Detection of misfolded protein aggregates from a clinical perspective
Neurodegenerative Protein Misfolding Diseases (PMDs), such as Alzheimer’s (AD), Parkinson’s (PD) and prion diseases, are generally difficult to diagnose before irreversible damage to the central nervous system damage has occurred. Detection of the misfolded proteins that ultimately lead to these conditions offers a means for providing early detection and diagnosis of this class of disease. In this review, we discuss recent developments surrounding protein misfolding diseases with emphasis on the cytotoxic oligomers implicated in their aetiology. We also discuss the relationship of misfolded proteins with biological membranes. Finally, we discuss how far techniques for providing early diagnoses for PMDs have advanced and describe promising clinical approaches. We conclude that antibodies with specificity towards oligomeric species of AD and PD and lectins with specificity for particular glycosylation, show promise. However, it is not clear which approach may yield a reliable clinical test first.
Relevance for patients: Individuals suffering from protein misfolding diseases will likely benefit form earlier, less- or even non-invasive diagnosis techniques. The current state and possible future directions for these are subject of this review.
[1] Irwin DJ, Lee VMY, Trojanowski JQ. Parkinson's disease dementia: Convergence of [alpha]-synuclein, tau and amyloid-[beta] pathologies. Nat Rev Neurosci 2013; 14: 626-636.
[2] Petrou M, Dwamena BA, Foerster BR, MacEachern MP, Bohnen NI, Müller MLTM, Albin RL, Frey KA. Amyloid deposition in parkinson's disease and cognitive impairment: A systematic review. Mov Disord 2015; 30: 928-935.
[3] Karran E, Mercken M, Strooper BD. The amyloid cascade hypothesis for alzheimer's disease: An appraisal for the development of therapeutics. Nat Rev Drug Discov 2011; 10: 698-712.
[4] Varadarajan S, Yatin S, Aksenova M, Butterfield DA. Review: Alzheimer's amyloid β-peptide-associated free radical oxidative stress and neurotoxicity. J Struct Biol 2000; 130: 184-208.
[5] Trevitt CR, Collinge J. A systematic review of prion therapeutics in experimental models. Brain 2006; 129: 2241-2265.
[6] Prusiner SB. Prions. Proc Natl Acad Sci U S A 1998; 95: 13363- 13383.
[7] Morozova OA, Gupta S, Colby DW. Prefibrillar huntingtin oligomers isolated from hd brain potently seed amyloid formation. FEBS Letters 2015; 589: 1897-1903.
[8] Owens GE, New DM, West AP, Jr., Bjorkman PJ. Anti-polyq antibodies recognize a short polyq stretch in both normal and mutant huntingtin exon 1. J Mol Biol 2015; 427: 2507-2519.
[9] Pieri L, Madiona K, Bousset L, Melki R. Fibrillar alphasynuclein and huntingtin exon 1 assemblies are toxic to the cells. Biophys J 2012; 102: 2894-2905.
[10] Kayed R, Sokolov Y, Edmonds B, McIntire TM, Milton SC, Hall JE, Glabe CG. Permeabilization of lipid bilayers is acommon conformation-dependent activity of soluble amyloid oligomers in protein misfolding diseases. J Biol Chem 2004; 279: 46363-46366.
[11] Selkoe DJ. Alzheimer's disease: Genes, proteins, and therapy. Physiol Rev 2001; 81: 741-766.
[12] Bros P, Vialaret J, Barthelemy N, Delatour V, Gabelle A, Lehmann S, Hirtz C. Antibody-free quantification of seven tau peptides in human csf using targeted mass spectrometry. Front Neurosci 2015; 9: 302.
[13] Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL. Mutation in the α -synuclein gene indentified in families with parkinson's disease. Science 1997; 276: 2045-2047.
[14] Spillantini MG, Schmidt ML, Lee VMY, Trojanowski JQ, Jakes R, Goedert M. α-synuclein in lewy bodies. Nature 1997; 388: 839-840.
[15] Magaki S, Gardner T, Khanlou N, Yong WH, Salmon N, Vinters HV. Brain biopsy in neurologic decline of unknown etiology. Hum Pathol 2015; 46: 499-506.
[16] Haass C, Steiner H. Protofibrils, the unifying toxic molecule of neurodegenerative disorders? Nat Neurosci 2001; 4: 859-860.
[17] Hartmann A, Troadec J-D, Hunot S, Kikly K, Faucheux BA, Mouatt-Prigent A, Ruberg M, Agid Y, Hirsch EC. Caspase-8 is an effector in apoptotic death of dopaminergic neurons in parkinson's disease, but pathway inhibition results in neuronal necrosis. J Neurosci 2001; 21: 2247-2255.
[18] Teng L, Zhao J, Wang F, Ma L, Pei G. A gpcr/secretase complex regulates β- and γ-secretase specificity for aβ production and contributes to ad pathogenesis. Cell Res 2010; 20: 138-153.
[19] Guardia-Laguarta C, Pera M, Lleo A. γ -secretase as a therapeutic target in alzheimers disease. Curr Drug Targets 2010; 11: 506-517.
[20] Taylor DM. Inactivation of transmissible degenerative encephalopathy agents: A review. Vet J 2000; 159: 10-17.
[21] Uversky VN, Oldfield CJ, Dunker AK. Intrinsically disordered proteins in human diseases: Introducing the d2 concept. Annu Rev Biophys 2008; 37: 215-246.
[22] Chiti F, Dobson CM. Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 2006; 75: 333-366.
[23] Gregersen N, Bross P, Vang S, Christensen JH. Protein misfolding and human disease. Annual Review of Genomics and Human Genetics 2006; 7: 103-124.
[24] Naganathan AN, Muñoz V. Scaling of folding times with protein size. J Am Chem Soc 2005; 127: 480-481.
[25] Juraszek J, Bolhuis PG. Rate constant and reaction coordinate of trp-cage folding in explicit water. Biophys J 2008; 95: 4246-4257.
[26] Leal SS, Botelho HM, Gomes CM. Metal ions as modulators of protein conformation and misfolding in neurodegeneration. Coord Chem Rev 2012; 256: 2253-2270.
[27] Braselmann E, Chaney JL, Clark PL. Folding the proteome. Trends Biochem Sci 2013; 38: 337-344.
[28] Yon JM. Protein folding in the post-genomic era. J Cell Mol Med 2002; 6: 307-327.
[29] Gu Y, Singh A, Bose S, Singh N. Pathogenic mutations in the glycosylphosphatidylinositol signal peptide of prp modulate its topology in neuroblastoma cells. Molecular and Cellular Neuroscience 2008; 37: 647-656.
[30] Ashok A, Hegde RS. Retrotranslocation of prion proteins from the er by preventing gpi signal sequence transamidation. Mol Biol Cell 2008
[31] Stelmashook EV, Isaev NK, Genrikhs EE, Amelkina GA, Khaspekov LG, Skrebitsky VG, Illarioshkin SN. Role of zinc and copper ions in the pathogenetic mechanisms of alzheimer’s and parkinson’s diseases. Biochemistry (Moscow) 2014; 79: 391-396.
