins with specificity for particular glycosylation, show promise. However, it is not clear which approach may yield a reliable clinical test first.
Relevance for patients: Individuals suffering from protein misfolding diseases will likely benefit form earlier, less- or even non-invasive diagnosis techniques. The current state and possible future directions for these are subject of this review.

Keywords
protein misfolding
Alzheimer's
Parkinson's
neurodegenerative disease
oligomer toxicity
membrane porosity
lipid
antibody
lectin
mass spectrometry
Conflict of interest
The authors declare they have no competing interests.
References

[1] Irwin DJ, Lee VMY, Trojanowski JQ. Parkinson's disease dementia: Convergence of [alpha]-synuclein, tau and amyloid-[beta] pathologies. Nat Rev Neurosci 2013; 14: 626-636.

[2] Petrou M, Dwamena BA, Foerster BR, MacEachern MP,  Bohnen NI, Müller MLTM, Albin RL, Frey KA. Amyloid  deposition in parkinson's disease and cognitive impairment: A  systematic review. Mov Disord 2015; 30: 928-935.

[3] Karran E, Mercken M, Strooper BD. The amyloid cascade  hypothesis for alzheimer's disease: An appraisal for the development of therapeutics. Nat Rev Drug Discov 2011; 10:  698-712.

[4] Varadarajan S, Yatin S, Aksenova M, Butterfield DA. Review:  Alzheimer's amyloid β-peptide-associated free radical oxidative stress and neurotoxicity. J Struct Biol 2000; 130: 184-208.

[5] Trevitt CR, Collinge J. A systematic review of prion therapeutics in experimental models. Brain 2006; 129: 2241-2265.

[6] Prusiner SB. Prions. Proc Natl Acad Sci U S A 1998; 95:  13363- 13383.

[7] Morozova OA, Gupta S, Colby DW. Prefibrillar huntingtin  oligomers isolated from hd brain potently seed amyloid formation. FEBS Letters 2015; 589: 1897-1903.

[8] Owens GE, New DM, West AP, Jr., Bjorkman PJ. Anti-polyq  antibodies recognize a short polyq stretch in both normal and  mutant huntingtin exon 1. J Mol Biol 2015; 427: 2507-2519.

[9] Pieri L, Madiona K, Bousset L, Melki R. Fibrillar alphasynuclein and huntingtin exon 1 assemblies are toxic to the  cells. Biophys J 2012; 102: 2894-2905.

[10] Kayed R, Sokolov Y, Edmonds B, McIntire TM, Milton SC,  Hall JE, Glabe CG. Permeabilization of lipid bilayers is acommon conformation-dependent activity of soluble amyloid  oligomers in protein misfolding diseases. J Biol Chem 2004;  279: 46363-46366.

[11] Selkoe DJ. Alzheimer's disease: Genes, proteins, and therapy.  Physiol Rev 2001; 81: 741-766.

[12] Bros P, Vialaret J, Barthelemy N, Delatour V, Gabelle A, Lehmann S, Hirtz C. Antibody-free quantification of seven tau  peptides in human csf using targeted mass spectrometry. Front  Neurosci 2015; 9: 302.

[13] Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A,  Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES,  Chandrasekharappa S, Athanassiadou A, Papapetropoulos T,  Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe  LI, Nussbaum RL. Mutation in the α -synuclein gene  indentified in families with parkinson's disease. Science 1997;  276: 2045-2047.

[14] Spillantini MG, Schmidt ML, Lee VMY, Trojanowski JQ,  Jakes R, Goedert M. α-synuclein in lewy bodies. Nature 1997;  388: 839-840.

[15] Magaki S, Gardner T, Khanlou N, Yong WH, Salmon N,  Vinters HV. Brain biopsy in neurologic decline of unknown  etiology. Hum Pathol 2015; 46: 499-506.

[16] Haass C, Steiner H. Protofibrils, the unifying toxic molecule  of neurodegenerative disorders? Nat Neurosci 2001; 4:  859-860.

[17] Hartmann A, Troadec J-D, Hunot S, Kikly K, Faucheux BA,  Mouatt-Prigent A, Ruberg M, Agid Y, Hirsch EC. Caspase-8 is  an effector in apoptotic death of dopaminergic neurons in  parkinson's disease, but pathway inhibition results in neuronal  necrosis. J Neurosci 2001; 21: 2247-2255.

[18] Teng L, Zhao J, Wang F, Ma L, Pei G. A gpcr/secretase complex regulates β- and γ-secretase specificity for aβ production  and contributes to ad pathogenesis. Cell Res 2010; 20:  138-153.

[19] Guardia-Laguarta C, Pera M, Lleo A. γ -secretase as a  therapeutic target in alzheimers disease. Curr Drug Targets  2010; 11: 506-517.

[20] Taylor DM. Inactivation of transmissible degenerative encephalopathy agents: A review. Vet J 2000; 159: 10-17.

[21] Uversky VN, Oldfield CJ, Dunker AK. Intrinsically disordered  proteins in human diseases: Introducing the d2 concept. Annu  Rev Biophys 2008; 37: 215-246.

[22] Chiti F, Dobson CM. Protein misfolding, functional amyloid,  and human disease. Annu Rev Biochem 2006; 75: 333-366.

[23] Gregersen N, Bross P, Vang S, Christensen JH. Protein misfolding and human disease. Annual Review of Genomics and  Human Genetics 2006; 7: 103-124.

[24] Naganathan AN, Muñoz V. Scaling of folding times with protein size. J Am Chem Soc 2005; 127: 480-481.

[25] Juraszek J, Bolhuis PG. Rate constant and reaction coordinate  of trp-cage folding in explicit water. Biophys J 2008; 95:  4246-4257.

[26] Leal SS, Botelho HM, Gomes CM. Metal ions as modulators  of protein conformation and misfolding in neurodegeneration.  Coord Chem Rev 2012; 256: 2253-2270.

[27] Braselmann E, Chaney JL, Clark PL. Folding the proteome.  Trends Biochem Sci 2013; 38: 337-344.

[28] Yon JM. Protein folding in the post-genomic era. J Cell Mol  Med 2002; 6: 307-327.

[29] Gu Y, Singh A, Bose S, Singh N. Pathogenic mutations in the  glycosylphosphatidylinositol signal peptide of prp modulate its  topology in neuroblastoma cells. Molecular and Cellular Neuroscience 2008; 37: 647-656.

[30] Ashok A, Hegde RS. Retrotranslocation of prion proteins from  the er by preventing gpi signal sequence transamidation. Mol  Biol Cell 2008

[31] Stelmashook EV, Isaev NK, Genrikhs EE, Amelkina GA,  Khaspekov LG, Skrebitsky VG, Illarioshkin SN. Role of zinc  and copper ions in the pathogenetic mechanisms of alzheimer’s and parkinson’s diseases. Biochemistry (Moscow)  2014; 79: 391-396.

[32] Nedumpully-Govindan P, Yang Y, Andorfer R, Cao W, Ding F.  Promotion or inhibition of islet amyloid polypeptide aggregation by zinc coordination depends on its relative concentration.  Biochemistry 2015; 54: 7335-7344.

