Potential cardioprotective effect of Vitamin D and sodium-glucose transport protein 2 inhibitor in improving cardiac hypertrophy and fibrosis in Type 2 diabetic rats
Background: Diabetes mellitus (DM) is a major risk factor for cardiovascular diseases. The progression of myocardial abnormalities due to DM occurs slowly but is progressive and asymptomatic. Sodium-glucose transport protein 2 inhibitors (SGLT-2i) and Vitamin D have potential cardioprotective properties that inhibit cardiomyocyte fibrosis and hypertrophy, which are early structural changes that occur in the heart of DM patients.
Aim: The study aimed to determine the potential protective effects of SGLT-2i and Vitamin D administration on cardiac hypertrophy and fibrosis in Type 2 diabetic rats.
Methods: This is an experimental study with a post-test-only control group design. Thirty-two male Wistar rats were given a high-fat/high-glucose (HF/HG) diet. After 3 weeks, rats were given an injection of streptozotocin (STZ 35 mg/kg) to induce pancreatic damage. The diabetic rats were then divided into four groups (n = 8 per group): untreated diabetic group (HF/HG/STZ), the diabetic group treated with empagliflozin (EMPA) 10 mg/kg body weight (BW) (HF/HG/ STZ+EMPA), the diabetic group treated with Vitamin D 225 IU/day (HF/HG/STZ+VitD), and the diabetic group treated with a combination of EMPA 10 mg/kg BW and Vitamin D 225 IU/day (HF/ HG/STZ+EMPA+VitD). Treatments were given by oral gavage for 8 weeks. Left ventricular biopsy was performed at week 13 to examine collagen deposition, the cardiomyocyte cross-sectional area (CSA), and the mRNA expression of β-myosin heavy chain (β-MHC) and transforming growth factor-β (TGF-β). All the obtained data were analyzed statistically.
Results: The administration of EMPA, Vitamin D, and combination therapy of EMPA and Vitamin D reduced the mRNA expression of β-MHC and TGF-β in diabetic rats compared to the untreated diabetic group. The administration of EMPA, Vitamin D, and combination therapy also resulted in a decrease in both the cardiomyocyte CSA and collagen deposition. Compared to monotherapy, combination therapy led to significantly better parameter reduction.
Conclusion: Administration of EMPA, Vitamin D, and combination therapy improved cardiac hypertrophy and fibrosis in type 2 diabetic rats.
Relevance for Patients: The combination of Vitamin D and SGLT-2i may be proposed as a cardioprotective strategy and preventive measure to reduce the incidence of cardiovascular disease in patients with Type 2 DM.
[1] Bertoni AG, Hundley WG, Massing MW, Bonds DE, Burke GL, Goff DC Jr. Heart Failure Prevalence, Incidence, and Mortality in the Elderly with Diabetes. Diabetes Care 2004;27:699-703. doi: 10.2337/diacare.27.3.699
[2] Kannel WB, Hjortland M, Castelli WP. Role of Diabetes in Congestive Heart Failure: The Framingham Study. Am J Cardiol 1974;34:29-34. doi: 10.1016/0002-9149(74)90089-7
[3] Dunlay SM, Givertz MM, Aguilar D, Allen LA, Chan M, Desai AS, et al. Type 2 Diabetes Mellitus and Heart Failure: A Scientific Statement from the American Heart Association and the Heart Failure Society of America: This Statement does not Represent an Update of the 2017 ACC/AHA/HFSA Heart Failure Guideline Update. Circulation 2019;140:E294-324. doi: 10.1161/CIR.0000000000000691
[4] Nunes S, Soares E, Pereira F, Reis F. The Role of Inflammation in Diabetic Cardiomyopathy. Int J Interferon Cytokine Mediat Res 2012;4:59. doi: 10.2147/IJICMR.S21679
[5] Krenz M, Robbins J. Impact of Beta-Myosin Heavy Chain Expression on Cardiac Function During Stress. J Am Coll Cardiol 2004;44:2390-7. doi: 10.1016/j.jacc.2004.09.044
[6] Hutchinson KR, Lord CK, West TA, Stewart JA Jr. Cardiac Fibroblast-Dependent Extracellular Matrix Accumulation Is Associated with Diastolic Stiffness in Type 2 Diabetes. PLoS One 2013;8:e72080. doi: 10.1371/journal.pone.0072080
