Evaluation of the therapeutic effects of nicotinamide adenine dinucleotide phosphate oxidase inhibition in a rodent model of transient ischaemic stroke

Background: Ischaemic stroke, a leading cause of mortality and disability, induces oxidative stress (OS), largely driven by overactive nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Targeting this enzyme system may offer therapeutic benefits by mitigating cerebrovascular damage. Aim: This study investigated whether suppressing NADPH oxidase through VAS2870 reduces ischaemic brain injury and functional deficits in a rodent stroke model. Methods: Male Sprague Dawley rats underwent 45-min middle cerebral artery occlusion (MCAO), followed by intravenous VAS2870 or vehicle administration 30 min post-reperfusion. Infarct volume was measured at 48 h and day 11 post-MCAO using magnetic resonance imaging or Nissl staining. At day 11 post-MCAO, brains and blood samples were collected to analyse OS, inflammation and cellular changes. Behavioural tests were used to evaluate cognitive and functional outcomes. Results: VAS2870 significantly improved survival outcome following MCAO. However, no significant differences in infarct volume were observed between the control and VAS2870-treated groups. In addition, no significant alterations were detected in total antioxidant capacity, interleukin-1 beta, tissue inhibitor of metalloproteinases-1, or vascular endothelial growth factor levels. Assessment of post-MCAO functional and cognitive deficits revealed a significant worsening of neurological function following VAS2870 treatment on day 2, whereas no significant effect of NADPH oxidase inhibition was found at day 11 post-MCAO. In addition, cellular analysis showed no effect of NADPH oxidase inhibition on neuronal counts, neurogenesis, or angiogenesis in MCAO-affected brain regions. Conclusion: Although post-MCAO targeting of NADPH oxidase significantly improved acute survival, it did not significantly reduce ischaemic injury or improve functional outcome. These findings suggest that although NADPH oxidase inhibition holds promise as a therapeutic strategy, its effectiveness may be limited, particularly when administered during early phases of cerebral reperfusion. Relevance for patients: Although inhibition of NADPH oxidase alone did not improve cognition and neurovascular recovery, it may be beneficial in post-stroke recanalisation therapy.

- Institute for Health Metrics and Evaluation (IHME). Global Burden of Disease 2021: Findings from the GBD 2021 Study. Seattle, WA: IHME; 2024. Available from: https://www.healthdata.org/sites/default/files/2024-05/gbd_2021_booklet_final_2024.05. 16.pdf [Last accessed on 2024 Apr 01].
- Saini V, Guada L, Yavagal DR. Global epidemiology of stroke and access to acute ischaemic stroke interventions. Neurology. 2021;97(20 Suppl 2):S6-S16. doi: 10.1212/WNL.0000000000012781
- Hisham NF, Bayraktutan U. Epidemiology, pathophysiology, and treatment of hypertension in ischaemic stroke patients. J Stroke Cerebrovasc Dis. 2013;22(7):e4-14. doi: 10.1016/j.jstrokecerebrovasdis.2012.05.001
- Feigin VL, Brainin M, Norrving B, et al. World Stroke Organization: Global stroke fact sheet 2025. Int J Stroke. 2025;20(2):132-144. doi: 10.1177/17474930241308142
- Feigin VL, Stark BA, Johnson CO, et al. Global, regional, and national burden of stroke and its risk factors, 1990-2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021;20(10):795-820. doi: 10.1016/S1474-4422(21)00252-0
- Allen CL, Bayraktutan U. Oxidative stress and its role in the pathogenesis of ischaemic stroke. Int J Stroke. 2009;4(6):461-470. doi: 10.1111/j.1747-4949.2009.00387.x