[33] Verasdonck J, Bousset L, Gath J, Melki R, Bockmann A, Meier BH. Further exploration of the conformational space of alpha-synuclein fibrils: Solid-state nmr assignment of a high-ph  polymorph. Biomol NMR Assign 2016; 10: 5-12.

[34] Schmidt M, Sachse C, Richter W, Xu C, Fändrich M,  Grigorieff N. Comparison of alzheimer aβ(1–40) and aβ(1–42)  amyloid fibrils reveals similar protofilament structures. Proc  Natl Acad Sci 2009; 106: 19813-19818.

[35] Celej MS, Caarls W, Demchenko AP, Jovin TM. A tripleemission fluorescent probe reveals distinctive amyloid fibrillar  polymorphism of wild-type alpha-synuclein and its familial  parkinson's disease mutants. Biochemistry 2009; 48: 7465-7472.

[36] Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L,  Zurdo J, Taddei N, Ramponi G, Dobson CM, Stefani M. Inherent toxicity of aggregates implies a common mechanism  for protein misfolding diseases. Nature 2002; 416: 507-511.

[37] Diociaiuti M, Gaudiano MC, Malchiodi-Albedi F. The slowly  aggregating salmon calcitonin: A useful tool for the study of  the amyloid oligomers structure and activity. Int J Mol Sci 2011; 12: 9277.

[38] Lashuel HA, Petre BM, Wall J, Simon M, Nowak RJ, Walz T,  Lansbury Jr PT. α-synuclein, especially the parkinson's disease-associated mutants, forms pore-like annular and tubular  protofibrils. J Mol Biol 2002; 322: 1089- 1102.

[39] Sokolowski F, Modler AJ, Masuch R, Zirwer D, Baier M,  Lutsch G, Moss DA, Gast K, Naumann D. Formation of critical oligomers is a key event during conformational transition  of recombinant syrian hamster prion protein. J Biol Chem 2003; 278: 40481-40492.

[40] Zakharov VV, Mosevitsky MI. Oligomeric structure of brain  abundant proteins gap-43 and basp1. J Struct Biol 2010; 170:  470-483.

[41] Luth ES, Stavrovskaya IG, Bartels T, Kristal BS, Selkoe DJ.  Soluble, prefibrillar alpha-synuclein oligomers promote complex i-dependent, ca2+-induced mitochondrial dysfunction. J  Biol Chem 2014; 289: 21490-21507.

[42] Walsh P, Vanderlee G, Yau J, Campeau J, Sim VL, Yip CM,  Sharpe S. The mechanism of membrane disruption by cytotoxic amyloid oligomers formed by prp(106-126) is dependent  on bilayer composition. J Biol Chem 2014

[43] Kayed R, Pensalfini A, Margol L, Sokolov Y, Sarsoza F, Head  E, Hall J, Glabe C. Annular protofibrils are a structurally and  functionally distinct type of amyloid oligomer. J Biol Chem 2009; 284: 4230-4237.

[44] Ding TT, Lee S-J, Rochet J-C, Lansbury PT. Annular  α-synuclein protofibrils are produced when spherical protofibrils are incubated in solution or bound to brain-derived membranes†. Biochemistry 2002; 41: 10209-10217.

[45] Stöckl M, Fischer P, Wanker E, Herrmann A. α-synuclein selectively binds to anionic phospholipids embedded in liquid-disordered domains. J Mol Biol 2008; 375: 1394-1404.

[46] van Rooijen BD, Claessens MMAE, Subramaniam V. Lipid  bilayer disruption by oligomeric α-synuclein depends on bilayer charge and accessibility of the hydrophobic core.  BBA-Biomembranes 2009; 1788: 1271-1278.

[47] Halskau O, Muga A, Martinez A. Linking new paradigms in  protein chemistry to reversible membrane-protein interactions.  Curr Protein Pept Sci 2009; 10: 339-359.

[48] Amtul Z, Uhrig M, Supino R, Beyreuther K. Phospholipids  and a phospholipid-rich diet alter the in vitro amyloid-beta  peptide levels and amyloid-beta 42/40 ratios. Neurosci Lett  2010; 481: 73-77.

[49] Gellermann GP, Appel TR, Tannert A, Radestock A,  Hortschansky P, Schroeckh V, Leisner C, Lutkepohl T,  Shtrasburg S, Rocken C, Pras M, Linke RP, Diekmann S,  Fandrich M. Raft lipids as common components of human extracellular amyloid fibrils. Proc Natl Acad Sci U S A 2005;  102: 6297- 6302.

[50] Benilova I, Karran E, De Strooper B. The toxic aβ oligomer  and alzheimer's disease: An emperor in need of clothes. Nat  Neurosci 2012; 15: 349-357.

[51] Saponetti MS, Grimaldi M, Scrima M, Albonetti C, Nori SL,  Cucolo A, Bobba F, D'Ursi AM. Aggregation of a β(25-35) on  dopc and dopc/dha bilayers: An atomic force microscopy study.  Plos One 2014; 9

[52] Kourie JI, Shorthouse AA. Properties of cytotoxic peptide-formed ion channels. Am J Physiol - Cell Physiol 2000;  278: C1063-C1087.

[53] Ehrnhoefer DE, Bieschke J, Boeddrich A, Herbst M, Masino L,  Lurz R, Engemann S, Pastore A, Wanker EE. Egcg redirects  amyloidogenic polypeptides into unstructured, off-pathwayoligomers. Nat Struct Mol Biol 2008; 15: 558-566.

[54] Harroun TA, Bradshaw JP, Ashley RH. Inhibitors can arrest  the membrane activity of human islet amyloid polypeptide independently of amyloid formation. FEBS Letters 2001; 507:  200-204.

[55] Brender JR, Heyl DL, Samisetti S, Kotler SA, Osborne JM,  Pesaru RR, Ramamoorthy A. Membrane disordering is not  sufficient for membrane permeabilization by islet amyloid  polypeptide: Studies of iapp(20-29) fragments. Phys Chem  Chem Phys 2013; 15: 8908-8915.

[56] Sciacca Michele FM, Milardi D, Messina Grazia ML, Marletta  G, Brender Jeffrey R, Ramamoorthy A, La Rosa C. Cations as  switches of amyloid-mediated membrane disruption mechanisms: Calcium and iapp. Biophys J 2013; 104: 173-184.

[57] Sciacca MFM, Brender JR, Lee D-K, Ramamoorthy A. Phosphatidylethanolamine enhances amyloid fiber-dependent membrane fragmentation. Biochemistry 2012; 51: 7676-7684.

[58] Hirakura Y, Azimov R, Azimova R, Kagan BL. Polyglutamine-induced ion channels: A possible mechanism for the  neurotoxicity of huntington and other cag repeat diseases. J  Neuro Sci 2000; 60: 490-494.