[7] Tan SM, Zhang Y, Wang B, Tan CY, Zammit SC, Williams SJ, et al. FT23, an Orally Active Antifibrotic Compound, Attenuates Structural and Functional Abnormalities in an Experimental Model of Diabetic Cardiomyopathy. Clin Exp Pharmacol Physiol 2012;39:650-6. doi: 10.1111/j.1440-1681.2012.05726.x
[8] Zinman B, Wanner C, Lachin JM, Lachin JM, Fitchett D, Bluhmki E, et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med 2015;373:2117-28. doi: 10.1056/NEJMoa1504720
[9] Lam CS, Chandramouli C, Ahooja V, Verma S. SGLT‐2 Inhibitors in Heart Failure: Current Management, Unmet Needs, and Therapeutic Prospects. J Am Heart Assoc 2019;8:e013389. doi: 10.1161/JAHA.119.013389
[10] Zhao H, Zhen Y, Wang Z, Qi L, Li Y, Ren L, et al. The Relationship between Vitamin D Deficiency and Glycated Hemoglobin Levels in Patients with Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2020;13:3899-907. doi: 10.2147/DMSO.S275673
[11] Kostoglou-Athanassiou I, Athanassiou P, GkountouvasA, Kaldrymides P. Vitamin D and Glycemic Control in Diabetes Mellitus Type 2. Ther Adv Endocrinol Metab 2013;4:122-8. doi: 10.1177/2042018813501189
[12] Chen S, Law CS, Grigsby CL, Olsen K, Hong TT, Zhang Y, et al. Cardiomyocyte-Specific Deletion of the Vitamin D Receptor Gene Results in Cardiac Hypertrophy. Circulation 2011;124:1838-47. doi: 10.1161/CIRCULATIONAHA.111.032680
[13] Kong J, Kim GH, Wei M, Sun T, Li G, Liu SQ, et al. Therapeutic Effects of Vitamin D Analogs on Cardiac Hypertrophy in Spontaneously Hypertensive Rats. Am J Pathol 2010;177:622-31. doi: 10.2353/ajpath.2010.091292
[14] Zhang J, Qiu H, Huang J, Sun T, Li G, Liu SQ, et al. Establishment of a Diabetic Myocardial Hypertrophy Model in Mus Musculus Castaneus Mouse. Int J Exp Pathol 2018;99:295-303. doi: 10.1111/iep.12296
[15] Yurista SR, Silljé HH, Oberdorf‐Maass SU, Schouten EM, Pavez Giani MG, Hillebrands JL, et al. Sodium-Glucose Co‐Transporter 2 Inhibition with Empagliflozin Improves Cardiac Function in Non‐ Diabetic Rats with Left Ventricular Dysfunction after Myocardial Infarction. Eur J Heart Fail 2019;21:862-73. doi: 10.1002/ejhf.1473
[16] Yang B, Chen YD, Li M, Zhou FH, Xu Y, Wang GY, et al. Bosentan Attenuates Cardiac Fibrosis in Diabetic Mice without Affecting Blood Glucose. J Renin Angiotensin Aldosterone Syst 2015;16:NP1-8. doi: 10.1177/1470320311417274
[17] Knöll R, Iaccarino G, Tarone G, Hilfiker-Kleiner D, Bauersachs J, Leite-Moreira AF, et al. Towards a ReDefinition of ‘Cardiac Hypertrophy’ Through a Rational Characterization of Left Ventricular Phenotypes: A Position Paper of the Working Group ‘Myocardial Function’ of the ESC. Eur J Heart Fail 2011;13:811-9. doi: 10.1093/eurjhf/hfr071
[18] Borghetti G, Von Lewinski D, Eaton DM, Sourij H, Houser SR, Wallner M. Diabetic Cardiomyopathy: Current and Future Therapies. Beyond Glycemic Control. Front Physiol 2018;9:1514. doi: 10.3389/fphys.2018.01514
[19] Hammoudi N, Jeong D, Singh R, Farhat A, Komajda M, Mayoux E, et al. Empagliflozin Improves Left Ventricular Diastolic Dysfunction in a Genetic Model of Type 2 Diabetes. Cardiovasc Drugs Ther 2017;31:233-46. doi: 10.1007/s10557-017-6734-1
[20] Xue M, Li T, Wang Y, Chang Y, Cheng Y, Lu Y, et al. Empagliflozin Prevents Cardiomyopathy via sGC-cGMP-PKG Pathway in Type 2 Diabetes Mice. Clin Sci (Lond) 2019;133(15):1705-20. doi: 10.1042/CS20190585
[21] Habibi J, Aroor AR, Sowers JR, Jia G, Hayden MR, Garro M, et al. Sodium Glucose Transporter 2 (SGLT2) Inhibition with Empagliflozin Improves Cardiac Diastolic Function in a Female Rodent Model of Diabetes. Cardiovasc Diabetol 2017;16:9. doi: 10.1186/s12933-016-0489-z