- McMeekin P, Flynn D, James M, Price CI, Ford GA, White P. Updating estimates of the number of UK stroke patients eligible for endovascular thrombectomy: Incorporating recent evidence to facilitate service planning. Eur Stroke J. 2021;6(4):349-356. doi:10.1177/23969873211059471
- Martins SCO, Pontes-Neto OM, Pille A, et al. Reperfusion therapy for acute ischaemic stroke: Where are we in 2023? Arq Neuropsiquiatr. 2023;81(12):1030-1039. doi: 10.1055/s-0043-1777721
- Hacke W, Furlan AJ, Al-Rawi Y. et al. Intravenous desmoteplase in patients with acute ischaemic stroke selected by MRI perfusion-diffusion weighted imaging or perfusion CT (DIAS-2): A prospective, randomised, double-blind, placebo-controlled study. Lancet Neurol. 2009;8(2):141-150. doi: 10.1016/S1474-4422(08)70267-9
- O’Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW. 1,026 experimental treatments in acute stroke. Ann Neurol. 2006;59(3):467-477. doi: 10.1002/ana.20741
- Dirnagl U. Bench to bedside: The quest for quality in experimental stroke research. J Cereb Blood Flow Metab. 2006;26(12):1465-1478. doi: 10.1038/sj.jcbfm.9600298
- Fabian RH, Perez-Polo JR, Kent TA. Perivascular nitric oxide and superoxide in neonatal cerebral hypoxia-ischaemia. Am J Physiol Heart Circ Physiol. 2008;295(4):H1809-H1814. doi: 10.1152/ajpheart.00301.2007
- Allan SM, Rothwell NJ. Cytokines and acute neurodegeneration. Nat Rev Neurosci. 2001;2(10):734-744. doi: 10.1038/35094583
- Doyle KP, Simon RP, Stenzel-Poore MP. Mechanisms of ischaemic brain damage. Neuropharmacology. 2008;55(3):310-318. doi: 10.1016/j.neuropharm.2008.01.005
- Bayraktutan U. Endothelial progenitor cells: Potential novel therapeutics for ischaemic stroke. Pharmacol Res. 2019;144:181-191. doi: 10.1016/j.phrs.2019.04.017
- Proctor PH, Tamborello LP. SAINT-I worked, but the neuroprotectant is not NXY-059. Stroke. 2007;38(10):e109; author reply e110. doi: 10.1161/STROKEAHA.107.489161
- Shuaib A, Lees KR, Lyden P, et al. NXY-059 for the treatment of acute ischaemic stroke. N Engl J Med. 2007;357(6):562-571. doi: 10.1056/NEJMoa070240
- Cifuentes-Pagano E, Csanyi G, Pagano PJ. NADPH oxidase inhibitors: A decade of discovery from Nox2ds to HTS. Cell Mol Life Sci. 2012;69(14):2315-2325. doi: 10.1007/s00018-012-1009-2
- Gorlach A, Brandes RP, Bassus S, et al. Oxidative stress and expression of p22phox are involved in the up-regulation of tissue factor in vascular smooth muscle cells in response to activated platelets. FASEB J. 2000;14(11):1518-1528.
- Lassegue B, Griendling KK. NADPH oxidases: Functions and pathologies in the vasculature. Arterioscler Thromb Vasc Biol. 2010;30(4):653-661. doi: 10.1161/ATVBAHA.108.181610
- Suh SW, Shin BS, Ma H, et al. Glucose and NADPH oxidase drive neuronal superoxide formation in stroke. Ann Neurol. 2008;64(6):654-663. doi: 10.1002/ana.21511
- Abramov AY, Scorziello A, Duchen MR. Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. J Neurosci. 2007;27(5):1129-1138. doi: 10.1523/JNEUROSCI.4468-06.2007
- Ma MW, Wang J, Zhang Q, et al. NADPH oxidase in brain injury and neurodegenerative disorders. Mol Neurodegener. 2017;12(1):7. doi: 10.1186/s13024-017-0150-7
- Bayraktutan U, Draper N, Lang D, Shah AM. Expression of functional neutrophil-type NADPH oxidase in cultured rat coronary microvascular endothelial cells. Cardiovasc Res. 1998;38(1):256-62. doi: 10.1016/s0008-6363(98)00003-0
- Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: Role in cardiovascular biology and disease. Circ Res. 2000;86(5):494-501. doi: 10.1161/01.res.86.5.494
- Infanger DW, Sharma RV, Davisson RL. NADPH oxidases of the brain: Distribution, regulation, and function. Antioxid Redox Signal. 2006;8(9-10):1583-1596. doi: 10.1089/ars.2006.8.1583
- Kim MJ, Shin KS, Chung YB, Jung KW, Cha CI, Shin DH. Immunohistochemical study of p47Phox and gp91Phox distributions in rat brain. Brain Res. 2005;1040(1-2):178-186. doi: 10.1016/j.brainres.2005.01.066