[59] Kagan BL, Jang H, Capone R, Teran Arce F, Ramachandran S,  Lal R, Nussinov R. Antimicrobial properties of amyloid peptides. Mol Pharm 2012; 9: 708-717.

[60] Lin M-C, Mirzabekov T, Kagan BL. Channel formation by a  neurotoxic prion protein fragment. J Biol Chem 1997; 272:  44-47.

[61] Lin H, Bhatia R, Lal R. Amyloid β protein forms ion channels:  Implications for alzheimer’s disease pathophysiology. FASEB  J 2001; 15: 2433-2444.

[62] Hirakura Y, Kagan BL. Pore formation by beta-2-microglobulin: A mechanism for the pathogenesis of dialysis associated amyloidosis. Amyloid 2001; 8: 94-100.

[63] Hirakura Y, Carreras I, Sipe JD, Kagan BL. Channel formation  by serum amyloid a: A potential mechanism for amyloid  pathogenesis and host defense. Amyloid 2002; 9: 13-23.

[64] Demuro A, Mina E, Kayed R, Milton SC, Parker I, Glabe CG.  Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J  Biol Chem 2005; 280: 17294-17300.

[65] Dante S, Hauss T, Brandt A, Dencher NA. Membrane fusogenic activity of the alzheimer's peptide aβ(1-42) demonstrated by small-angle neutron scattering. J Mol Biol 2008; 376:  393-404.

[66] Sokolov Y, Kozak JA, Kayed R, Chanturiya A, Glabe C, Hall  JE. Soluble amyloid oligomers increase bilayer conductance  by altering dielectric structure.J Gen Physiol 2006; 128:  637-647.

[67] Simons K, Ikonen E. Functional rafts in cell membranes. Nature 1997; 387: 569.

[68] Sevcsik E, Brameshuber M, Folser M, Weghuber J,  Honigmann A, Schutz GJ. Gpi-anchored proteins do not residein ordered domains in the live cell plasma membrane. Nat  Commun 2015; 6

[69] Valdes-Gonzalez T, Inagawa J, Ido T. Neuropeptides interact  with glycolipid receptors a surface plasmon resonance study.  Peptides 2001; 22: 1099-1106.

[70] Mahfoud R, Garmy N, Maresca M, Yahi N, Puigserver A, Fantini J. Identification of a common sphingolipid-binding domain in alzheimer, prion, and hiv-1 proteins. J Biol Chem 2002; 277: 11292-11296.

[71] Hebbar S, Lee E, Manna M, Steinert S, Kumar GS, Wenk M,  Wohland T, Kraut R. A fluorescent sphingolipid binding domain peptide probe interacts with sphingolipids and cholesterol-dependent raft domains.J Lip Res 2008; 49: 1077-1089.

[72] Yanagisawa K, Odaka A, Suzuki N, Ihara Y. Gm1 ganglioside-bound amyloid β-protein (aβ): A possible form of  preamyloid in alzheimer's disease. Nat Med 1995; 1: 1062- 1066.

[73] Martinez Z, Zhu M, Han S, Fink AL. Gm1 specifically interacts with α-synuclein and inhibits fibrillation†. Biochemistry  2007; 46: 1868-1877.

[74] Di Pasquale E, Fantini J, Chahinian H, Maresca M, Taïeb N,  Yahi N. Altered ion channel formation by the parkinson's-disease-linked e46k mutant of α-synuclein is corrected by gm3  but not by gm1 gangliosides. J Mol Biol 2010; 397: 202-218.

[75] Mattei V, Garofalo T, Misasi R, Circella A, Manganelli V, Lucania G, Pavan A, Sorice M. Prion protein is a component of  the multimolecular signaling complex involved in t cell activation. FEBS Letters 2004; 560: 14-18.

[76] Sanghera N, Pinheiro TJT. Binding of prion protein to lipid  membranes and implications for prion conversion1. J Mol Biol 2002; 315: 1241-1256.

[77] Jo E, McLaurin J, Yip CM, St. George-Hyslop P, Fraser PE.  α-synuclein membrane interactions and lipid specificity. J Biol  Chem 2000; 275: 34328-34334.

[78] Ramakrishnan M, Jensen PH, Marsh D. α-synuclein association with phosphatidylglycerol probed by lipid spin labels†.  Biochemistry 2003; 42: 12919-12926.

[79] Kubo S-i, Nemani VM, Chalkley RJ, Anthony MD, Hattori N,  Mizuno Y, Edwards RH, Fortin DL. A combinatorial code for  the interaction of α-synuclein with membranes. J Biol Chem 2005; 280: 31664-31672.

[80] Pandit SA, Bostick D, Berkowitz ML. Complexation of phosphatidylcholine lipids with cholesterol. Biophys J 2004; 86:  1345-1356.

[81] Barenholz Y. Sphingomyelin and cholesterol: From membrane  biophysics and rafts to potential medical applications; in  Quinn P (ed): Membrane dynamics and domains, Springer US,  2004, vol 37, pp 167-215.

[82] Veiga MP, Arrondo JLR, Goñi FM, Alonso A, Marsh D. Interaction of cholesterol with sphingomyelin in mixed membranes  containing phosphatidylcholine, studied by spin-label esr and  ir spectroscopies. A possible stabilization of gel-phase sphingolipid domains by cholesterol†. Biochemistry 2001; 40:  2614-2622.

[83] Van Echteld CJA, De Kruijff B, Mandersloot JG, De Gier J.  Effects of lysophosphatidylcholines on phosphatidylcholine  and phosphatidylcholine/cholesterol liposome systems as revealed by 31p-nmr, electron microscopy and permeability  studies. BBA-Biomembranes 1981; 649: 211-220.

[84] Urbina JA, Pekerar S, Le H-b, Patterson J, Montez B, Oldfield  E. Molecular order and dynamics of phosphatidylcholine bilayer membranes in the presence of cholesterol, ergosterol and  lanosterol: A comparative study using 2h-, 13c- and 31p-nmr  spectroscopy. BBA-Biomembranes 1995; 1238: 163-176.

[85] Snyder B, Freire E. Compositional domain structure in phosphatidylcholine-cholesterol and sphingomyelin-cholesterol bilayers. Proc Natl Acad Sci U S A 1980; 77: 4055-4059.

[86] Nyberg L, Duan R-D, Nilsson Å. A mutual inhibitory effect on  absorption of sphingomyelin and cholesterol. J Nutr Biochem 2000; 11: 244-249.

[87] McIntosh TJ, Magid AD, Simon SA. Cholesterol modifies the  short-range repulsive interactions between phosphatidylcholine membranes. Biochemistry 1989; 28: 17-25.

[88] Li X-M, Ramakrishnan M, Brockman HL, Brown RE, Swamy  MJ. N-myristoylated phosphatidylethanolamine: Interfacial  behavior and interaction with cholesterol. Langmuir 2002; 18:  231-238.

[89] Fantini J, Yahi N. Molecular insights into amyloid regulation  by membrane cholesterol and sphingolipids: Common mechanisms in neurodegenerative diseases. Expert Rev Mol Med 2010; 12: e27.