[32] Nedumpully-Govindan P, Yang Y, Andorfer R, Cao W, Ding F. Promotion or inhibition of islet amyloid polypeptide aggregation by zinc coordination depends on its relative concentration. Biochemistry 2015; 54: 7335-7344.
[33] Verasdonck J, Bousset L, Gath J, Melki R, Bockmann A, Meier BH. Further exploration of the conformational space of alpha-synuclein fibrils: Solid-state nmr assignment of a high-ph polymorph. Biomol NMR Assign 2016; 10: 5-12.
[34] Schmidt M, Sachse C, Richter W, Xu C, Fändrich M, Grigorieff N. Comparison of alzheimer aβ(1–40) and aβ(1–42) amyloid fibrils reveals similar protofilament structures. Proc Natl Acad Sci 2009; 106: 19813-19818.
[35] Celej MS, Caarls W, Demchenko AP, Jovin TM. A tripleemission fluorescent probe reveals distinctive amyloid fibrillar polymorphism of wild-type alpha-synuclein and its familial parkinson's disease mutants. Biochemistry 2009; 48: 7465-7472.
[36] Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, Taddei N, Ramponi G, Dobson CM, Stefani M. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 2002; 416: 507-511.
[37] Diociaiuti M, Gaudiano MC, Malchiodi-Albedi F. The slowly aggregating salmon calcitonin: A useful tool for the study of the amyloid oligomers structure and activity. Int J Mol Sci 2011; 12: 9277.
[38] Lashuel HA, Petre BM, Wall J, Simon M, Nowak RJ, Walz T, Lansbury Jr PT. α-synuclein, especially the parkinson's disease-associated mutants, forms pore-like annular and tubular protofibrils. J Mol Biol 2002; 322: 1089- 1102.
[39] Sokolowski F, Modler AJ, Masuch R, Zirwer D, Baier M, Lutsch G, Moss DA, Gast K, Naumann D. Formation of critical oligomers is a key event during conformational transition of recombinant syrian hamster prion protein. J Biol Chem 2003; 278: 40481-40492.
[40] Zakharov VV, Mosevitsky MI. Oligomeric structure of brain abundant proteins gap-43 and basp1. J Struct Biol 2010; 170: 470-483.
[41] Luth ES, Stavrovskaya IG, Bartels T, Kristal BS, Selkoe DJ. Soluble, prefibrillar alpha-synuclein oligomers promote complex i-dependent, ca2+-induced mitochondrial dysfunction. J Biol Chem 2014; 289: 21490-21507.
[42] Walsh P, Vanderlee G, Yau J, Campeau J, Sim VL, Yip CM, Sharpe S. The mechanism of membrane disruption by cytotoxic amyloid oligomers formed by prp(106-126) is dependent on bilayer composition. J Biol Chem 2014
[43] Kayed R, Pensalfini A, Margol L, Sokolov Y, Sarsoza F, Head E, Hall J, Glabe C. Annular protofibrils are a structurally and functionally distinct type of amyloid oligomer. J Biol Chem 2009; 284: 4230-4237.
[44] Ding TT, Lee S-J, Rochet J-C, Lansbury PT. Annular α-synuclein protofibrils are produced when spherical protofibrils are incubated in solution or bound to brain-derived membranes†. Biochemistry 2002; 41: 10209-10217.
[45] Stöckl M, Fischer P, Wanker E, Herrmann A. α-synuclein selectively binds to anionic phospholipids embedded in liquid-disordered domains. J Mol Biol 2008; 375: 1394-1404.
[46] van Rooijen BD, Claessens MMAE, Subramaniam V. Lipid bilayer disruption by oligomeric α-synuclein depends on bilayer charge and accessibility of the hydrophobic core. BBA-Biomembranes 2009; 1788: 1271-1278.
[47] Halskau O, Muga A, Martinez A. Linking new paradigms in protein chemistry to reversible membrane-protein interactions. Curr Protein Pept Sci 2009; 10: 339-359.
[48] Amtul Z, Uhrig M, Supino R, Beyreuther K. Phospholipids and a phospholipid-rich diet alter the in vitro amyloid-beta peptide levels and amyloid-beta 42/40 ratios. Neurosci Lett 2010; 481: 73-77.
[49] Gellermann GP, Appel TR, Tannert A, Radestock A, Hortschansky P, Schroeckh V, Leisner C, Lutkepohl T, Shtrasburg S, Rocken C, Pras M, Linke RP, Diekmann S, Fandrich M. Raft lipids as common components of human extracellular amyloid fibrils. Proc Natl Acad Sci U S A 2005; 102: 6297- 6302.
[50] Benilova I, Karran E, De Strooper B. The toxic aβ oligomer and alzheimer's disease: An emperor in need of clothes. Nat Neurosci 2012; 15: 349-357.
[51] Saponetti MS, Grimaldi M, Scrima M, Albonetti C, Nori SL, Cucolo A, Bobba F, D'Ursi AM. Aggregation of a β(25-35) on dopc and dopc/dha bilayers: An atomic force microscopy study. Plos One 2014; 9
[52] Kourie JI, Shorthouse AA. Properties of cytotoxic peptide-formed ion channels. Am J Physiol - Cell Physiol 2000; 278: C1063-C1087.
[53] Ehrnhoefer DE, Bieschke J, Boeddrich A, Herbst M, Masino L, Lurz R, Engemann S, Pastore A, Wanker EE. Egcg redirects amyloidogenic polypeptides into unstructured, off-pathwayoligomers. Nat Struct Mol Biol 2008; 15: 558-566.
[54] Harroun TA, Bradshaw JP, Ashley RH. Inhibitors can arrest the membrane activity of human islet amyloid polypeptide independently of amyloid formation. FEBS Letters 2001; 507: 200-204.
[55] Brender JR, Heyl DL, Samisetti S, Kotler SA, Osborne JM, Pesaru RR, Ramamoorthy A. Membrane disordering is not sufficient for membrane permeabilization by islet amyloid polypeptide: Studies of iapp(20-29) fragments. Phys Chem Chem Phys 2013; 15: 8908-8915.
[56] Sciacca Michele FM, Milardi D, Messina Grazia ML, Marletta G, Brender Jeffrey R, Ramamoorthy A, La Rosa C. Cations as switches of amyloid-mediated membrane disruption mechanisms: Calcium and iapp. Biophys J 2013; 104: 173-184.
[57] Sciacca MFM, Brender JR, Lee D-K, Ramamoorthy A. Phosphatidylethanolamine enhances amyloid fiber-dependent membrane fragmentation. Biochemistry 2012; 51: 7676-7684.
