A broad appraisal of decompression-induced physiological stress in different simulated dive profiles
Background: The present study was designed to observe if different decompression profiles, calculated as a function of tissue supersaturation during ascent, would result in significantly different outcomes, measured through different physiological stress indicators, even in the absence of symptoms of decompression sickness.
Aim: The aim of this study was to evaluate if simulated decompression profiles would affect the immune system, oxidative stress indicators, and heart rate variability.
Methods: A total of 23 volunteers participated in two different experimental protocols in a dry hyperbaric chamber. These simulated dives comprised two different compression–decompression arrangements with the same maximum pressure and duration but different decompression profiles.
Results: The shallow decompression profile with shorter deeper stops and longer shallow stops presented an increase in the standard deviation of the normal-to-normal R-R interval (a wide indicator of overall variability); the deep decompression profile with longer deeper stops and shorter shallow stops did not exhibit such increase. The shallow decompression profile resulted in an increase in neutrophil count and its microparticles (MPs), but no changes were observed for platelet count and its MPs, as well as for endothelial-derived MPs. In contrast, the deep decompression profile resulted in no changes in neutrophil count and its MPs, but a decrease in platelet count along with an increase in MPs from both platelets and endothelial cells. The observed difference might be related to different levels of decompression-related activation of immune system responses and oxidative processes triggered by different levels of inert gas supersaturation upon surfacing.
Conclusion: From previous results and literature data, we present a tentative schematic of how the velocity of ascent would trigger (or not) pro-inflammatory and immune system responses that could ultimately lead to the development of decompression sickness.
Relevance for patients: Increasing safety in exposure to hyperbaric environments and subsequent decompression by evaluating individual physiological responses to the process.
[1] Boycott AE, Damant GC, Haldane JS. The Prevention of Compressed-air Illness. J Hyg (Lond) 1908;8:342-443. doi: 10.1017/s0022172400003399
[2] Bühlmann A. Decompression, Decompression Sickness. Berlin: Springer Verlag Heidelberg; 1984. doi: 10.1007/978-3-662-02409-6
[3] Howle LE, Weber PW, Hada EA, Vann RD, Denoble PJ. The Probability and Severity of Decompression Sickness. PLoS One 2017;12(3):1-25. doi: 10.1371/journal.pone.0172665
[4] Doolette D, Gerth W, Gault K. Redistribution of Decompression Stop Time from Shallow to Deep Stops Increases Incidence of Decompression Sickness in Air Decompression Dives. Panama City: Navy Experimental Diving Unit; 2011.
[5] Yount DE, Hoffman DC. On the Use of a Bubble Formation Model to Calculate Diving Tables. Aviat Space Environ Med 1986;57:149-56.
[6] Marroni A, Bennett PB, Cronje FJ, Cali-Corleo R, Germonpre P, Pieri M, et al. A Deep Stop during Decompression from 82 fsw (25m) Significantly Reduces Bubbles and Fast Tissue Gas Tensions. Undersea Hyperb Med 2004;31:233-43.
[7] Doolette DJ. Venous Gas Emboli Detected by TwoDimensional Echocardiography are an Imperfect Surrogate Endpoint for Decompression Sickness. Diving Hyperb Med 2016;46:4-10.
[8] Doolette DJ, Murphy FG, Gerth WA. Thalmann Algorithm parameter sets for support of constant 1.3 atm PO2 He-O2 diving to 300 fsw. Panama City:Navy Experimental Diving Unit; 2018.