[90] Harris JR. In vitro fibrillogenesis of the amyloid   1-42 peptide: Cholesterol potentiation and aspirin inhibition.  Micron 2002; 33: 609-626.

[91] Arispe N, Doh M. Plasma membrane cholesterol controls the  cytotoxicity of alzheimer’s disease aβp (1–40) and (1–42) peptides. FASEB J 2002; 16: 1526-1536.

[92] Yip CM, Elton EA, Darabie AA, Morrison MR, McLaurin J.  Cholesterol, a modulator of membrane-associated aβ-fibrillogenesis and neurotoxicity1. J Mol Biol 2001; 311: 723-734.

[93] Hartmann T, Kuchenbecker J, Grimm MOW. Alzheimer’s disease: The lipid connection. J Neurochem 2007; 103: 159-170.

[94] Cole SL, Grudzien A, Manhart IO, Kelly BL, Oakley H, Vassar R. Statins cause intracellular accumulation of amyloid  precursor protein, beta-secretase-cleaved fragments, and amyloid beta-peptide via an isoprenoid-dependent mechanism. J  Biol Chem 2005; 280: 18755-18770.

[95] Bar-On P, Rockenstein E, Adame A, Ho G, Hashimoto M,  Masliah E. Effects of the cholesterol-lowering compound methyl-β-cyclodextrin in models of α-synucleinopathy. J Neurochem 2006; 98: 1032-1045.

[96] Bosco DA, Fowler DM, Zhang Q, Nieva J, Powers ET, Wentworth P, Lerner RA, Kelly JW. Elevated levels of oxidized  cholesterol metabolites in lewy body disease brains accelerateα-synuclein fibrilization. Nat Chem Biol 2006; 2: 249- 253.

[97] Chang S, Bray SM, Li Z, Zarnescu DC, He C, Jin P, Warren  ST. Identification of small molecules rescuing fragile x syndrome phenotypes in drosophila. Nat Chem Biol 2008; 4:  256-263.

[98] Hashimoto M, Katakura M, Hossain S, Rahman A, Shimada T,  Shido O. Docosahexaenoic acid withstands the abeta(25-35)- induced neurotoxicity in sh-sy5y cells. J Nutr Biochem 2011;  22: 22-29.

[99] Hashimoto M, Shahdat HM, Yamashita S, Katakura M, Tanabe  Y, Fujiwara H, Gamoh S, Miyazawa T, Arai H, Shimada T,  Shido O. Docosahexaenoic acid disrupts in vitro amyloid beta(1-40) fibrillation and concomitantly inhibits amyloid levels  in cerebral cortex of alzheimer's disease model rats. J Neurochem 2008; 107: 1634-1646.

[100] Cole GM, Frautschy SA. Docosahexaenoic acid protects from  amyloid and dendritic pathology in an alzheimer's disease  mouse model. Nutr Health 2006; 18: 249-259.

[101] Rescigno T, Capasso A, Tecce MF. Effect of docosahexaenoic  acid on cell cycle pathways in breast cell lines with different  transformation degree. J Cell Physiol 2016; 231: 1226-1236.

[102] Kotarek JA, Moss MA. Impact of phospholipid bilayer saturation on amyloid-beta protein aggregation intermediate growth:  A quartz crystal microbalance analysis. Anal Biochem 2010;  399: 30-38.

[103] Viola KL, Klein WL. Amyloid beta oligomers in alzheimer's  disease pathogenesis, treatment, and diagnosis. Acta Neuropathol 2015; 129: 183-206.

[104] Levine H. Thioflavine-t interaction with synthetic alzheimers-disease beta-amyloid peptides - detection of amyloid  aggregation in solution. Prot Sci 1993; 2: 404-410.

[105] Miller DL, Potempska A, Wegiel J, Mehta PD. High-affinity  rabbit monoclonal antibodies specific for amyloid peptides  amyloid-beta(40) and amyloid-beta(42). J Alzheimers Dis 2011; 23: 293-305.

[106] Johansson LBG, Simon R, Bergstrom G, Eriksson M, Prokop  S, Mandenius C-F, Heppner FL, Aslund AKO, Nilsson KPR.  An azide functionalized oligothiophene ligand - a versatile  tool for multimodal detection of disease associated protein aggregates. Biosens Bioelectron 2015; 63: 204-211.

[107] Nystrom S, Psonka-Antonczyk KM, Ellingsen PG, Johansson  LBG, Reitan N, Handrick S, Prokop S, Heppner FL, Wegenast-Braun BM, Jucker M, Lindgren M, Stokke BT, Hammarstrom P, Nilsson KPR. Evidence for age-dependent in vivo  conformational rearrangement within a beta amyloid deposits.  ACS Chem Biol 2013; 8: 1128-1133.

[108] Klingstedt T, Nilsson KPR. Conjugated polymers for enhanced  bioimaging. BBA-General Subjects 2011; 1810: 286-296.

[109] Nyström S, Psonka-Antonczyk KM, Ellingsen PG, Johansson  LBG, Reitan N, Handrick S, Prokop S, Heppner FL, Wegenast-Braun BM, Jucker M, Lindgren M, Stokke BT, Hammarström P, Nilsson KPR. Evidence for age-dependent in vivoconformational rearrangement within a β amyloid deposits.  ACS Chem Biol 2013; 8: 1128-1133.

[110] Klingstedt T, Shirani H, Åslund KOA, Cairns NJ, Sigurdson  CJ, Goedert M, Nilsson KPR. The structural basis for optimal  performance of oligothiophene-based fluorescent amyloid ligands: Conformational flexibility is essential for spectral assignment of a diversity of protein aggregates. Chem-Euro J 2013; 19: 10179-10192.

[111] Ren W, Xu M, Liang SH, Xiang H, Tang L, Zhang M, Ding D,  Li X, Zhang H, Hu Y. Discovery of a novel fluorescent probe  for the sensitive detection of beta-amyloid deposits. Biosens  Bioelectron 2016; 75: 136-141.

[112] Lehallier B, Essioux L, Gayan J, et al. Combined plasma and  cerebrospinal fluid signature for the prediction of midterm  progression from mild cognitive impairment to alzheimer disease. JAMA Neurol 2015: 1-10.

[113] David MA, Tayebi M. Detection of protein aggregates in brain  and cerebrospinal fluid derived from multiple sclerosis patients. Front Neuro 2014; 5: 251.

[114] Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson  NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA,  Regan CM, Walsh DM, Sabatini BL, Selkoe DJ. Amyloid-beta  protein dimers isolated directly from alzheimer's brains impair  synaptic plasticity and memory. Nature Med 2008; 14:  837-842.

[115] Rama EC, Gonzalez-Garcia MB, Costa-Garcia A. Competitive  electrochemical immunosensor for amyloid-beta 1-42 detection based on gold nanostructurated screen-printed carbon  electrodes. Sens Actuators B-Chem 2014; 201: 567- 571.