[58] Hirakura Y, Azimov R, Azimova R, Kagan BL. Polyglutamine-induced ion channels: A possible mechanism for the neurotoxicity of huntington and other cag repeat diseases. J Neuro Sci 2000; 60: 490-494.
[59] Kagan BL, Jang H, Capone R, Teran Arce F, Ramachandran S, Lal R, Nussinov R. Antimicrobial properties of amyloid peptides. Mol Pharm 2012; 9: 708-717.
[60] Lin M-C, Mirzabekov T, Kagan BL. Channel formation by a neurotoxic prion protein fragment. J Biol Chem 1997; 272: 44-47.
[61] Lin H, Bhatia R, Lal R. Amyloid β protein forms ion channels: Implications for alzheimer’s disease pathophysiology. FASEB J 2001; 15: 2433-2444.
[62] Hirakura Y, Kagan BL. Pore formation by beta-2-microglobulin: A mechanism for the pathogenesis of dialysis associated amyloidosis. Amyloid 2001; 8: 94-100.
[63] Hirakura Y, Carreras I, Sipe JD, Kagan BL. Channel formation by serum amyloid a: A potential mechanism for amyloid pathogenesis and host defense. Amyloid 2002; 9: 13-23.
[64] Demuro A, Mina E, Kayed R, Milton SC, Parker I, Glabe CG. Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J Biol Chem 2005; 280: 17294-17300.
[65] Dante S, Hauss T, Brandt A, Dencher NA. Membrane fusogenic activity of the alzheimer's peptide aβ(1-42) demonstrated by small-angle neutron scattering. J Mol Biol 2008; 376: 393-404.
[66] Sokolov Y, Kozak JA, Kayed R, Chanturiya A, Glabe C, Hall JE. Soluble amyloid oligomers increase bilayer conductance by altering dielectric structure.J Gen Physiol 2006; 128: 637-647.
[67] Simons K, Ikonen E. Functional rafts in cell membranes. Nature 1997; 387: 569.
[68] Sevcsik E, Brameshuber M, Folser M, Weghuber J, Honigmann A, Schutz GJ. Gpi-anchored proteins do not residein ordered domains in the live cell plasma membrane. Nat Commun 2015; 6
[69] Valdes-Gonzalez T, Inagawa J, Ido T. Neuropeptides interact with glycolipid receptors a surface plasmon resonance study. Peptides 2001; 22: 1099-1106.
[70] Mahfoud R, Garmy N, Maresca M, Yahi N, Puigserver A, Fantini J. Identification of a common sphingolipid-binding domain in alzheimer, prion, and hiv-1 proteins. J Biol Chem 2002; 277: 11292-11296.
[71] Hebbar S, Lee E, Manna M, Steinert S, Kumar GS, Wenk M, Wohland T, Kraut R. A fluorescent sphingolipid binding domain peptide probe interacts with sphingolipids and cholesterol-dependent raft domains.J Lip Res 2008; 49: 1077-1089.
[72] Yanagisawa K, Odaka A, Suzuki N, Ihara Y. Gm1 ganglioside-bound amyloid β-protein (aβ): A possible form of preamyloid in alzheimer's disease. Nat Med 1995; 1: 1062- 1066.
[73] Martinez Z, Zhu M, Han S, Fink AL. Gm1 specifically interacts with α-synuclein and inhibits fibrillation†. Biochemistry 2007; 46: 1868-1877.
[74] Di Pasquale E, Fantini J, Chahinian H, Maresca M, Taïeb N, Yahi N. Altered ion channel formation by the parkinson's-disease-linked e46k mutant of α-synuclein is corrected by gm3 but not by gm1 gangliosides. J Mol Biol 2010; 397: 202-218.
[75] Mattei V, Garofalo T, Misasi R, Circella A, Manganelli V, Lucania G, Pavan A, Sorice M. Prion protein is a component of the multimolecular signaling complex involved in t cell activation. FEBS Letters 2004; 560: 14-18.
[76] Sanghera N, Pinheiro TJT. Binding of prion protein to lipid membranes and implications for prion conversion1. J Mol Biol 2002; 315: 1241-1256.
[77] Jo E, McLaurin J, Yip CM, St. George-Hyslop P, Fraser PE. α-synuclein membrane interactions and lipid specificity. J Biol Chem 2000; 275: 34328-34334.
[78] Ramakrishnan M, Jensen PH, Marsh D. α-synuclein association with phosphatidylglycerol probed by lipid spin labels†. Biochemistry 2003; 42: 12919-12926.
[79] Kubo S-i, Nemani VM, Chalkley RJ, Anthony MD, Hattori N, Mizuno Y, Edwards RH, Fortin DL. A combinatorial code for the interaction of α-synuclein with membranes. J Biol Chem 2005; 280: 31664-31672.
[80] Pandit SA, Bostick D, Berkowitz ML. Complexation of phosphatidylcholine lipids with cholesterol. Biophys J 2004; 86: 1345-1356.
[81] Barenholz Y. Sphingomyelin and cholesterol: From membrane biophysics and rafts to potential medical applications; in Quinn P (ed): Membrane dynamics and domains, Springer US, 2004, vol 37, pp 167-215.
[82] Veiga MP, Arrondo JLR, Goñi FM, Alonso A, Marsh D. Interaction of cholesterol with sphingomyelin in mixed membranes containing phosphatidylcholine, studied by spin-label esr and ir spectroscopies. A possible stabilization of gel-phase sphingolipid domains by cholesterol†. Biochemistry 2001; 40: 2614-2622.
[83] Van Echteld CJA, De Kruijff B, Mandersloot JG, De Gier J. Effects of lysophosphatidylcholines on phosphatidylcholine and phosphatidylcholine/cholesterol liposome systems as revealed by 31p-nmr, electron microscopy and permeability studies. BBA-Biomembranes 1981; 649: 211-220.
[84] Urbina JA, Pekerar S, Le H-b, Patterson J, Montez B, Oldfield E. Molecular order and dynamics of phosphatidylcholine bilayer membranes in the presence of cholesterol, ergosterol and lanosterol: A comparative study using 2h-, 13c- and 31p-nmr spectroscopy. BBA-Biomembranes 1995; 1238: 163-176.
[85] Snyder B, Freire E. Compositional domain structure in phosphatidylcholine-cholesterol and sphingomyelin-cholesterol bilayers. Proc Natl Acad Sci U S A 1980; 77: 4055-4059.
[86] Nyberg L, Duan R-D, Nilsson Å. A mutual inhibitory effect on absorption of sphingomyelin and cholesterol. J Nutr Biochem 2000; 11: 244-249.
[87] McIntosh TJ, Magid AD, Simon SA. Cholesterol modifies the short-range repulsive interactions between phosphatidylcholine membranes. Biochemistry 1989; 28: 17-25.
[88] Li X-M, Ramakrishnan M, Brockman HL, Brown RE, Swamy MJ. N-myristoylated phosphatidylethanolamine: Interfacial behavior and interaction with cholesterol. Langmuir 2002; 18: 231-238.