[9] Madden LA, Laden G. Gas Bubbles may not be the Underlying cause of Decompression Illness - the at-Depth Endothelial Dysfunction Hypothesis. Med Hypotheses 2009;72:389-92. doi: 10.1016/j.mehy.2008.11.022
[10] Thom SR, Bennett M, Banham ND, Chin W, Blake DF, Rosen A, et al. Association of Microparticles and Neutrophil Activation with Decompression Sickness. J Appl Physiol 2015;119:427-34. doi: 10.1152/japplphysiol.00380.2015
[11] Bhullar J, Bhopale VM, Yang M, Sethuraman K, ThomSR. Microparticle Formation by Platelets Exposed to High Gas Pressures - An Oxidative Stress Response. Free Radic Biol Med 2016;101:154-62. doi: 10.1016/j.freeradbiomed.2016.10.010
[12] Batool S, Abbasian N, Burton JO, Stover C. Microparticles and their Roles in Inflammation: A Review. Open Immunol J 2013;6:1-14. doi: 10.2174/1874226201306010001
[13] Cognasse F, Hamzeh-Cognasse H, Laradi S, ChouML, Seghatchian J, Burnouf T, et al. The Role of Microparticles in Inflammation and Transfusion: A Concise Review. Transfus Apher Sci 2015;53:159-67. doi: 10.1016/j.transci.2015.10.013
[14] Puddu P, Puddu GM, Cravero E, Muscari S, Muscari A. The Involvement of Circulating Microparticles in Inflammation, Coagulation and Cardiovascular Diseases. Can J Cardiol 2010;26:140-5. doi: 10.1016/S0828-282X(10)70371-8
[15] Brett KD, Nugent NZ, Fraser NK, Bhopale VM, Yang M, Thom SR. Microparticle and Interleukin-1Β Production with Human Simulated Compressed Air Diving. Sci Rep 2019;9:13320.
[16] Thom SR, Bhopale VM, Yang M. Neutrophils Generate Microparticles during Exposure to Inert Gases Due to Cytoskeletal Oxidative Stress. J Biol Chem 2014;289:18831-45. doi: 10.1074/jbc.M113.543702
[17] Winterbourn CC, Kettle AJ, Hampton MB. Reactive Oxygen Species and Neutrophil Function. Annu Rev Biochem 2016;85:765-92. doi: 10.1146/annurev-biochem-060815-014442
[18] Schirato SR, El-Dash I, El-Dash V, Natali JE, Starzynski PN, Chaui-Berlinck JG. Heart Rate Variability Changes as an Indicator of DecompressionRelated Physiological Stress. Undersea Hyperb Med 2018;45:173-82.
[19. Schirato SR, El-Dash I, El-Dash V, Bizzarro B, Marroni A, Pieri M, et al. Association between Heart Rate Variability and Physiological Stress. Front Physiol 2020;11:743. doi: 10.3389/fphys.2020.00743
[20] The North American, Task Force of the European Society of Cardiology and The North American Society of Pacing and Electrophysiology. Heart Rate Variability: Standards of Measurement, Physiological Interpretation, and Clinical Use. Eur Heart J 1996;17:354-81. doi: 10.1161/01.CIR.93.5.1043
[21] von Käne R, Nelesen RA, Mills PJ, Ziegler MG, Dimsdale JE. Relationship between Heart Rate Variability, Interleukin-6, and Soluble Tissue Factor in Healthy Subjects. Brain Behav Immun 2008;22:461-8.
[22] Kaufman CL, Kaiser DR, Steinberger J, Dengel DR. Relationships between Heart Rate Variability, Vascular Function, and Adiposity in Children. Clin Auton Res 2007;17:165-71. doi: 10.1007/s10286-007-0411-6
[23] Haraguchi R, Hoshi H, Ichikawa S, Hanyu M, Nakamura K, Fukasawa K, et al. The Menstrual Cycle Alters RestingState Cortical Activity: A Magnetoencephalography Study. Front Hum Neurosci 2021;15:652789. doi: 10.3389/fnhum.2021.652789
[24] Cialoni D, Pieri M, Balestra C, Marroni A. Dive Risk Factors, Gas Bubble Formation, and Decompression Illness in Recreational SCUBA Diving: Analysis of DAN Europe DSL Data Base. Front Psychol 2017;8:1587. doi: 10.3389/fpsyg.2017.01587
[25] Thom SR, Yang M, Bhopale VM, Milovanova TN, Bogush M, Buerk DG. Intramicroparticle Nitrogen Dioxide is a Bubble Nucleation Site Leading to Decompression-Induced Neutrophil Activation and Vascular Injury. J Appl Physiol 2013;114:550-8. doi: 10.1152/japplphysiol.01386.2012
[26] Thom SR, Milovanova TN, Bogush M, Bhopale VM, Yang M, Bushmann K, et al. Microparticle Production, Neutrophil Activation, and Intravascular Bubbles Following Open-Water SCUBA Diving. J Appl Physiol 2012;112:1268-78. doi: 10.1152/japplphysiol.01305.2011
[27] Ludbrook J, Dudley H. Why Permutation Tests Are Superior to t and F Tests in Biomedical Research. John Ludbrook and Hugh Dudley Source : The American Statistician, 52, 127-132. Am Stat Assoc 2008;52:127-32.