[116] Yu YY, Zhang L, Li CL, Sun XY, Tang DQ, Shi GY. A method  for evaluating the level of soluble beta-amyloid((1-40/1-42))  in alzheimer's disease based on the binding of gelsolin to beta-amyloid peptides. Angew Chem Int Ed 2014; 53:  12832-12835.

[117] Chen S, Svedendahl M, Antosiewicz TJ, Käll M. Plasmon-enhanced enzyme-linked immunosorbent assay on large  arrays of individual particles made by electron beam lithography. ACS Nano 2013; 7: 8824-8832.

[118] Schmidt ME, Chiao P, Klein G, Matthews D, Thurfjell L, Cole  PE, Margolin R, Landau S, Foster NL, Mason NS, De Santi S,  Suhy J, Koeppe RA, Jagust W, Alzheimer's Dis N. The influence of biological and technical factors on quantitative analysis of amyloid pet: Points to consider and recommendations  for controlling variability in longitudinal data. Alzheimers Dem 2015; 11: 1050-1068.

[119] Molinuevo JL, Ripolles P, Simo M, Llado A, Olives J, Balasa  M, Antonell A, Rodriguez-Fornells A, Rami L. White matter  changes in preclinical alzheimer's disease: A magnetic resonance imaging-diffusion tensor imaging study on cognitively  normal older people with positive amyloid beta protein 42 levels. Neurobiol Aging 2014; 35: 2671-2680.

[120] Kantarci K, Schwarz CG, Reid RI, Przybelski SA, Lesnick TG,Zuk SM, Senjem ML, Gunter JL, Lowe V, Machulda MM,  Knopman DS, Petersen RC, Jack CR. White matter integrity  determined with diffusion tensor imaging in older adults  without dementia influence of amyloid load and neurodegeneration. Jama Neurol 2014; 71: 1547-1554.

[121] Soares JM, Marques P, Alves V, Sousa N. A hitchhiker's guide  to diffusion tensor imaging. Front Neurosci 2013; 7

[122] Cheng KK, Chan PS, Fan S, Kwan SM, Yeung KL, Wang  Y-XJ, Chow AHL, Wu EX, Baum L. Curcumin-conjugated  magnetic nanoparticles for detecting amyloid plaques in alzheimer's disease mice using magnetic resonance imaging (mri).  Biomaterials 2015; 44: 155-172.

[123] Kim JH, Ha TL, Im GH, Yang J, Seo SW, Lee IS, Lee JH.  Magnetic resonance imaging of amyloid plaques using hollow  manganese oxide nanoparticles conjugated with antibody a  beta 1-40 in a transgenic mouse model. Neuroreport 2013; 24:  16-21.

[124] Erba EB. Investigating macromolecular complexes using  top-down mass spectrometry. Proteomics 2014; 14:  1259-1270.

[125] Shoemaker GK, van Duijn E, Crawford SE, Uetrecht C, Baclayon M, Roos WH, Wuite GJL, Estes MK, Prasad BVV, Heck  AJR. Norwalk virus assembly and stability monitored by mass  spectrometry. Mol Cell Proteomics 2010; 9: 1742- 1751.

[126] Zomosa-Signoret V, Mayoral M, Limon D, Espinosa B, Calvillo M, Zenteno E, Martinez V, Guevara J. Sialylated and  o-glycosidically linked glycans in prion protein deposits in a  case of gerstmann-straussler-scheinker disease. Neuropathol 2011; 31: 162-169.

[127] Lambert MP, Velasco PT, Chang L, Viola KL, Fernandez S,  Lacor PN, Khuon D, Gong Y, Bigio EH, Shaw P, De Felice FG,  Krafft GA, Klein WL. Monoclonal antibodies that target  pathological assemblies of abeta. J Neurochem 2007; 100:  23-35.

[128] Burns A, Iliffe S. Alzheimer's disease. BMJ 2009; 338: b158. [129] Wenk GL. Neuropathologic changes in alzheimer's disease. J  Clin Psychiatry 2003; 64 Suppl 9: 7-10.

[130] Revesz T, Holton JL, Lashley T, Plant G, Frangione B,  Rostagno A, Ghiso J. Genetics and molecular pathogenesis of  sporadic and hereditary cerebral amyloid angiopathies. Acta  Neuropathol 2009; 118: 115-130.

[131] Kalia LV, Lang AE. Parkinson's disease. Lancet 2015; 386:  896-912.

[132] Lei P, Ayton S, Finkelstein DI, Adlard PA, Masters CL, Bush  AI. Tau protein: Relevance to parkinson's disease. Int J Biochem Cell Biol 2010; 42: 1775-1778.

[133] Bang J, Spina S, Miller BL. Frontotemporal dementia. Lancet  2015; 386: 1672-1682.

[134] van der Zee J, Van Broeckhoven C. Dementia in 2013: Frontotemporal lobar degeneration-building on breakthroughs. Nat  Rev Neurol 2014; 10: 70-72.

[135] Dayalu P, Albin RL. Huntington disease: Pathogenesis and] Garringer HJ, Murrell J, D'Adamio L, Ghetti B, Vidal R.  Modeling familial british and danish dementia. Brain Struct  Funct 2010; 214: 235-244.

[137] Rostagno A, Tomidokoro Y, Lashley T, Ng D, Plant G, Holton  J, Frangione B, Revesz T, Ghiso J. Chromosome 13 dementias.  Cell Mol Life Sci 2005; 62: 1814-1825.

[138] Herve D, Chabriat H. Cadasil. J Geriatr Psychiatry Neurol  2010; 23: 269-276.

[139] Viswanathan A, Gschwendtner A, Guichard JP, Buffon F, Cumurciuc R, O'Sullivan M, Holtmannspotter M, Pachai C,  Bousser MG, Dichgans M, Chabriat H. Lacunar lesions are  independently associated with disability and cognitive impairment in cadasil. Neurology 2007; 69: 172-179.

[140] Quinlan RA, Brenner M, Goldman JE, Messing A. Gfap and  its role in alexander disease. Exp Cell Res 2007; 313: 2077- 2087.

[141] Yoshida T, Nakagawa M. Clinical aspects and pathology of  alexander disease, and morphological and functional alteration  of astrocytes induced by gfap mutation. Neuropathol 2012; 32:  440-446.

[142] Miranda E, Lomas DA. Neuroserpin: A serpin to think about.  Cell Mol Life Sci 2006; 63: 709-722.

[143] Davis RL, Shrimpton AE, Holohan PD, Bradshaw C, Feiglin  D, Collins GH, Sonderegger P, Kinter J, Becker LM, Lacbawan F, Krasnewich D, Muenke M, Lawrence DA, Yerby MS,  Shaw CM, Gooptu B, Elliott PR, Finch JT, Carrell RW, Lomas  DA. Familial dementia caused by polymerization of mutant  neuroserpin. Nature 1999; 401: 376-379.

[144] Imran M, Mahmood S. An overview of human prion diseases.  Virol J 2011; 8: 559.

[145] Budka H. Neuropathology of prion diseases. Br Med Bull  2003; 66: 121-130.