[89] Fantini J, Yahi N. Molecular insights into amyloid regulation by membrane cholesterol and sphingolipids: Common mechanisms in neurodegenerative diseases. Expert Rev Mol Med 2010; 12: e27.
[90] Harris JR. In vitro fibrillogenesis of the amyloid  1-42 peptide: Cholesterol potentiation and aspirin inhibition. Micron 2002; 33: 609-626.
[91] Arispe N, Doh M. Plasma membrane cholesterol controls the cytotoxicity of alzheimer’s disease aβp (1–40) and (1–42) peptides. FASEB J 2002; 16: 1526-1536.
[92] Yip CM, Elton EA, Darabie AA, Morrison MR, McLaurin J. Cholesterol, a modulator of membrane-associated aβ-fibrillogenesis and neurotoxicity1. J Mol Biol 2001; 311: 723-734.
[93] Hartmann T, Kuchenbecker J, Grimm MOW. Alzheimer’s disease: The lipid connection. J Neurochem 2007; 103: 159-170.
[94] Cole SL, Grudzien A, Manhart IO, Kelly BL, Oakley H, Vassar R. Statins cause intracellular accumulation of amyloid precursor protein, beta-secretase-cleaved fragments, and amyloid beta-peptide via an isoprenoid-dependent mechanism. J Biol Chem 2005; 280: 18755-18770.
[95] Bar-On P, Rockenstein E, Adame A, Ho G, Hashimoto M, Masliah E. Effects of the cholesterol-lowering compound methyl-β-cyclodextrin in models of α-synucleinopathy. J Neurochem 2006; 98: 1032-1045.
[96] Bosco DA, Fowler DM, Zhang Q, Nieva J, Powers ET, Wentworth P, Lerner RA, Kelly JW. Elevated levels of oxidized cholesterol metabolites in lewy body disease brains accelerateα-synuclein fibrilization. Nat Chem Biol 2006; 2: 249- 253.
[97] Chang S, Bray SM, Li Z, Zarnescu DC, He C, Jin P, Warren ST. Identification of small molecules rescuing fragile x syndrome phenotypes in drosophila. Nat Chem Biol 2008; 4: 256-263.
[98] Hashimoto M, Katakura M, Hossain S, Rahman A, Shimada T, Shido O. Docosahexaenoic acid withstands the abeta(25-35)- induced neurotoxicity in sh-sy5y cells. J Nutr Biochem 2011; 22: 22-29.
[99] Hashimoto M, Shahdat HM, Yamashita S, Katakura M, Tanabe Y, Fujiwara H, Gamoh S, Miyazawa T, Arai H, Shimada T, Shido O. Docosahexaenoic acid disrupts in vitro amyloid beta(1-40) fibrillation and concomitantly inhibits amyloid levels in cerebral cortex of alzheimer's disease model rats. J Neurochem 2008; 107: 1634-1646.
[100] Cole GM, Frautschy SA. Docosahexaenoic acid protects from amyloid and dendritic pathology in an alzheimer's disease mouse model. Nutr Health 2006; 18: 249-259.
[101] Rescigno T, Capasso A, Tecce MF. Effect of docosahexaenoic acid on cell cycle pathways in breast cell lines with different transformation degree. J Cell Physiol 2016; 231: 1226-1236.
[102] Kotarek JA, Moss MA. Impact of phospholipid bilayer saturation on amyloid-beta protein aggregation intermediate growth: A quartz crystal microbalance analysis. Anal Biochem 2010; 399: 30-38.
[103] Viola KL, Klein WL. Amyloid beta oligomers in alzheimer's disease pathogenesis, treatment, and diagnosis. Acta Neuropathol 2015; 129: 183-206.
[104] Levine H. Thioflavine-t interaction with synthetic alzheimers-disease beta-amyloid peptides - detection of amyloid aggregation in solution. Prot Sci 1993; 2: 404-410.
[105] Miller DL, Potempska A, Wegiel J, Mehta PD. High-affinity rabbit monoclonal antibodies specific for amyloid peptides amyloid-beta(40) and amyloid-beta(42). J Alzheimers Dis 2011; 23: 293-305.
[106] Johansson LBG, Simon R, Bergstrom G, Eriksson M, Prokop S, Mandenius C-F, Heppner FL, Aslund AKO, Nilsson KPR. An azide functionalized oligothiophene ligand - a versatile tool for multimodal detection of disease associated protein aggregates. Biosens Bioelectron 2015; 63: 204-211.
[107] Nystrom S, Psonka-Antonczyk KM, Ellingsen PG, Johansson LBG, Reitan N, Handrick S, Prokop S, Heppner FL, Wegenast-Braun BM, Jucker M, Lindgren M, Stokke BT, Hammarstrom P, Nilsson KPR. Evidence for age-dependent in vivo conformational rearrangement within a beta amyloid deposits. ACS Chem Biol 2013; 8: 1128-1133.
[108] Klingstedt T, Nilsson KPR. Conjugated polymers for enhanced bioimaging. BBA-General Subjects 2011; 1810: 286-296.
[109] Nyström S, Psonka-Antonczyk KM, Ellingsen PG, Johansson LBG, Reitan N, Handrick S, Prokop S, Heppner FL, Wegenast-Braun BM, Jucker M, Lindgren M, Stokke BT, Hammarström P, Nilsson KPR. Evidence for age-dependent in vivoconformational rearrangement within a β amyloid deposits. ACS Chem Biol 2013; 8: 1128-1133.
[110] Klingstedt T, Shirani H, Åslund KOA, Cairns NJ, Sigurdson CJ, Goedert M, Nilsson KPR. The structural basis for optimal performance of oligothiophene-based fluorescent amyloid ligands: Conformational flexibility is essential for spectral assignment of a diversity of protein aggregates. Chem-Euro J 2013; 19: 10179-10192.
[111] Ren W, Xu M, Liang SH, Xiang H, Tang L, Zhang M, Ding D, Li X, Zhang H, Hu Y. Discovery of a novel fluorescent probe for the sensitive detection of beta-amyloid deposits. Biosens Bioelectron 2016; 75: 136-141.
[112] Lehallier B, Essioux L, Gayan J, et al. Combined plasma and cerebrospinal fluid signature for the prediction of midterm progression from mild cognitive impairment to alzheimer disease. JAMA Neurol 2015: 1-10.
[113] David MA, Tayebi M. Detection of protein aggregates in brain and cerebrospinal fluid derived from multiple sclerosis patients. Front Neuro 2014; 5: 251.
[114] Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA, Regan CM, Walsh DM, Sabatini BL, Selkoe DJ. Amyloid-beta protein dimers isolated directly from alzheimer's brains impair synaptic plasticity and memory. Nature Med 2008; 14: 837-842.