[28] Vince RV, McNaughton LR, Taylor L, Midgley AW, Laden G, Madden LA. Release of VCAM-1 Associated Endothelial Microparticles Following Simulated SCUBA Dives. Eur J Appl Physiol 2009;105:507-13. doi: 10.1007/s00421-008-0927-z
[29] Madden D, Thom SR, Dujic Z. Exercise Before and After SCUBA Diving and the Role of Cellular Microparticles in Decompression Stress. Med Hypotheses 2016;86:80-4. doi: 10.1016/j.mehy.2015.12.006
[30] Ernst G. Heart-Rate Variability-More than Heart Beats? Front Public Health 2017;5:240. doi: 10.3389/fpubh.2017.00240
[31] Noh Y, Posada-Quintero HF, Bai Y, White J, Florian JPBrink PR, et al. Effect of Shallow and Deep SCUBA Dives on Heart Rate Variability. Front Physiol 2018;9:110. doi: 10.3389/fphys.2018.00110
[32] Marchitto N, Iannarelli N, Paparello PT, Cioeta E, Parisi F, Pirrone S, et al. The Cardiovascular Risk in the Scuba Divers. J Sports Med Phys Fitness 2019;59:1779-82. doi: 10.23736/S0022-4707.19.09358-7
[33] Lauscher P, Kertscho H, Enselmann P, Lauscher S, Habler O, Meier J. Effects of Alterations of Inspiratory Oxygen Fractions on Heart Rate Variability. Br J Anaesth 2012;108:402-8. doi: 10.1093/bja/aer404
[34] Chapleau MW, Li Z, Meyrelles SS, Ma X, Abboud FM. Mechanisms Determining Sensitivity of Baroreceptor Afferents in Health and Disease. Ann N Y Acad Sci 2006;940:1-19. doi: 10.1111/j.1749-6632.2001.tb03662.x
[35] Rahman F, Pechnik S, Gross D, Sewell L, Goldstein DS. Low Frequency Power of Heart Rate Variability Reflects Baroreflex Function, not Cardiac Sympathetic Innervation. Clin Auton Res 2011;21:133-41. doi: 10.1007/s10286-010-0098-y
[36] Harris KF, Matthews KA. Interactions between Autonomic Nervous System Activity and Endothelial Function: AModel for the Development of Cardiovascular Disease. Psychosom Med 2004;66:153-64. doi: 10.1097/01.psy.0000116719.95524.e2
[37] Brodsky SV, Zhang F, Nasjletti A, Goligorsky MS. Endothelium-Derived Microparticles Impair Endothelial Function in Vitro. Am J Physiol Heart Circ Physiol 2004;286(5):H1910-5. doi: 10.1152/ajpheart.01172.2003
[38] Cialoni D, Brizzolari A, Barassi A, Bosco G, Pieri M, Lancellotti V, et al. White Blood Cells, Platelets, Red Blood Cells and Gas Bubbles in SCUBA Diving: Is there a Relationship? Healthcare (Basel) 2022;10:182. doi: 10.3390/healthcare10020182
[39] Lindemann S, Tolley ND, Dixon DA, McIntyre TM, Prescott SM, Zimmerman GA, et al. Activated Platelets Mediate Inflammatory Signaling by Regulated Interleukin 1β Synthesis. J Cell Biol 2001;154:485-90. doi: 10.1083/jcb.200105058
[40] Alicia P, Yourish K. Platelets: Versatile Effector Cells in Hemostasis, Inflammation, and the Immune Continuum. Nyt 2018;34:5-30. doi: 10.1007/s00281-011-0286-4
[41] Pontier JM, Vallée N, Bourdon L. Bubble-Induced Platelet Aggregation in a Rat Model of Decompression Sickness. J Appl Physiol (1985) 2009;107:1825-9. doi: 10.1152/japplphysiol.91644.2008