[146] Takada LT, Geschwind MD. Prion diseases. Semin Neurol  2013; 33: 348-356.

[147] De Michele G, Pocchiari M, Petraroli R, Manfredi M, Caneve  G, Coppola G, Casali C, Sacca F, Piccardo P, Salvatore E,  Berardelli A, Orio M, Barbieri F, Ghetti B, Filla A. Variable  phenotype in a p102l gerstmann-straussler-scheinker italian  family. Can J Neurol Sci 2003; 30: 233-236.

[148] Tateishi J, Brown P, Kitamoto T, Hoque ZM, Roos R, Wollman R, Cervenakova L, Gajdusek DC. First experimental  transmission of fatal familial insomnia. Nature 1995; 376:  434-435.

[149] Dickson DW, Rademakers R, Hutton ML. Progressive supranuclear palsy: Pathology and genetics. Brain Pathol 2007; 17:  74-82.

[150] Ling H. Clinical approach to progressive supranuclear palsy. J  Mov Disord 2016; 9: 3-13.

[151] Baugh CM, Stamm JM, Riley DO, Gavett BE, Shenton ME,  Lin A, Nowinski CJ, Cantu RC, McKee AC, Stern RA. Chronic traumatic encephalopathy: Neurodegeneration followingrepetitive concussive and subconcussive brain trauma. Brain  Imaging Behav 2012; 6: 244-254.

[152] Stein TD, Alvarez VE, McKee AC. Chronic traumatic encephalopathy: A spectrum of neuropathological changes following  repetitive brain trauma in athletes and military personnel.  Alzheimers Res Ther 2014; 6: 4.

[153] Steele JC. Parkinsonism-dementia complex of guam. Mov  Disord 2005; 20 Suppl 12: S99-S107.

[154] Halper J, Scheithauer BW, Okazaki H, Laws ER, Jr. Meningio-angiomatosis: A report of six cases with special reference  to the occurrence of neurofibrillary tangles. J Neuropathol Exp  Neurol 1986; 45: 426-446.

[155] Wiebe S, Munoz DG, Smith S, Lee DH. Meningioangiomatosis. A comprehensive analysis of clinical and laboratory features. Brain 1999; 122: 709-726.

[156] Bennett MJ, Rakheja D. The neuronal ceroid-lipofuscinoses.  Dev Disabil Res Rev 2013; 17: 254-259.

[157] Vesa J, Hellsten E, Verkruyse LA, Camp LA, Rapola J, Santavuori P, Hofmann SL, Peltonen L. Mutations in the palmitoyl  protein thioesterase gene causing infantile neuronal ceroid  lipofuscinosis. Nature 1995; 376: 584-587.

[158] Ferrer I, Santpere G, van Leeuwen FW. Argyrophilic grain  disease. Brain 2008; 131: 1416-1432.

[159] Klunk WE, Engler H, Nordberg A, Wang YM, Blomqvist G,  Holt DP, Bergstrom M, Savitcheva I, Huang GF, Estrada S,  Ausen B, Debnath ML, Barletta J, Price JC, Sandell J, Lopresti  BJ, Wall A, Koivisto P, Antoni G, Mathis CA, Langstrom B.  Imaging brain amyloid in alzheimer's disease with pittsburgh  compound-b. Ann Neurol 2004; 55: 306-319.

[160] Marcus C, Mena E, Subramaniam RM. Brain pet in the diagnosis of alzheimer's disease. Clin Nucl Med 2014; 39:  E413-E426.

[161] Hu YY, He SS, Wang XC, Duan QH, Grundke-Iqbal I, Iqbal K,  Wang JZ. Levels of nonphosphorylated and phosphorylated  tau in cerebrospinal fluid of alzheimer's disease patients - an  ultrasensitive bienzyme-substrate-recycle enzyme-linked immunosorbent assay. Am J Pathol 2002; 160: 1269-1278.

[162] Lewczuk P, Esselmann H, Bibl M, Beck G, Maler JM, Otto M,  Kornhuber J, Wiltfang L. Tau protein phosphorylated at threonine 181 in csf as a neurochemical biomarker in alzheimer's  disease-original data and review of the literature. J Mol Neurosci 2004; 23: 115-122.

[163] Lewczuk P, Kornhuber J. Neurochemical dementia diagnostics  in alzheimer's disease: Where are we now and where are we  going? Expert Rev Proteomics 2011; 8: 447-458.

[164] Parnetti L, Chiasserini D, Persichetti E, Eusebi P, Varghese S,  Qureshi MM, Dardis A, Deganuto M, De Carlo C, Castrioto A,  Balducci C, Paciotti S, Tambasco N, Bembi B, Bonanni L,  Onofrj M, Rossi A, Beccari T, El-Agnaf O, Calabresi P. Cerebrospinal fluid lysosomal enzymes and alpha-synuclein in  parkinson's disease. Mov Disord 2014; 29: 1019-1027.

[165] Itoh N, Arai H, Urakami K, Ishiguro K, Ohno H, Hampel H,Buerger K, Wiltfang J, Otto M, Kretzschmar H, Moeller HJ,  Imagawa M, Kohno H, Nakashima K, Kuzuhara S, Sasaki H,  Imahori K. Large-scale, multicenter study of cerebrospinal  fluid tau protein phosphorylated at serine 199 for the antemortem diagnosis of alzheimer's disease. Ann Neurol 2001; 50:  150-156.

[166] Hampel H, Buerger K, Kohnken R, Teipel SJ, Zinkowski R,  Moeller HJ, Rapoport SI, Davies P. Tracking of alzheimer's  disease progression with cerebrospinal fluid tau protein phosphorylated at threonine 231. Ann Neurol 2001; 49: 545-546.

[167] Arai H, Ishiguro K, Ohno H, Moriyama M, Itoh N, Okamura  N, Matsui T, Morikawa Y, Horikawa E, Kohno H, Sasaki H,  Imahori K. Csf phosphorylated tau protein and mild cognitive  impairment: A prospective study. Exp Neurol 2000; 166:  201-203.

[168] Farid K, Hong YT, Aigbirhio FI, Fryer TD, Menon DK, Warburton EA, Baron JC. Early-phase c-11-pib pet in amyloid angiopathy-related symptomatic cerebral hemorrhage: Potential  diagnostic value? Plos One 2015; 10

[169] Johnson KA, Gregas M, Becker JA, Kinnecom C, Salat DH,  Moran EK, Smith EE, Rosand J, Rentz DM, Klunk WE,  Mathis CA, Price JC, DeKosky ST, Fischman AJ, Greenberg  SM. Imaging of amyloid burden and distribution in cerebral  amyloid angiopathy. Ann Neurol 2007; 62: 229-234.

[170] Greenberg SM, Grabowski T, Gurol ME, Skehan ME, Nandigam RNK, Becker JA, Garcia-Alloza M, Prada C, Frosch  MP, Rosand J, Viswanathan A, Smith EE, Johnson KA. Detection of isolated cerebrovascular beta-amyloid with pittsburgh  compound b. Ann Neurol 2008; 64: 587-591.