[115] Rama EC, Gonzalez-Garcia MB, Costa-Garcia A. Competitive electrochemical immunosensor for amyloid-beta 1-42 detection based on gold nanostructurated screen-printed carbon electrodes. Sens Actuators B-Chem 2014; 201: 567- 571.
[116] Yu YY, Zhang L, Li CL, Sun XY, Tang DQ, Shi GY. A method for evaluating the level of soluble beta-amyloid((1-40/1-42)) in alzheimer's disease based on the binding of gelsolin to beta-amyloid peptides. Angew Chem Int Ed 2014; 53: 12832-12835.
[117] Chen S, Svedendahl M, Antosiewicz TJ, Käll M. Plasmon-enhanced enzyme-linked immunosorbent assay on large arrays of individual particles made by electron beam lithography. ACS Nano 2013; 7: 8824-8832.
[118] Schmidt ME, Chiao P, Klein G, Matthews D, Thurfjell L, Cole PE, Margolin R, Landau S, Foster NL, Mason NS, De Santi S, Suhy J, Koeppe RA, Jagust W, Alzheimer's Dis N. The influence of biological and technical factors on quantitative analysis of amyloid pet: Points to consider and recommendations for controlling variability in longitudinal data. Alzheimers Dem 2015; 11: 1050-1068.
[119] Molinuevo JL, Ripolles P, Simo M, Llado A, Olives J, Balasa M, Antonell A, Rodriguez-Fornells A, Rami L. White matter changes in preclinical alzheimer's disease: A magnetic resonance imaging-diffusion tensor imaging study on cognitively normal older people with positive amyloid beta protein 42 levels. Neurobiol Aging 2014; 35: 2671-2680.
[120] Kantarci K, Schwarz CG, Reid RI, Przybelski SA, Lesnick TG,Zuk SM, Senjem ML, Gunter JL, Lowe V, Machulda MM, Knopman DS, Petersen RC, Jack CR. White matter integrity determined with diffusion tensor imaging in older adults without dementia influence of amyloid load and neurodegeneration. Jama Neurol 2014; 71: 1547-1554.
[121] Soares JM, Marques P, Alves V, Sousa N. A hitchhiker's guide to diffusion tensor imaging. Front Neurosci 2013; 7
[122] Cheng KK, Chan PS, Fan S, Kwan SM, Yeung KL, Wang Y-XJ, Chow AHL, Wu EX, Baum L. Curcumin-conjugated magnetic nanoparticles for detecting amyloid plaques in alzheimer's disease mice using magnetic resonance imaging (mri). Biomaterials 2015; 44: 155-172.
[123] Kim JH, Ha TL, Im GH, Yang J, Seo SW, Lee IS, Lee JH. Magnetic resonance imaging of amyloid plaques using hollow manganese oxide nanoparticles conjugated with antibody a beta 1-40 in a transgenic mouse model. Neuroreport 2013; 24: 16-21.
[124] Erba EB. Investigating macromolecular complexes using top-down mass spectrometry. Proteomics 2014; 14: 1259-1270.
[125] Shoemaker GK, van Duijn E, Crawford SE, Uetrecht C, Baclayon M, Roos WH, Wuite GJL, Estes MK, Prasad BVV, Heck AJR. Norwalk virus assembly and stability monitored by mass spectrometry. Mol Cell Proteomics 2010; 9: 1742- 1751.
[126] Zomosa-Signoret V, Mayoral M, Limon D, Espinosa B, Calvillo M, Zenteno E, Martinez V, Guevara J. Sialylated and o-glycosidically linked glycans in prion protein deposits in a case of gerstmann-straussler-scheinker disease. Neuropathol 2011; 31: 162-169.
[127] Lambert MP, Velasco PT, Chang L, Viola KL, Fernandez S, Lacor PN, Khuon D, Gong Y, Bigio EH, Shaw P, De Felice FG, Krafft GA, Klein WL. Monoclonal antibodies that target pathological assemblies of abeta. J Neurochem 2007; 100: 23-35.
[128] Burns A, Iliffe S. Alzheimer's disease. BMJ 2009; 338: b158. [129] Wenk GL. Neuropathologic changes in alzheimer's disease. J Clin Psychiatry 2003; 64 Suppl 9: 7-10.
[130] Revesz T, Holton JL, Lashley T, Plant G, Frangione B, Rostagno A, Ghiso J. Genetics and molecular pathogenesis of sporadic and hereditary cerebral amyloid angiopathies. Acta Neuropathol 2009; 118: 115-130.
[131] Kalia LV, Lang AE. Parkinson's disease. Lancet 2015; 386: 896-912.
[132] Lei P, Ayton S, Finkelstein DI, Adlard PA, Masters CL, Bush AI. Tau protein: Relevance to parkinson's disease. Int J Biochem Cell Biol 2010; 42: 1775-1778.
[133] Bang J, Spina S, Miller BL. Frontotemporal dementia. Lancet 2015; 386: 1672-1682.
[134] van der Zee J, Van Broeckhoven C. Dementia in 2013: Frontotemporal lobar degeneration-building on breakthroughs. Nat Rev Neurol 2014; 10: 70-72.
[135] Dayalu P, Albin RL. Huntington disease: Pathogenesis and] Garringer HJ, Murrell J, D'Adamio L, Ghetti B, Vidal R. Modeling familial british and danish dementia. Brain Struct Funct 2010; 214: 235-244.
[137] Rostagno A, Tomidokoro Y, Lashley T, Ng D, Plant G, Holton J, Frangione B, Revesz T, Ghiso J. Chromosome 13 dementias. Cell Mol Life Sci 2005; 62: 1814-1825.
[138] Herve D, Chabriat H. Cadasil. J Geriatr Psychiatry Neurol 2010; 23: 269-276.
[139] Viswanathan A, Gschwendtner A, Guichard JP, Buffon F, Cumurciuc R, O'Sullivan M, Holtmannspotter M, Pachai C, Bousser MG, Dichgans M, Chabriat H. Lacunar lesions are independently associated with disability and cognitive impairment in cadasil. Neurology 2007; 69: 172-179.
[140] Quinlan RA, Brenner M, Goldman JE, Messing A. Gfap and its role in alexander disease. Exp Cell Res 2007; 313: 2077- 2087.
[141] Yoshida T, Nakagawa M. Clinical aspects and pathology of alexander disease, and morphological and functional alteration of astrocytes induced by gfap mutation. Neuropathol 2012; 32: 440-446.
[142] Miranda E, Lomas DA. Neuroserpin: A serpin to think about. Cell Mol Life Sci 2006; 63: 709-722.
[143] Davis RL, Shrimpton AE, Holohan PD, Bradshaw C, Feiglin D, Collins GH, Sonderegger P, Kinter J, Becker LM, Lacbawan F, Krasnewich D, Muenke M, Lawrence DA, Yerby MS, Shaw CM, Gooptu B, Elliott PR, Finch JT, Carrell RW, Lomas DA. Familial dementia caused by polymerization of mutant neuroserpin. Nature 1999; 401: 376-379.