[22] Osaka N, Mori Y, Terasaki M, Hiromura M, Saito T, Yashima H, et al. Luseogliflozin Inhibits High Glucoseinduced TGF- β 2 Expression in Mouse Cardiomyocytesby Suppressing NHE-1 Activity. J Int Med Res 2022;50:03000605221097490. doi: 10.1177/03000605221097490
[23] Deschaine B, Verma S, Rayatzadeh H. Clinical Evidence and Proposed Mechanisms of SodiumGlucose Cotransporter 2 Inhibitors in Heart Failure with Preserved Ejection Fraction: A Class Effect? Card Fail Rev 2022;8:e23. doi: 10.15420/cfr.2022.11
[24] Fathi A, Vickneson K, Singh JS. SGLT2-Inhibitors; more than Just Glycosuria and Diuresis. Heart Fail Rev 2021;26:623-42. doi: 10.1007/s10741-020-10038-w
[25] Feridooni HA, Dibb KM, Howlett SE. How Cardiomyocyte Excitation, Calcium Release and Contraction become Altered with Age. J Mol Cell Cardiol 2015;83:62-72. doi: 10.1016/j.yjmcc.2014.12.004
[26] Lopaschuk GD, Verma S. Mechanisms of Cardiovascular Benefits of Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors. A State-of-the-Art Review. JACC Basic Transl Sci 2020;5:632-44. doi: 10.1016/j.jacbts.2020.02.004
[27] Kim SR, Lee SG, Kim SH, Kim JH, Choi E, Cho W, et al. SGLT2 Inhibition Modulates NLRP3 Inflammasome Activity Via Ketones and Insulin in Diabetes with Cardiovascular Disease. Nat Commun 2020;11:2127. doi: 10.1038/s41467-020-15983-6
[28] Nizami HL, Katare P, Prabhakar P, Kumar Y, Arava SK, Chakraborty P, et al. Vitamin D Deficiency in Rats Causes Cardiac Dysfunction by Inducing Myocardial Insulin Resistance. Mol Nutr Food Res 2019;63:e1900109. doi: 10.1002/mnfr.201900109
[29] Liu CF, Tang WH. Epigenetics in Cardiac Hypertrophy and Heart Failure. JACC Basic Transl Sci 2019;4:976-93. doi: 10.1016/j.jacbts.2019.05.011
[30] Leifheit-Nestler M, Grabner A, Hermann L, Richter B, Schmitz K, Fischer DC, et al. Vitamin D Treatment Attenuates Cardiac FGF23/FGFR4 Signaling and Hypertrophy in Uremic Rats. Nephrol Dial Transplant 2017;32:1493-503. doi: 10.1093/ndt/gfw454
[31] Zhang L, Yan X, Zhang YL, Bai J, Hidru TH, Wang QS, et al. Vitamin D Attenuates Pressure Overload-Induced Cardiac Remodeling and Dysfunction in Mice. J Steroid Biochem Mol Biol 2018;178:293-302. doi: 10.1016/j.jsbmb.2018.01.009
[32] Ati MI, Pasha HF, El-Gayar AM, El-Shishtawy MM. Anti-Inflammatory and Anti-Oxidative Effects of Vitamin D Supplementation in Type 2 Diabetic Rats’ Model. Ann Rom Soc Cell Biol 2021;25:4082-99.
[33] Rafacho BP, Santos P, Assalin HB, Ardisson LP, Roscani MG, Polegato BF, et al. Role of Vitamin D in the Cardiac Remodeling Induced by Tobacco Smoke Exposure. Int J Cardiol 2012;155:472-3. doi: 10.1016/j.ijcard.2011.12.078
[34] Mehdipoor M, Damirchi A, Razavi Tousi SM, Babaei P. Concurrent Vitamin D Supplementation and Exercise Training Improve Cardiac Fibrosis via TGF-β/Smad Signaling in Myocardial Infarction Model of Rats. J Physiol Biochem 2021;77:75-84. doi: 10.1007/s13105-020-00778-6
[35] Wagatsuma A. Role of Vitamin D in Myogenesis. In: A Critical Evaluation of Vitamin D-Basic Overview. Guindy: InTech; 2017. doi: 10.5772/64514
[36] Berridge MJ. Vitamin D and Depression: Cellular and Regulatory Mechanisms. Pharmacol Rev 2017;69:80-92. doi: 10.1124/pr.116.013227
[37] Al Mheid I, Quyyumi AA. Vitamin D and Cardiovascular Disease: Controversy Unresolved. J Am Coll Cardiol 2017;70:89-100. doi: 10.1016/j.jacc.2017.05.031
[38] Rau M, Thiele K, Hartmann NU, Möllmann J, Wied S, Hohl M, et al. Effects of Empagliflozin on Markers of Calcium and Phosphate Homeostasis in Patients with Type 2 Diabetes-Data from a Randomized, PlaceboControlled Study. Bone Rep 2022;16:101175. doi: 10.1016/j.bonr.2022.101175
[39] Schork A, Saynisch J, Vosseler A, Jaghutriz BA, Heyne N, Peter A, et al. Effect of SGLT2 Inhibitors on Body Composition, Fluid Status and Renin-AngiotensinAldosterone System in Type 2 Diabetes: A Prospective Study using Bioimpedance Spectroscopy. Cardiovasc Diabetol 2019;18:46. doi: 10.1186/s12933-019-0852-y