[42] Pontier JM, Blatteau JE, Vallée N. Blood Platelet Count and Severity of Decompression Sickness in Rats After a Provocative Dive. Aviat Space Environ Med 2008;79:761-4. doi: 10.3357/ASEM.2299.2008
[43] Pontier JM, Jimenez C, Blatteau JE. Blood Platelet Count and Bubble Formation After a Dive to 30 msw for 30 Min. Aviat Space Environ Med 2008;79:1096-9. doi: 10.3357/ASEM.2352.2008
[44] Watanabe J, Marathe GK, Neilsen PO, Weyrich AS, Harrison KA, Murphy RC, et al. Endotoxins Stimulate Neutrophil Adhesion Followed by Synthesis and Release of Platelet-Activating Factor in Microparticles. J Biol Chem 2003;278:33161-8. doi: 10.1074/jbc.M305321200
[45] Jy W, Mao WW, Horstman LL, Tao J, Ahn YS. Platelet Microparticles Bind, Activate and Aggregate Neutrophils in Vitro. Blood Cells Mol Dis. 1995;21:217-31. doi: 10.1006/bcmd.1995.0025
[46] Hottz ED, Lopes JF, Freitas C, Valls-de-Souza R, Oliveira MF, Bozza MT, et al. Platelets Mediate Increased Endothelium Permeability in Dengue through NLRP3- Inflammasome Activation. Blood 2013;122:3405-14. doi: 10.1182/blood-2013-05-504449
[47] Lang F, Lang E, Fller M. Physiology and Pathophysiology of Eryptosis. Transfus Med Hemother 2012;39:308-14. doi: 10.1159/000342534
[48] Pretorius E, Du Plooy JN, Bester J. A Comprehensive Review on Eryptosis. Cell Physiol Biochem 2016;39:1977-2000. doi: 10.1159/000447895
[49] Perovic A, Nikolac N, Njire Braticevic M, Milcic A, Sobocanec S, Balog T, et al. Does Recreational Scuba Diving have Clinically Significant Effect on Routine Haematological Parameters? Biochem Med (Zagreb) 2017;27:27-38. doi: 10.11613/BM.2017.035
[50] Al-Gwaiz LA, Babay HH. The Diagnostic Value of Absolute Neutrophil Count, Band Count and Morphologic Changes of Neutrophils in Predicting Bacterial Infections. Med Princ Pract 2007;16:344-7. doi: 10.1159/000104806
[51] Tatsukawa Y, Hsu WL, Yamada M, Cologne JB, Suzuki G, Yamamoto H, et al. White Blood Cell Count, Especially Neutrophil Count, as a Predictor of Hypertension in a Japanese Population. Hypertens Res 2008;31:1391-7. doi: 10.1291/hypres.31.1391
[52] de Jager CPC, Wever PC, Gemen EFA, Kusters R, van Gageldonk-Lafeber AB, van der Poll T, et al. The Neutrophil-Lymphocyte Count Ratio in Patients with Community-Acquired Pneumonia. PLoS One 2012;7:e46561. doi: 10.1371/journal.pone.0046561
[53] Teramukai S, Kitano T, Kishida Y, Kawahara M, Kubota K, Komuta K, et al. Pretreatment Neutrophil Count as an Independent Prognostic Factor in Advanced Non-Small-Cell Lung Cancer: An Analysis of Japan Multinational Trial Organisation LC00-03. Eur J Cancer 2009;45:1950-8. doi: 10.1016/j.ejca.2009.01.023
[54] Shafi S, Afsheen M, Reshi F. Total Leucocyte Count, C-Reactive Protein and Neutrophil Count: Diagnostic Aid in Acute Appendicitis. Saudi J Gastroenterol 2009;15:117. doi: 10.4103/1319-3767.48969
[55] Peake J, Suzuki K. Neutrophil Activation, Antioxidant Supplements and Exercise-Induced Oxidative Stress. Exerc Immunol Rev 2004;10:129-41.