- Serrano F, Kolluri NS, Wientjes FB, Card JP, Klann E. NADPH oxidase immunoreactivity in the mouse brain. Brain Res. 2003;988(1-2):193-198. doi: 10.1016/s0006-8993(03)03364-x
- McCann SK, Dusting GJ, Roulston CL. Early increase of Nox4 NADPH oxidase and superoxide generation following endothelin-1-induced stroke in conscious rats. J Neurosci Res. 2008;86(11):2524-2534. doi: 10.1002/jnr.21700
- Miller AA, Drummond GR, Schmidt HH, Sobey CG. NADPH oxidase activity and function are profoundly greater in cerebral versus systemic arteries. Circ Res. 2005;97(10):1055-1062. doi: 10.1161/01.RES.0000189301.10217.87
- Miller AA, Dusting GJ, Roulston CL, Sobey CG. NADPH-oxidase activity is elevated in penumbral and non-ischaemic cerebral arteries following stroke. Brain Res. 2006;1111(1):111-116. doi: 10.1016/j.brainres.2006.06.082
- Kleinschnitz C, Grund H, Wingler K, et al. Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration. PLoS Biol. 2010;8(9):e1000479. doi: 10.1371/journal.pbio.1000479
- Hong H, Zeng JS, Kreulen DL, Kaufman DI, Chen AF. Atorvastatin protects against cerebral infarction via inhibition of NADPH oxidase-derived superoxide in ischaemic stroke. Am J Physiol Heart Circ Physiol. 2006;291(5):H2210-H22105. doi: 10.1152/ajpheart.01270.2005
- Murotomi K, Takagi N, Takeo S, Tanonaka K. NADPH oxidase-mediated oxidative damage to proteins in the postsynaptic density after transient cerebral ischaemia and reperfusion. Mol Cell Neurosci. 2011;46(3):681-688. doi: 10.1016/j.mcn.2011.01.009
- Case J, Ingram DA, Haneline LS. Oxidative stress impairs endothelial progenitor cell function. Antioxid Redox Signal. 2008;10(11):1895-1907. doi: 10.1089/ars.2008.2118
- Furst R, Brueckl C, Kuebler WM, et al. Atrial natriuretic peptide induces mitogen-activated protein kinase phosphatase-1 in human endothelial cells via Rac1 and NAD(P)H oxidase/ Nox2-activation. Circ Res. 2005;96(1):43-53. doi: 10.1161/01.RES.0000151983.01148.06
- Görlach C, Hortobágyi T, Hortobágyi S, Benyó Z. Neuronal nitric oxide synthase inhibitor has a neuroprotective effect in a rat model of brain injury. Restor Neurol Neurosci. 2000;17(2-3):71-76.
- Drummond GR, Selemidis S, Griendling KK, Sobey CG. Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat Rev Drug Discov. 2011;10(6):453-471. doi: 10.1038/nrd3403
- Ha JS, Lee JE, Lee JR, et al. Nox4-dependent H2O2 production contributes to chronic glutamate toxicity in primary cortical neurons. Exp Cell Res. 2010;316(10):1651-1661. doi: 10.1016/j.yexcr.2010.03.021
- Serrander L, Cartier L, Bedard K, et al. NOX4 activity is determined by mRNA levels and reveals a unique pattern of ROS generation. Biochem J. 2007;406(1):105-114. doi: 10.1042/BJ20061903
- Ha JS, Lim HM, Park SS. Extracellular hydrogen peroxide contributes to oxidative glutamate toxicity. Brain Res. 2010;1359:291-297. doi: 10.1016/j.brainres.2010.08.086
- Jackman KA, Miller AA, De Silva TM, Crack PJ, Drummond GR, Sobey CG. Reduction of cerebral infarct volume by apocynin requires pretreatment and is absent in Nox2-deficient mice. Br J Pharmacol. 2009;156(4):680-688. doi: 10.1111/j.1476-5381.2008.00073.x
- Hultqvist M, Olsson LM, Gelderman KA, Holmdahl R. The protective role of ROS in autoimmune disease. Trends Immunol. 2009;30(5):201-208. doi: 10.1016/j.it.2009.03.004
- Alwjwaj M, Kadir RRA, Bayraktutan U. Outgrowth endothelial progenitor cells restore cerebral barrier function following ischaemic damage: The impact of NOX2 inhibition. Eur J Neurosci. 2022;55(6):1658-1670. doi: 10.1111/ejn.15627
- Dao VT, Elbatreek MH, Altenhöfer S, et al. Isoform-selective NADPH oxidase inhibitor panel for pharmacological target validation. Free Radic Biol Med. 2020;148:60-69. doi: 10.1016/j.freeradbiomed.2019.12.038