[171] Kuusisto E, Parkkinen L, Alafuzoff I. Morphogenesis of lewy  bodies: Dissimilar incorporation of alpha-synuclein, ubiquitin,  and p62. J Neuropathol Exp Neurol 2003; 62: 1241-1253.

[172] Huebinger S, Bannach O, Funke SA, Willbold D, Birkmann E.  Detection of alpha-synuclein aggregates by fluorescence microscopy. Rejuvenation Res 2012; 15: 213-216.

[173] Cook NP, Kilpatrick K, Segatori L, Marti AA. Detection of  alpha-synuclein amyloidogenic aggregates in vitro and in cells  using light-switching dipyridophenazine ruthenium(ii) complexes. J Am Chem Soc 2012; 134: 20776-20782.

[174] Thirunavukkuarasu S, Jares-Erijman EA, Jovin TM. Multiparametric fluorescence detection of early stages in the amyloid protein aggregation of pyrene-labeled alpha-synuclein. J  Mol Biol 2008; 378: 1064-1073.

[175] El-Agnaf OMA, Salem SA, Paleologou KE, Curran MD, Gibson MJ, Court JA, Schlossmacher MG, Allsop D. Detection of  oligomeric forms of alpha-synuclein protein in human plasma  as a potential biomarker for parkinson's disease. FASEB J 2006; 20: 419-425.

[176] Wang XM, Yu S, Li FF, Feng T. Detection of alpha-synuclein  oligomers in red blood cells as a potential biomarker of parkinson's disease. Neurosci Letters 2015; 599: 115-119. [177] Kassubek J, Juengling FD, Kioschies T, Henkel K, Karitzky J,Kramer B, Ecker D, Andrich J, Saft C, Kraus P, Aschoff AJ,  Ludolph AC, Landwehrmeyer GB. Topography of cerebral atrophy in early huntington's disease: A voxel based morphometric mri study. J Neurol Neurosurg Psychiatry 2004; 75:  213-220.

[178] O'Keeffe GC, Michell AW, Barker RA. Biomarkers in huntington's and parkinson's disease. Biomarkers in Brain Disease  2009; 1180: 97-110.

[179] Ridha BH, Anderson VM, Barnes J, Boyes RG, Price SL,  Rossor MN, Whitwell JL, Jenkins L, Black RS, Grundman M,  Fox NC. Volumetric mri and cognitive measures in alzheimer  disease - comparison of markers of progression. J Neurol 2008;  255: 567-574.

[180] Edgeworth JA, Farmer M, Sicilia A, Tavares P, Beck J,  Campbell T, Lowe J, Mead S, Rudge P, Collinge J, Jackson GS.  Detection of prion infection in variant creutzfeldt-jakob disease: A blood-based assay. Lancet 2011; 377: 487-493.

[181] Sawyer EB, Edgeworth JA, Thomas C, Collinge J, Jackson GS.  Preclinical detection of infectivity and disease-specific prp in  blood throughout the incubation period of prion disease. Sci Rep 2015; 5

[182] Lacroux C, Comoy E, Moudjou M, Perret-Liaudet A, Lugan S,  Litaise C, Simmons H, Jas-Duval C, Lantier I, Beringue V,  Groschup M, Fichet G, Costes P, Streichenberger N, Lantier F,  Deslys JP, Vilette D, Andreoletti O. Preclinical detection of  variant cjd and bse prions in blood. Plos Pathogens 2014; 10

[183] Safar JG, Geschwind MD, Deering C, Didorenko S, Sattavat  M, Sanchez H, Serban A, Vey M, Baron H, Giles K, Miller BL,  DeArmond SJ, Prusiner SB. Diagnosis of human prion disease.  Proc Natl Acad Sci U S A 2005; 102: 3501-3506.

[184] Nicholson EM. Detection of the disease-associated form of the  prion protein in biological samples. Bioanalysis 2015; 7:  253-261.

[185] Torres M, Cartier L, Matamala JM, Hernandez N, Woehlbier U,  Hetz C. Altered prion protein expression pattern in csf as a  biomarker for creutzfeldt-jakob disease. Plos One 2012; 7

[186] Furukawa H, Doh-ura K, Okuwaki R, Shirabe S, Yamamoto K,  Udono H, Ito T, Katamine S, Niwa M. A pitfall in diagnosis of  human prion diseases using detection of protease-resistant  prion protein in urine - contamination with bacterial outer  membrane proteins. J Biol Chem 2004; 279: 23661-23667.

[187] Notari S, Qing LT, Pocchiari M, Dagdanova A, Hatcher K,  Dogterom A, Groisman JF, Lumholtz IB, Puopolo M,  Lasmezas C, Chen SG, Kong QZ, Gambetti P. Assessing prion  infectivity of human urine in sporadic creutzfeldt-jakob disease. Emerg Infect Dis 2012; 18: 21-28.

[188] Oddo S, Billings L, Kesslak JP, Cribbs DH, LaFerla FM.  Abeta immunotherapy leads to clearance of early, but not late,  hyperphosphorylated tau aggregates via the proteasome. Neuron 2004; 43: 321-332.

[189] Kayed R, Head E, Sarsoza F, Saing T, Cotman CW, Necula M,  Margol L, Wu J, Breydo L, Thompson JL, Rasool S, Gurlo T,Butler P, Glabe CG. Fibril specific, conformation dependent  antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers. Mol Neurodegener 2007; 2: 18.

[190] Hatami A, Monjazeb S, Glabe C. The anti-amyloid-beta monoclonal antibody 4g8 recognizes a generic sequence-independent epitope associated with alpha-synuclein and islet amyloid  polypeptide amyloid fibrils. J Alzheimers Dis 2015; 50: 517- 525.

[191] Hatami A, Albay R, 3rd, Monjazeb S, Milton S, Glabe C.  Monoclonal antibodies against abeta42 fibrils distinguish multiple aggregation state polymorphisms in vitro and in alzheimer disease brain. J Biol Chem 2014; 289: 32131-32143.

[192] Gowert NS, Donner L, Chatterjee M, Eisele YS, Towhid ST,  Munzer P, Walker B, Ogorek I, Borst O, Grandoch M, Schaller  M, Fischer JW, Gawaz M, Weggen S, Lang F, Jucker M, Elvers M. Blood platelets in the progression of alzheimer's disease. PLoS One 2014; 9: e90523.

[193] Castillo-Carranza DL, Sengupta U, Guerrero-Munoz MJ, Lasagna-Reeves CA, Gerson JE, Singh G, Estes DM, Barrett AD,  Dineley KT, Jackson GR, Kayed R. Passive immunization  with tau oligomer monoclonal antibody reverses tauopathy  phenotypes without affecting hyperphosphorylated neurofibrillary tangles. J Neurosci 2014; 34: 4260-4272.

[194] Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Sarmiento J, Troncoso J, Jackson GR, Kayed R. Identification of  oligomers at early stages of tau aggregation in alzheimer's  disease. FASEB J 2012; 26: 1946-1959.