[144] Imran M, Mahmood S. An overview of human prion diseases. Virol J 2011; 8: 559.
[145] Budka H. Neuropathology of prion diseases. Br Med Bull 2003; 66: 121-130.
[146] Takada LT, Geschwind MD. Prion diseases. Semin Neurol 2013; 33: 348-356.
[147] De Michele G, Pocchiari M, Petraroli R, Manfredi M, Caneve G, Coppola G, Casali C, Sacca F, Piccardo P, Salvatore E, Berardelli A, Orio M, Barbieri F, Ghetti B, Filla A. Variable phenotype in a p102l gerstmann-straussler-scheinker italian family. Can J Neurol Sci 2003; 30: 233-236.
[148] Tateishi J, Brown P, Kitamoto T, Hoque ZM, Roos R, Wollman R, Cervenakova L, Gajdusek DC. First experimental transmission of fatal familial insomnia. Nature 1995; 376: 434-435.
[149] Dickson DW, Rademakers R, Hutton ML. Progressive supranuclear palsy: Pathology and genetics. Brain Pathol 2007; 17: 74-82.
[150] Ling H. Clinical approach to progressive supranuclear palsy. J Mov Disord 2016; 9: 3-13.
[151] Baugh CM, Stamm JM, Riley DO, Gavett BE, Shenton ME, Lin A, Nowinski CJ, Cantu RC, McKee AC, Stern RA. Chronic traumatic encephalopathy: Neurodegeneration followingrepetitive concussive and subconcussive brain trauma. Brain Imaging Behav 2012; 6: 244-254.
[152] Stein TD, Alvarez VE, McKee AC. Chronic traumatic encephalopathy: A spectrum of neuropathological changes following repetitive brain trauma in athletes and military personnel. Alzheimers Res Ther 2014; 6: 4.
[153] Steele JC. Parkinsonism-dementia complex of guam. Mov Disord 2005; 20 Suppl 12: S99-S107.
[154] Halper J, Scheithauer BW, Okazaki H, Laws ER, Jr. Meningio-angiomatosis: A report of six cases with special reference to the occurrence of neurofibrillary tangles. J Neuropathol Exp Neurol 1986; 45: 426-446.
[155] Wiebe S, Munoz DG, Smith S, Lee DH. Meningioangiomatosis. A comprehensive analysis of clinical and laboratory features. Brain 1999; 122: 709-726.
[156] Bennett MJ, Rakheja D. The neuronal ceroid-lipofuscinoses. Dev Disabil Res Rev 2013; 17: 254-259.
[157] Vesa J, Hellsten E, Verkruyse LA, Camp LA, Rapola J, Santavuori P, Hofmann SL, Peltonen L. Mutations in the palmitoyl protein thioesterase gene causing infantile neuronal ceroid lipofuscinosis. Nature 1995; 376: 584-587.
[158] Ferrer I, Santpere G, van Leeuwen FW. Argyrophilic grain disease. Brain 2008; 131: 1416-1432.
[159] Klunk WE, Engler H, Nordberg A, Wang YM, Blomqvist G, Holt DP, Bergstrom M, Savitcheva I, Huang GF, Estrada S, Ausen B, Debnath ML, Barletta J, Price JC, Sandell J, Lopresti BJ, Wall A, Koivisto P, Antoni G, Mathis CA, Langstrom B. Imaging brain amyloid in alzheimer's disease with pittsburgh compound-b. Ann Neurol 2004; 55: 306-319.
[160] Marcus C, Mena E, Subramaniam RM. Brain pet in the diagnosis of alzheimer's disease. Clin Nucl Med 2014; 39: E413-E426.
[161] Hu YY, He SS, Wang XC, Duan QH, Grundke-Iqbal I, Iqbal K, Wang JZ. Levels of nonphosphorylated and phosphorylated tau in cerebrospinal fluid of alzheimer's disease patients - an ultrasensitive bienzyme-substrate-recycle enzyme-linked immunosorbent assay. Am J Pathol 2002; 160: 1269-1278.
[162] Lewczuk P, Esselmann H, Bibl M, Beck G, Maler JM, Otto M, Kornhuber J, Wiltfang L. Tau protein phosphorylated at threonine 181 in csf as a neurochemical biomarker in alzheimer's disease-original data and review of the literature. J Mol Neurosci 2004; 23: 115-122.
[163] Lewczuk P, Kornhuber J. Neurochemical dementia diagnostics in alzheimer's disease: Where are we now and where are we going? Expert Rev Proteomics 2011; 8: 447-458.
[164] Parnetti L, Chiasserini D, Persichetti E, Eusebi P, Varghese S, Qureshi MM, Dardis A, Deganuto M, De Carlo C, Castrioto A, Balducci C, Paciotti S, Tambasco N, Bembi B, Bonanni L, Onofrj M, Rossi A, Beccari T, El-Agnaf O, Calabresi P. Cerebrospinal fluid lysosomal enzymes and alpha-synuclein in parkinson's disease. Mov Disord 2014; 29: 1019-1027.
[165] Itoh N, Arai H, Urakami K, Ishiguro K, Ohno H, Hampel H,Buerger K, Wiltfang J, Otto M, Kretzschmar H, Moeller HJ, Imagawa M, Kohno H, Nakashima K, Kuzuhara S, Sasaki H, Imahori K. Large-scale, multicenter study of cerebrospinal fluid tau protein phosphorylated at serine 199 for the antemortem diagnosis of alzheimer's disease. Ann Neurol 2001; 50: 150-156.
[166] Hampel H, Buerger K, Kohnken R, Teipel SJ, Zinkowski R, Moeller HJ, Rapoport SI, Davies P. Tracking of alzheimer's disease progression with cerebrospinal fluid tau protein phosphorylated at threonine 231. Ann Neurol 2001; 49: 545-546.
[167] Arai H, Ishiguro K, Ohno H, Moriyama M, Itoh N, Okamura N, Matsui T, Morikawa Y, Horikawa E, Kohno H, Sasaki H, Imahori K. Csf phosphorylated tau protein and mild cognitive impairment: A prospective study. Exp Neurol 2000; 166: 201-203.
[168] Farid K, Hong YT, Aigbirhio FI, Fryer TD, Menon DK, Warburton EA, Baron JC. Early-phase c-11-pib pet in amyloid angiopathy-related symptomatic cerebral hemorrhage: Potential diagnostic value? Plos One 2015; 10
[169] Johnson KA, Gregas M, Becker JA, Kinnecom C, Salat DH, Moran EK, Smith EE, Rosand J, Rentz DM, Klunk WE, Mathis CA, Price JC, DeKosky ST, Fischman AJ, Greenberg SM. Imaging of amyloid burden and distribution in cerebral amyloid angiopathy. Ann Neurol 2007; 62: 229-234.