- Augsburger F, Filippova A, Rasti D, et al. Pharmacological characterization of the seven human NOX isoforms and their inhibitors. Redox Biol. 2019;26:101272. doi: 10.1016/j.redox.2019.101272
- Reis J, Massari M, Marchese S, et al. A closer look into NADPH oxidase inhibitors: Validation and insight into their mechanism of action. Redox Biol. 2020;32:101466. doi: 10.1016/j.redox.2020.101466
- Liu Z, Tuo YH, Chen JW, et al. NADPH oxidase inhibitor regulates microRNAs with improved outcome after mechanical reperfusion. J Neurointerv Surg. 2017;9(7):702-706. doi: 10.1136/neurintsurg-2016-012463
- Tuo YH, Liu Z, Chen JW, et al. NADPH oxidase inhibitor improves outcome of mechanical reperfusion by suppressing haemorrhagic transformation. J Neurointerv Surg. 2017;9(5):492-498. doi: 10.1136/neurintsurg-2016-012377
- Reskiawan AKR, Alwjwaj M, Ahmad Othman O, et al. Inhibition of oxidative stress delays senescence and augments functional capacity of endothelial progenitor cells. Brain Res. 2022;1787:147925. doi: 10.1016/j.brainres.2022.147925
- Chan EC, Jiang F, Peshavariya HM, Dusting GJ. Regulation of cell proliferation by NADPH oxidase-mediated signalling: Potential roles in tissue repair, regenerative medicine and tissue engineering. Pharmacol Ther. 2009;122(2):97-108. doi: 10.1016/j.pharmthera.2009.02.005
- Ten Freyhaus H, Huntgeburth M, Wingler K, et al. Novel Nox inhibitor VAS2870 attenuates PDGF-dependent smooth muscle cell chemotaxis, but not proliferation. Cardiovasc Res. 2006;71(2):331-341. doi: 10.1016/j.cardiores.2006.01.022
- Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8(6):e1000412. doi: 10.1371/journal.pbio.1000412
- UK Gov Home Office Code of Practice for the Housing and Care of Animals Bred, Supplied or used for Scientific Purposes; 2014. Available from: https://www.gov.uk/government/ publications/code-of-practice-for-the-housing-and-care-of-animals-bred-supplied-or-used-for-scientific-purposes#full-publication-update-history [Last accessed on 2022 Aug 30].
- Charan J, Kantharia ND. How to calculate sample size in animal studies? J Pharmacol Pharmacother. 2013;4(4):303-306. doi: 10.4103/0976-500x.119726
- Sotocinal SG, Sorge RE, Zaloum A, et al. The rat grimace scale: A partially automated method for quantifying pain in the laboratory rat via facial expressions. Mol Pain. 2011;7:55. doi: 10.1186/1744-8069-7-55
- Bayliss M, Trotman-Lucas M, Janus J, Kelly ME, Gibson CL. Pre-stroke surgery is not beneficial to normotensive rats undergoing sixty minutes of transient focal cerebral ischaemia. PLoS One. 2018;13(12):e0209370. doi: 10.1371/journal.pone.0209370
- Linkert M, Rueden CT, Allan C, et al. Metadata matters: Access to image data in the real world. J Cell Biol. 2010;189(5):777-782. doi: 10.1083/jcb.201004104
- Ord EN, Shirley R, van Kralingen JC, et al. Positive impact of pre-stroke surgery on survival following transient focal ischaemia in hypertensive rats. J Neurosci Methods. 2012;211(2):305-308. doi: 10.1016/j.jneumeth.2012.09.001
- Momeni S, Segerström L, Roman E. Supplier-dependent differences in intermittent voluntary alcohol intake and response to naltrexone in Wistar rats. Front Neurosci. 2015;9:424. doi: 10.3389/fnins.2015.00424
- Morais A, Imai T, Jin X, et al. Biological and procedural predictors of outcome in the stroke preclinical assessment network (SPAN) trial. Circ Res. 2024;135(5):575-592. doi: 10.1161/CIRCRESAHA.123.324139
- Sun QA, Hess DT, Wang B, Miyagi M, Stamler JS. Off-target thiol alkylation by the NADPH oxidase inhibitor 3-benzyl- 7-(2-benzoxazolyl)thio-1,2,3-triazolo[4,5-d]pyrimidine (VAS2870). Free Radic Biol Med. 2012;52(9):1897-1902. doi: 10.1016/j.freeradbiomed.2012.02.046