[195] Wu JW, Herman M, Liu L, Simoes S, Acker CM, Figueroa H,  Steinberg JI, Margittai M, Kayed R, Zurzolo C, Di Paolo G,  Duff KE. Small misfolded tau species are internalized via bulk  endocytosis and anterogradely and retrogradely transported in  neurons. J Biol Chem 2013; 288: 1856-1870.

[196] Majbour NK, Vaikath NN, van Dijk KD, Ardah MT, Varghese  S, Vesterager LB, Montezinho LP, Poole S, Safieh-Garabedian  B, Tokuda T, Teunissen CE, Berendse HW, van de Berg WD,  El-Agnaf OM. Oligomeric and phosphorylated alpha-synuclein as potential csf biomarkers for parkinson's disease. Mol Neurodegener 2016; 11: 7.

[197] Vaikath NN, Majbour NK, Paleologou KE, Ardah MT, van  Dam E, van de Berg WD, Forrest SL, Parkkinen L, Gai WP,  Hattori N, Takanashi M, Lee SJ, Mann DM, Imai Y, Halliday  GM, Li JY, El-Agnaf OM. Generation and characterization of  novel conformation-specific monoclonal antibodies for alpha-synuclein pathology. Neurobiol Dis 2015; 79: 81-99.

[198] Peters-Libeu C, Miller J, Rutenber E, Newhouse Y, Krishnan P,  Cheung K, Hatters D, Brooks E, Widjaja K, Tran T, Mitra S,  Arrasate M, Mosquera LA, Taylor D, Weisgraber KH, Finkbeiner S. Disease-associated polyglutamine stretches in monomeric huntingtin adopt a compact structure. J Mol Biol 2012;  421: 587-600.

[199] Nucifora LG, Burke KA, Feng X, Arbez N, Zhu S, Miller J,S, Legleiter J, Ross CA, Poirier MA. Identification of novel  potentially toxic oligomers formed in vitro from mammalian-derived expanded huntingtin exon-1 protein. J Biol Chem  2012; 287: 16017-16028.

[200] Legleiter J, Lotz GP, Miller J, Ko J, Ng C, Williams GL,  Finkbeiner S, Patterson PH, Muchowski PJ. Monoclonal antibodies recognize distinct conformational epitopes formed by  polyglutamine in a mutant huntingtin fragment. J Biol Chem  2009; 284: 21647-21658.

[201] Ko J, Ou S, Patterson PH. New anti-huntingtin monoclonal  antibodies: Implications for huntingtin conformation and its  binding proteins. Brain Res Bull 2001; 56: 319-329.

[202] Shiga Y, Miyazawa K, Sato S, Fukushima R, Shibuya S, Sato  Y, Konno H, Doh-ura K, Mugikura S, Tamura H, Higano S,  Takahashi S, Itoyama Y. Diffusion-weighted mri abnormalities  as an early diagnostic marker for creutzfeldt-jakob disease.  Neurology 2004; 63: 443-449.

[203] Wang J, Zhang BY, Zhang J, Xiao K, Chen LN, Wang H, Sun  J, Shi Q, Dong XP. Treatment of smb-s15 cells with resveratrol  efficiently removes the prp accumulation in vitro and prion  infectivity in vivo. Mol Neurobiol 2015

[204] Caughey B, Raymond GJ, Priola SA, Kocisko DA, Race RE,  Bessen RA, Lansbury PT, Jr., Chesebro B. Methods for studying prion protein (prp) metabolism and the formation of protease-resistant prp in cell culture and cell-free systems. An update. Mol Biotechnol 1999; 13: 45-55.

[205] Kang HE, Weng CC, Saijo E, Saylor V, Bian J, Kim S, Ramos  L, Angers R, Langenfeld K, Khaychuk V, Calvi C, Bartz J,  Hunter N, Telling GC. Characterization of conformation-dependent prion protein epitopes. J Biol Chem 2012; 287: 37219- 37232.

[206] Beringue V, Vilette D, Mallinson G, Archer F, Kaisar M,  Tayebi M, Jackson GS, Clarke AR, Laude H, Collinge J,  Hawke S. Prpsc binding antibodies are potent inhibitors of  prion replication in cell lines. J Biol Chem 2004; 279: 39671- 39676.

[207] Doolan KM, Colby DW. Conformation-dependent epitopes  recognized by prion protein antibodies probed using mutational scanning and deep sequencing. J Mol Biol 2015; 427:  328-340.

[208] Enari M, Flechsig E, Weissmann C. Scrapie prion protein accumulation by scrapie-infected neuroblastoma cells abrogated  by exposure to a prion protein antibody. Proc Natl Acad Sci U  S A 2001; 98: 9295-9299.

[209] Peretz D, Williamson RA, Kaneko K, Vergara J, Leclerc E,  Schmitt-Ulms G, Mehlhorn IR, Legname G, Wormald MR,  Rudd PM, Dwek RA, Burton DR, Prusiner SB. Antibodies inhibit prion propagation and clear cell cultures of prion infectivity. Nature 2001; 412: 739-743.

[210] Wiseman FK, Cancellotti E, Piccardo P, Iremonger K, Boyle A,  Brown D, Ironside JW, Manson JC, Diack AB. The glycosylation status of prpc is a key factor in determining transmissible  spongiform encephalopathy transmission between species. J  Virol 2015; 89: 4738-4747.

[211] Wei X, Herbst A, Ma D, Aiken J, Li L. A quantitative proteomic approach to prion disease biomarker research: Delving  into the glycoproteome. J Proteome Res 2011; 10: 2687-2702.

[212] Mysling S, Betzer C, Jensen PH, Jorgensen TJ. Characterizing  the dynamics of alpha-synuclein oligomers using hydrogen/deuterium exchange monitored by mass spectrometry. Biochemistry 2013; 52: 9097-9103.

[213] Illes-Toth E, Ramos MR, Cappai R, Dalton C, Smith DP. Distinct higher-order alpha-synuclein oligomers induce intracellular aggregation. Biochem J 2015; 468: 485-493.

[214] Emmanouilidou E, Melachroinou K, Roumeliotis T, Garbis SD,  Ntzouni M, Margaritis LH, Stefanis L, Vekrellis K. Cell-produced alpha-synuclein is secreted in a calcium-dependent  manner by exosomes and impacts neuronal survival. J Neurosci 2010; 30: 6838-6851.

[215] Chiasserini D, van Weering JR, Piersma SR, Pham TV, Malekzadeh A, Teunissen CE, de Wit H, Jimenez CR. Proteomic  analysis of cerebrospinal fluid extracellular vesicles: A comprehensive dataset. J Proteomics 2014; 106: 191-204.

[216] Silva CJ, Erickson-Beltran ML, Dynin IC. Covalent surface  modification of prions: A mass spectrometry-based means of  detecting distinctive structural features of prion strains. Biochemistry 2016; 55: 894-902.

Share
Back to top
Journal of Clinical and Translational Research, Electronic ISSN: 2424-810X Print ISSN: 2382-6533, Published by AccScience Publishing