[170] Greenberg SM, Grabowski T, Gurol ME, Skehan ME, Nandigam RNK, Becker JA, Garcia-Alloza M, Prada C, Frosch MP, Rosand J, Viswanathan A, Smith EE, Johnson KA. Detection of isolated cerebrovascular beta-amyloid with pittsburgh compound b. Ann Neurol 2008; 64: 587-591.
[171] Kuusisto E, Parkkinen L, Alafuzoff I. Morphogenesis of lewy bodies: Dissimilar incorporation of alpha-synuclein, ubiquitin, and p62. J Neuropathol Exp Neurol 2003; 62: 1241-1253.
[172] Huebinger S, Bannach O, Funke SA, Willbold D, Birkmann E. Detection of alpha-synuclein aggregates by fluorescence microscopy. Rejuvenation Res 2012; 15: 213-216.
[173] Cook NP, Kilpatrick K, Segatori L, Marti AA. Detection of alpha-synuclein amyloidogenic aggregates in vitro and in cells using light-switching dipyridophenazine ruthenium(ii) complexes. J Am Chem Soc 2012; 134: 20776-20782.
[174] Thirunavukkuarasu S, Jares-Erijman EA, Jovin TM. Multiparametric fluorescence detection of early stages in the amyloid protein aggregation of pyrene-labeled alpha-synuclein. J Mol Biol 2008; 378: 1064-1073.
[175] El-Agnaf OMA, Salem SA, Paleologou KE, Curran MD, Gibson MJ, Court JA, Schlossmacher MG, Allsop D. Detection of oligomeric forms of alpha-synuclein protein in human plasma as a potential biomarker for parkinson's disease. FASEB J 2006; 20: 419-425.
[176] Wang XM, Yu S, Li FF, Feng T. Detection of alpha-synuclein oligomers in red blood cells as a potential biomarker of parkinson's disease. Neurosci Letters 2015; 599: 115-119. [177] Kassubek J, Juengling FD, Kioschies T, Henkel K, Karitzky J,Kramer B, Ecker D, Andrich J, Saft C, Kraus P, Aschoff AJ, Ludolph AC, Landwehrmeyer GB. Topography of cerebral atrophy in early huntington's disease: A voxel based morphometric mri study. J Neurol Neurosurg Psychiatry 2004; 75: 213-220.
[178] O'Keeffe GC, Michell AW, Barker RA. Biomarkers in huntington's and parkinson's disease. Biomarkers in Brain Disease 2009; 1180: 97-110.
[179] Ridha BH, Anderson VM, Barnes J, Boyes RG, Price SL, Rossor MN, Whitwell JL, Jenkins L, Black RS, Grundman M, Fox NC. Volumetric mri and cognitive measures in alzheimer disease - comparison of markers of progression. J Neurol 2008; 255: 567-574.
[180] Edgeworth JA, Farmer M, Sicilia A, Tavares P, Beck J, Campbell T, Lowe J, Mead S, Rudge P, Collinge J, Jackson GS. Detection of prion infection in variant creutzfeldt-jakob disease: A blood-based assay. Lancet 2011; 377: 487-493.
[181] Sawyer EB, Edgeworth JA, Thomas C, Collinge J, Jackson GS. Preclinical detection of infectivity and disease-specific prp in blood throughout the incubation period of prion disease. Sci Rep 2015; 5
[182] Lacroux C, Comoy E, Moudjou M, Perret-Liaudet A, Lugan S, Litaise C, Simmons H, Jas-Duval C, Lantier I, Beringue V, Groschup M, Fichet G, Costes P, Streichenberger N, Lantier F, Deslys JP, Vilette D, Andreoletti O. Preclinical detection of variant cjd and bse prions in blood. Plos Pathogens 2014; 10
[183] Safar JG, Geschwind MD, Deering C, Didorenko S, Sattavat M, Sanchez H, Serban A, Vey M, Baron H, Giles K, Miller BL, DeArmond SJ, Prusiner SB. Diagnosis of human prion disease. Proc Natl Acad Sci U S A 2005; 102: 3501-3506.
[184] Nicholson EM. Detection of the disease-associated form of the prion protein in biological samples. Bioanalysis 2015; 7: 253-261.
[185] Torres M, Cartier L, Matamala JM, Hernandez N, Woehlbier U, Hetz C. Altered prion protein expression pattern in csf as a biomarker for creutzfeldt-jakob disease. Plos One 2012; 7
[186] Furukawa H, Doh-ura K, Okuwaki R, Shirabe S, Yamamoto K, Udono H, Ito T, Katamine S, Niwa M. A pitfall in diagnosis of human prion diseases using detection of protease-resistant prion protein in urine - contamination with bacterial outer membrane proteins. J Biol Chem 2004; 279: 23661-23667.
[187] Notari S, Qing LT, Pocchiari M, Dagdanova A, Hatcher K, Dogterom A, Groisman JF, Lumholtz IB, Puopolo M, Lasmezas C, Chen SG, Kong QZ, Gambetti P. Assessing prion infectivity of human urine in sporadic creutzfeldt-jakob disease. Emerg Infect Dis 2012; 18: 21-28.
[188] Oddo S, Billings L, Kesslak JP, Cribbs DH, LaFerla FM. Abeta immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron 2004; 43: 321-332.
[189] Kayed R, Head E, Sarsoza F, Saing T, Cotman CW, Necula M, Margol L, Wu J, Breydo L, Thompson JL, Rasool S, Gurlo T,Butler P, Glabe CG. Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers. Mol Neurodegener 2007; 2: 18.
[190] Hatami A, Monjazeb S, Glabe C. The anti-amyloid-beta monoclonal antibody 4g8 recognizes a generic sequence-independent epitope associated with alpha-synuclein and islet amyloid polypeptide amyloid fibrils. J Alzheimers Dis 2015; 50: 517- 525.
[191] Hatami A, Albay R, 3rd, Monjazeb S, Milton S, Glabe C. Monoclonal antibodies against abeta42 fibrils distinguish multiple aggregation state polymorphisms in vitro and in alzheimer disease brain. J Biol Chem 2014; 289: 32131-32143.
[192] Gowert NS, Donner L, Chatterjee M, Eisele YS, Towhid ST, Munzer P, Walker B, Ogorek I, Borst O, Grandoch M, Schaller M, Fischer JW, Gawaz M, Weggen S, Lang F, Jucker M, Elvers M. Blood platelets in the progression of alzheimer's disease. PLoS One 2014; 9: e90523.
[193] Castillo-Carranza DL, Sengupta U, Guerrero-Munoz MJ, Lasagna-Reeves CA, Gerson JE, Singh G, Estes DM, Barrett AD, Dineley KT, Jackson GR, Kayed R. Passive immunization with tau oligomer monoclonal antibody reverses tauopathy phenotypes without affecting hyperphosphorylated neurofibrillary tangles. J Neurosci 2014; 34: 4260-4272.