- Zielonka J, Cheng G, Zielonka M, et al. High-throughput assays for superoxide and hydrogen peroxide: Design of a screening workflow to identify inhibitors of NADPH oxidases. J Biol Chem. 2014;289(23):16176-16189. doi: 10.1074/jbc.M114.548693
- Doser RL, Amberg GC, Hoerndli FJ. Reactive oxygen species modulate activity-dependent AMPA receptor transport in C. elegans. J Neurosci. 2020;40(39):7405-7420. doi: 10.1523/JNEUROSCI.0902-20.2020
- Doser RL, Hoerndli FJ. Regulation of neuronal excitability by reactive oxygen species and calcium signalling: Insights into brain aging. Curr Res Neurobiol. 2021;2:100012. doi: 10.1016/j.crneur.2021.100012
- Hidalgo C, Arias-Cavieres A. Calcium, reactive oxygen species, and synaptic plasticity. Physiology (Bethesda). 2016;31(3):201-215. doi: 10.1152/physiol.00038.2015
- Lu WJ, Li JY, Chen RJ, Huang LT, Lee TY, Lin KH. VAS2870 and VAS3947 attenuate platelet activation and thrombus formation via a NOX-independent pathway downstream of PKC. Sci Rep. 2019;9(1):18852. doi: 10.1038/s41598-019-55189-5
- Lim PS, Sutton CR, Rao S. Protein kinase C in the immune system: From signalling to chromatin regulation. Immunology. 2015;146(4):508-522. doi: 10.1111/imm.12510
- Dominguez-Garcia S, Gomez-Oliva R, Geribaldi-Doldan N, et al. Effects of classical PKC activation on hippocampal neurogenesis and cognitive performance: Mechanism of action. Neuropsychopharmacology. 2021;46(6):1207-1219. doi: 10.1038/s41386-020-00934-y
- Abdullah Z, Bayraktutan U. NADPH oxidase mediates TNF-alpha-evoked in vitro brain barrier dysfunction: Roles of apoptosis and time. Mol Cell Neurosci. 2014;61:72-84. doi: 10.1016/j.mcn.2014.06.002
- Abdullah Z, Rakkar K, Bath PM, Bayraktutan U. Inhibition of TNF-alpha protects in vitro brain barrier from ischaemic damage. Mol Cell Neurosci. 2015;69:65-79. doi: 10.1016/j.mcn.2015.11.003
- Kendrick DJ, Mishra RC, John CM, Zhu HL, Braun AP. Effects of pharmacological inhibitors of NADPH oxidase on myogenic contractility and evoked vasoactive responses in rat resistance arteries. Front Physiol. 2021;12:752366. doi: 10.3389/fphys.2021.752366
- Li W, Huang R, Shetty RA, et al. Transient focal cerebral ischaemia induces long-term cognitive function deficit in an experimental ischaemic stroke model. Neurobiol Dis. 2013;59:18-25. doi: 10.1016/j.nbd.2013.06.014
- Murphy TH, Corbett D. Plasticity during stroke recovery: From synapse to behaviour. Nat Rev Neurosci. 2009;10(12):861-872. doi: 10.1038/nrn2735
- Sun H, He X, Tao X, et al. The CD200/CD200R signalling pathway contributes to spontaneous functional recovery by enhancing synaptic plasticity after stroke. J Neuroinflammation. 2020;17(1):171. doi: 10.1186/s12974-020-01845-x
- van Meer MP, van der Marel K, Wang K, et al. Recovery of sensorimotor function after experimental stroke correlates with restoration of resting-state interhemispheric functional connectivity. J Neurosci. 2010;30(11):3964-3972. doi: 10.1523/JNEUROSCI.5709-09.2010
- Lourbopoulos A, Mamrak U, Roth S, et al. Inadequate food and water intake determine mortality following stroke in mice. J Cereb Blood Flow Metab. 2017;37(6):2084-2097. doi: 10.1177/0271678X16660986
- Liu F, McCullough LD. Middle cerebral artery occlusion model in rodents: Methods and potential pitfalls. J Biomed Biotechnol. 2011;2011:464701. doi: 10.1155/2011/464701
- Trotman M, Vermehren P, Gibson CL, Fern R. The dichotomy of memantine treatment for ischaemic stroke: Dose-dependent protective and detrimental effects. J Cereb Blood Flow Metab. 2015;35(2):230-239. doi: 10.1038/jcbfm.2014.188
- Schallert T. Behavioural tests for preclinical intervention assessment. NeuroRx. 2006;3(4):497-504. doi: 10.1016/j.nurx.2006.08.001