[56] Pitanga TN, de Aragão França L, Rocha VCJ, MeirellesT, Borges VM, Gonçalves MS, et al. Neutrophil-Derived Microparticles Induce Myeloperoxidase-Mediated Damage of Vascular Endothelial Cells. BMC Cell Biol 2014;15:21. doi: 10.1186/1471-2121-15-21
[57] Gasser O, Schifferli JA. Activated Polymorphonuclear Neutrophils Disseminate Anti-Inflammatory Microparticles by Ectocytosis. Blood 2004;104:2543-8. doi: 10.1182/blood-2004-01-0361
[58] Dalli J, Norling LV, Renshaw D, Cooper D, Leung KY, Perretti M. Annexin 1 Mediates the Rapid Anti-Inflammatory Effects of Neutrophil-Derived Microparticles. Blood 2008;112:2512-9. doi: 10.1182/blood-2008-02-140533
[59] Dalli J, Montero-Melendez T, Norling LV, Yin X, Hinds C, Haskard D, et al. Heterogeneity in Neutrophil Microparticles Reveals Distinct Proteome and Functional Properties. Mol Cell Proteomics 2013;12:2205-19. doi: 10.1074/mcp.M113.028589
[60] Fujita K, Imamura R, Tanigawa G, Nakagawa M, Hayashi T, Kishimoto N, et al. Low Serum Neutrophil Count Predicts a Positive Prostate Biopsy. Prostate Cancer Prostatic Dis 2012;15:386-90. doi: 10.1038/pcan.2012.27
[61] Maugeri N, Capobianco A, Rovere-Querini P, Ramirez GA, Tombetti E, Valle PD, et al. Platelet Microparticles Sustain Autophagy-Associated Activation of Neutrophils in Systemic Sclerosis. Sci Transl Med 2018;10:eaao3089. doi: 10.1126/scitranslmed.aao3089
[62] Buesing KL, Densmore JC, Kaul S, Pritchard KA Jr., Jarzembowski JA, Gourlay DM, et al. Endothelial Microparticles Induce Inflammation in Acute Lung Injury. J Surg Res 2011;166:32-9. doi: 10.1016/j.jss.2010.05.036
[63] Lee WL, Downey GP. Neutrophil Activation and Acute Lung Injury. Curr Opin Crit Care 2001;7:1-7. doi: 10.1097/00075198-200102000-00001
[64] Nakagawa M, Toy P. Related Acute Lung Injury : Cases at One Hospital. Transfusion (Paris) 2004;44:1689-94.
[65] Schirato SR, Silva V, Iadocicco K, Maronni A, Pieri M, Cialoni D, et al. Post-Decompression Bubble and Inflammation Interactions: A Non-extensive Dynamical System Model. Undersea Hyperb Med 2022;49:207-26. doi: 10.22462/03.04.2022.6
[66] Thom SR, Milovanova TN, Bogush M, Yang M, Bhopale VM, Pollock NW, et al. Bubbles, Microparticles, and Neutrophil Activation: Changes with Exercise Level and Breathing Gas During Open-Water SCUBA Diving. J Appl Physiol 2013;114:1396-405. doi: 10.1152/japplphysiol.00106.2013
[67] Zhang K, Wang D, Jiang Z, Ning X, Buzzacott P, Xu W. Endothelial Dysfunction Correlates with Decompression Bubbles in Rats. Sci Rep 2016;6:33390. doi: 10.1038/srep33390
[68] Imbert JP, Egi SM, Germonpré P, Balestra C. Static Metabolic Bubbles as Precursors of Vascular Gas Emboli During Divers’ Decompression: AHypothesis Explaining Bubbling Variability. Front Physiol 2019;10:807. doi: 10.3389/fphys.2019.00807
[69] Vann RD, Gerth WA, Denoble PJ, Pieper CF, Thalmann ED. Experimental Trials to Assess the Risks of Decompression Sickness in Flying After Diving. UHM 2004;31:431-44.