[194] Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Sarmiento J, Troncoso J, Jackson GR, Kayed R. Identification of oligomers at early stages of tau aggregation in alzheimer's disease. FASEB J 2012; 26: 1946-1959.
[195] Wu JW, Herman M, Liu L, Simoes S, Acker CM, Figueroa H, Steinberg JI, Margittai M, Kayed R, Zurzolo C, Di Paolo G, Duff KE. Small misfolded tau species are internalized via bulk endocytosis and anterogradely and retrogradely transported in neurons. J Biol Chem 2013; 288: 1856-1870.
[196] Majbour NK, Vaikath NN, van Dijk KD, Ardah MT, Varghese S, Vesterager LB, Montezinho LP, Poole S, Safieh-Garabedian B, Tokuda T, Teunissen CE, Berendse HW, van de Berg WD, El-Agnaf OM. Oligomeric and phosphorylated alpha-synuclein as potential csf biomarkers for parkinson's disease. Mol Neurodegener 2016; 11: 7.
[197] Vaikath NN, Majbour NK, Paleologou KE, Ardah MT, van Dam E, van de Berg WD, Forrest SL, Parkkinen L, Gai WP, Hattori N, Takanashi M, Lee SJ, Mann DM, Imai Y, Halliday GM, Li JY, El-Agnaf OM. Generation and characterization of novel conformation-specific monoclonal antibodies for alpha-synuclein pathology. Neurobiol Dis 2015; 79: 81-99.
[198] Peters-Libeu C, Miller J, Rutenber E, Newhouse Y, Krishnan P, Cheung K, Hatters D, Brooks E, Widjaja K, Tran T, Mitra S, Arrasate M, Mosquera LA, Taylor D, Weisgraber KH, Finkbeiner S. Disease-associated polyglutamine stretches in monomeric huntingtin adopt a compact structure. J Mol Biol 2012; 421: 587-600.
[199] Nucifora LG, Burke KA, Feng X, Arbez N, Zhu S, Miller J,S, Legleiter J, Ross CA, Poirier MA. Identification of novel potentially toxic oligomers formed in vitro from mammalian-derived expanded huntingtin exon-1 protein. J Biol Chem 2012; 287: 16017-16028.
[200] Legleiter J, Lotz GP, Miller J, Ko J, Ng C, Williams GL, Finkbeiner S, Patterson PH, Muchowski PJ. Monoclonal antibodies recognize distinct conformational epitopes formed by polyglutamine in a mutant huntingtin fragment. J Biol Chem 2009; 284: 21647-21658.
[201] Ko J, Ou S, Patterson PH. New anti-huntingtin monoclonal antibodies: Implications for huntingtin conformation and its binding proteins. Brain Res Bull 2001; 56: 319-329.
[202] Shiga Y, Miyazawa K, Sato S, Fukushima R, Shibuya S, Sato Y, Konno H, Doh-ura K, Mugikura S, Tamura H, Higano S, Takahashi S, Itoyama Y. Diffusion-weighted mri abnormalities as an early diagnostic marker for creutzfeldt-jakob disease. Neurology 2004; 63: 443-449.
[203] Wang J, Zhang BY, Zhang J, Xiao K, Chen LN, Wang H, Sun J, Shi Q, Dong XP. Treatment of smb-s15 cells with resveratrol efficiently removes the prp accumulation in vitro and prion infectivity in vivo. Mol Neurobiol 2015
[204] Caughey B, Raymond GJ, Priola SA, Kocisko DA, Race RE, Bessen RA, Lansbury PT, Jr., Chesebro B. Methods for studying prion protein (prp) metabolism and the formation of protease-resistant prp in cell culture and cell-free systems. An update. Mol Biotechnol 1999; 13: 45-55.
[205] Kang HE, Weng CC, Saijo E, Saylor V, Bian J, Kim S, Ramos L, Angers R, Langenfeld K, Khaychuk V, Calvi C, Bartz J, Hunter N, Telling GC. Characterization of conformation-dependent prion protein epitopes. J Biol Chem 2012; 287: 37219- 37232.
[206] Beringue V, Vilette D, Mallinson G, Archer F, Kaisar M, Tayebi M, Jackson GS, Clarke AR, Laude H, Collinge J, Hawke S. Prpsc binding antibodies are potent inhibitors of prion replication in cell lines. J Biol Chem 2004; 279: 39671- 39676.
[207] Doolan KM, Colby DW. Conformation-dependent epitopes recognized by prion protein antibodies probed using mutational scanning and deep sequencing. J Mol Biol 2015; 427: 328-340.
[208] Enari M, Flechsig E, Weissmann C. Scrapie prion protein accumulation by scrapie-infected neuroblastoma cells abrogated by exposure to a prion protein antibody. Proc Natl Acad Sci U S A 2001; 98: 9295-9299.
[209] Peretz D, Williamson RA, Kaneko K, Vergara J, Leclerc E, Schmitt-Ulms G, Mehlhorn IR, Legname G, Wormald MR, Rudd PM, Dwek RA, Burton DR, Prusiner SB. Antibodies inhibit prion propagation and clear cell cultures of prion infectivity. Nature 2001; 412: 739-743.
[210] Wiseman FK, Cancellotti E, Piccardo P, Iremonger K, Boyle A, Brown D, Ironside JW, Manson JC, Diack AB. The glycosylation status of prpc is a key factor in determining transmissible spongiform encephalopathy transmission between species. J Virol 2015; 89: 4738-4747.
[211] Wei X, Herbst A, Ma D, Aiken J, Li L. A quantitative proteomic approach to prion disease biomarker research: Delving into the glycoproteome. J Proteome Res 2011; 10: 2687-2702.
[212] Mysling S, Betzer C, Jensen PH, Jorgensen TJ. Characterizing the dynamics of alpha-synuclein oligomers using hydrogen/deuterium exchange monitored by mass spectrometry. Biochemistry 2013; 52: 9097-9103.
[213] Illes-Toth E, Ramos MR, Cappai R, Dalton C, Smith DP. Distinct higher-order alpha-synuclein oligomers induce intracellular aggregation. Biochem J 2015; 468: 485-493.
[214] Emmanouilidou E, Melachroinou K, Roumeliotis T, Garbis SD, Ntzouni M, Margaritis LH, Stefanis L, Vekrellis K. Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J Neurosci 2010; 30: 6838-6851.
[215] Chiasserini D, van Weering JR, Piersma SR, Pham TV, Malekzadeh A, Teunissen CE, de Wit H, Jimenez CR. Proteomic analysis of cerebrospinal fluid extracellular vesicles: A comprehensive dataset. J Proteomics 2014; 106: 191-204.
[216] Silva CJ, Erickson-Beltran ML, Dynin IC. Covalent surface modification of prions: A mass spectrometry-based means of detecting distinctive structural features of prion strains. Biochemistry 2016; 55: 894-902.