- Markgraf CG, Green EJ, Hurwitz BE, et al. Sensorimotor and cognitive consequences of middle cerebral artery occlusion in rats. Brain Res. 1992;575(2):238-246. doi: 10.1016/0006-8993(92)90085-n
- Roof RL, Schielke GP, Ren X, Hall ED. A comparison of long-term functional outcome after 2 middle cerebral artery occlusion models in rats. Stroke. 2001;32(11):2648-2657. doi: 10.1161/hs1101.097397
- Linden J, Fassotte L, Tirelli E, Plumier JC, Ferrara A. Assessment of behavioural flexibility after middle cerebral artery occlusion in mice. Behav Brain Res. 2014;258:127-137. doi: 10.1016/j.bbr.2013.10.028
- Olton DS. Mazes, maps, and memory. Am Psychol. 1979;34(7):583-596. doi: 10.1037/0003-066x.34.7.583
- Raz L, Zhang QG, Zhou CF, et al. Role of Rac1 GTPase in NADPH oxidase activation and cognitive impairment following cerebral ischaemia in the rat. PLoS One. 2010;5(9):e12606. doi: 10.1371/journal.pone.0012606
- Choi DH, Lee KH, Kim JH, et al. NADPH oxidase 1, a novel molecular source of ROS in hippocampal neuronal death in vascular dementia. Antioxid Redox Signal. 2014;21(4):533-550. doi: 10.1089/ars.2012.5129
- Kim HA, Miller AA, Drummond GR, et al. Vascular cognitive impairment and Alzheimer’s disease: Role of cerebral hypoperfusion and oxidative stress. Naunyn Schmiedebergs Arch Pharmacol. 2012;385(10):953-959. doi: 10.1007/s00210-012-0790-7
- Bayraktutan U. Nitric oxide synthase and NAD(P)H oxidase modulate coronary endothelial cell growth. J Mol Cell Cardiol. 2004;36(2):277-286. doi: 10.1016/j.yjmcc.2003.11.005
- Bayraktutan U. Coronary microvascular endothelial cell growth regulates expression of the gene encoding p22-phox. Free Radic Biol Med. 2005;39(10):1342-1352. doi: 10.1016/j.freeradbiomed.2005.06.016
- Knapp LT, Klann E. Role of reactive oxygen species in hippocampal long-term potentiation: Contributory or inhibitory? J Neurosci Res. 2002;70(1):1-7. doi: 10.1002/jnr.10371
- Dickinson BC, Peltier J, Stone D, Schaffer DV, Chang CJ. Nox2 redox signalling maintains essential cell populations in the brain. Nat Chem Biol. 2011;7(2):106-112. doi: 10.1038/nchembio.497
- Lau LH, Lew J, Borschmann K, Thijs V, Ekinci EI. Prevalence of diabetes and its effects on stroke outcomes: A meta-analysis and literature review. J Diabetes Investig. 2019;10(3):780-792. doi: 10.1111/jdi.12932
- Zhang H, Yue K, Jiang Z, et al. Incidence of stress-induced hyperglycaemia in acute ischaemic stroke: A systematic review and meta-analysis. Brain Sci. 2023;13(4):556. doi: 10.3390/brainsci13040556
- Kiers L, Davis SM, Larkins R, et al. Stroke topography and outcome in relation to hyperglycaemia and diabetes. J Neurol Neurosurg Psychiatry. 1992;55(4):263-270. doi: 10.1136/jnnp.55.4.263
- Shao B, Bayraktutan U. Hyperglycaemia promotes human brain microvascular endothelial cell apoptosis via induction of protein kinase C-ssI and prooxidant enzyme NADPH oxidase. Redox Biol. 2014;2:694-701. doi: 10.1016/j.redox.2014.05.005
- Kadir RRA, Alwjwaj M, McCarthy Z, Bayraktutan U. Therapeutic hypothermia augments the restorative effects of PKC-beta and Nox2 inhibition on an in vitro model of human blood-brain barrier. Metab Brain Dis. 2021;36(7):1817-1832. doi: 10.1007/s11011-021-00810-8
- Saver JL, Albers GW, Dunn B, Johnston KC, Fisher M, STAIR VI Consortium. Stroke Therapy Academic Industry Roundtable (STAIR) recommendations for extended window acute stroke therapy trials. Stroke. 2009;40(7):2594-2600. doi: 10.1161/STROKEAHA.109.552554
- Banks WA. From blood-brain barrier to blood-brain interface: New opportunities for CNS drug delivery. Nat Rev Drug Discov. 2016;15(4):275-292. doi: 10.1038/nrd.2015.21
- Hone EA, Hu H, Sprowls SA, et al. Biphasic blood-brain barrier openings after stroke. Neurol Disord Stroke Int. 2018;1(2):1011.
- Huang ZG, Xue D, Preston E, Karbalai H, Buchan AM. Biphasic opening of the blood-brain barrier following transient focal ischaemia: Effects of hypothermia. Can J Neurol Sci. 1999;26(4):298-304. doi: 10.1017/s0317167100000421
- Rizk NN, Rafols J, Dunbar JC. Cerebral ischaemia induced apoptosis and necrosis in normal and diabetic rats. Brain Res. 2005;1053(1-2):1-9. doi: 10.1016/j.brainres.2005.05.036
- Barth TM, Jones TA, Schallert T. Functional subdivisions of the rat somatic sensorimotor cortex. Behav Brain Res. 1990;39(1):73-95. doi: 10.1016/0166-4328(90)90122-u
- Shah FA, Li T, Kury LTA, et al. Pathological comparisons of the hippocampal changes in the transient and permanent middle cerebral artery occlusion rat models. Front Neurol. 2019;10:1178. doi: 10.3389/fneur.2019.01178
- Zhu CZ, Auer RN. Graded hypotension and MCA occlusion duration: Effect in transient focal ischaemia. J Cereb Blood Flow Metab. 1995;15(6):980-988. doi: 10.1038/jcbfm.1995.124
- Ming GL, Song H. Adult neurogenesis in the mammalian brain: Significant answers and significant questions. Neuron. 2011;70(4):687-702. doi: 10.1016/j.neuron.2011.05.001
- Eriksson PS, Perfilieva E, Björk-Eriksson T, et al. Neurogenesis in the adult human hippocampus. Nat Med. 1998;4(11):1313-1317. doi: 10.1038/3305
- Wahl F, Allix M, Plotkine M, Boulu RG. Neurological and behavioural outcomes of focal cerebral ischaemia in rats. Stroke. 1992;23(2):267-272. doi: 10.1161/01.str.23.2.267
- Okada M, Tamura A, Urae A, et al. Long-term spatial cognitive impairment following middle cerebral arteryocclusion in rats. A behavioural study. J Cereb Blood Flow Metab. 1995;15(3):505-512. doi: 10.1038/jcbfm.1995.62
- Volpe BT, Pulsinelli WA, Tribuna J, Davis HP. Behavioural performance of rats following transient forebrain ischaemia. Stroke. 1984;15(3):558-562. doi: 10.1161/01.str.15.3.558
- Schaar KL, Brenneman MM, Savitz SI. Functional assessments in the rodent stroke model. Exp Transl Stroke Med. 2010;2(1):13. doi: 10.1186/2040-7378-2-13
- Freret T, Bouet V, Leconte C, et al. Behavioural deficits after distal focal cerebral ischaemia in mice: Usefulness of adhesive removal test. Behav Neurosci. 2009;123(1):224-230. doi: 10.1037/a0014157
- Ingberg E, Dock H, Theodorsson E, Theodorsson A, Strom JO. Method parameters’ impact on mortality and variability in mouse stroke experiments: A meta-analysis. Sci Rep. 2016;6:21086. doi: 10.1038/srep21086
- Percie du Sert N, Alfieri A, Allan SM, et al. The IMPROVE guidelines (ischaemia models: Procedural refinements of in vivo experiments). J Cereb Blood Flow Metab. 2017;37(11):3488-3517. doi: 10.1177/0271678X17709185