Tissue engineering and regenerative medicine in otorhinolaryngology

Background and Aim: Regenerative medicine has been gaining popularity in the field of medicine, and the possibilities for tissue regeneration are immense in the field of otorhinolaryngology, which involves sensory organs and vital functions such as breathing and swallowing. Regenerative strategies offer the potential to restore functions such as hearing, facial expression, olfaction, and speaking, thereby reducing the disadvantages and risks related to traditional reconstruction strategies. This review summarizes the progress of regenerative medicine in otology and hearing, laryngeal surgery, rhinology, and craniofacial reconstruction.
Relevance for Patients: Patients can be informed about the progress of regenerative medicine in the field of otorhinolaryngology and how it has evolved to ameliorate the symptoms of common diseases or cure even more severe ones.
[1] Vats A, Birchall M. Stem Cells and Regenerative Medicine: Potentials and Realities for Rhinology. Rhinology 2010;48:259-64. doi: 10.4193/Rhin10.007
[2] Elliott MJ, De Coppi P, Speggiorin S, Roebuck D, Butler CR, Samuel E, et al. Stem-Cell-Based, Tissue Engineered Tracheal Replacement in a Child: A 2-Year Follow-Up Study. Lancet 2012;380:994-1000. doi: 10.1016/S0140-6736(12)60737-5
[3] Hu Z, Ulfendahl M. The Potential of Stem Cells for the Restoration of Auditory Function in Humans. Regen Med 2013;8:309-18. doi: 10.2217/rme.13.32
[4] Salgado AJ, Reis RL, Sousa NJ, Gimble JM. Adipose Tissue Derived Stem Cells Secretome: Soluble Factors and Their Roles in Regenerative Medicine. Curr Stem Cell Res Ther 2010;5:103-10. doi: 10.2174/157488810791268564
[5] McPhail MJ, Janus JR, Lott DG. Advances in Regenerative Medicine for Otolaryngology/Head and Neck Surgery. BMJ 2020;369:m718. doi: 10.1136/BMJ.M718
[6] Tabata Y. Tissue Regeneration Based on Growth Factor Release. Tissue Eng 2003;9 Suppl 1:S5-15. doi: 10.1089/10763270360696941
[7] Mitchell AC, Briquez PS, Hubbell JA, Cochran JR. Engineering Growth Factors for Regenerative Medicine Applications. Acta Biomater 2016;30:1-12. doi: 10.1016/j.actbio.2015.11.007
[8] Murrell GL. Auricular Cartilage Grafts and Nasal Surgery. Laryngoscope 2004;114:2092-102. doi: 10.1097/01.mlg.0000149440.20608.7c
[9] Young E, Westerberg B, Yanai A, Gregory-Evans K. The Olfactory Mucosa: A Potential Source of Stem Cells for Hearing Regeneration. Regen Med 2018;13:581-93. doi: 10.2217/RME-2018-0009
[10] Li H, Chai R, editors. Hearing Loss: Mechanisms, Prevention and Cure. Germany: Springer; 2019. p. 1130. doi: 10.1007/978-981-13-6123-4
[11] Jang S, Cho HH, Kim SH, Lee KH, Jun JY, Park JS, et al. Neural-Induced Human Mesenchymal Stem Cells Promote Cochlear Cell Regeneration in Deaf Guinea Pigs. Clin Exp Otorhinolaryngol 2015;8:83-91. doi: 10.3342/ceo.2015.8.2.83
[12] Lee HS, Kim WJ, Gong JS, Park KH. Clinical Safety and Efficacy of Autologous Bone Marrow-Derived Mesenchymal Stem Cell Transplantation in Sensorineural Hearing Loss Patients. J Audiol Otol 2018;22:105-9. doi: 10.7874/jao.2017.00150
[13] Baumgartner LS, Moore E, Shook D, Messina S, Day MC, Green J, et al. Safety of Autologous Umbilical Cord Blood Therapy for Acquired Sensorineural Hearing Loss in Children. J Audiol Otol 2018;22:209-22. doi: 10.7874/jao.2018.00115
[14] Needham K, Minter RL, Shepherd RK, Nayagam BA. Challenges for Stem Cells to Functionally Repair the Damaged Auditory Nerve. Expert Opin Biol Ther 2013;13:85-101. doi: 10.1517/14712598.2013.728583
[15] Okano T, Kelley MW. Stem Cell Therapy for the Inner Ear: Recent Advances and Future Directions. Trends Amplif 2012;16:4-18. doi: 10.1177/1084713812440336
[16] Gökcan MK, Mülazimoğlu S, Ocak E, Can P, Çalışkan M, Beşaltı Ö, et al. Study of mouse induced Pluripotent Stem Cell Transplantation intoWistar Albino rat Cochleae after Hair Cell Damage. Turk J Med Sci 2016;46:1603-10. doi: 10.3906/sag-1510-136
[17] Lee MY, Hackelberg S, Green KL, Kurioka T, Loomis BR, Swiderski DL, et al. Survival of Human Embryonic Stem Cells Implanted in the Guinea Pig Auditory Epithelium. Sci Rep 2017;7:46058. doi: 10.1038/srep46058
[18] Gao X, Tao Y, Lamas V, Huang M, Yeh WH, Pan B, et al. Treatment of Autosomal Dominant Hearing Loss By in Vivo Delivery of Genome editing Agents. Nature 2018;553:217-21. doi: 10.1038/nature25164
[19] Huang CY, Tsai YH, Tsai YC, Lu YC, Chan YH, Hsu CJ, et al. Establishment of an Induced Pluripotent Stem Cell (iPSC) Line from a 7-Year-Old Male Patient with Profound Hearing Loss Carrying c.235delC in GJB2 Gene. Stem Cell Res 2020;45:101795. doi: 10.1016/j.scr.2020.101795
[20] Pandit SR, Sullivan JM, Egger V, Borecki AA, OleskevichS. Functional Effects of Adult Human Olfactory Stem Cells on Early-Onset Sensorineural Hearing Loss. Stem Cells 2011;29:670-7. doi: 10.1002/stem.609
[21] Choi BY, Song JJ, Chang SO, Kim SU, Oh SH. Intravenous Administration of Human Mesenchymal Stem Cells after Noise-or Drug-Induced Hearing loss in Rats. Acta Otolaryngol 2012;132 Suppl 1:S94-102. doi: 10.3109/00016489.2012.660731
[22] Kasagi H, Kuhara T, Okada H, Sueyoshi N, Kurihara H. Mesenchymal Stem Cell Transplantation to the Mouse Cochlea as a Treatment for Childhood Sensorineural Hearing Loss. Int J Pediatr Otorhinolaryngol 2013;77:936-42. doi: 10.1016/j.ijporl.2013.03.011
[23] Bas E, Van De Water TR, Lumbreras V, Rajguru S, Goss G, Hare JM, et al. Adult Human Nasal Mesenchymal-Like Stem Cells Restore Cochlear Spiral Ganglion Neurons after Experimental Lesion. Stem Cells Dev 2014;23:502-14. doi: 10.1089/scd.2013.0274
[24] Yoo TJ, Du X, Zhou B. The Paracrine Effect of Mesenchymal Human Stem Cells Restored Hearing in β-Tubulin Induced Autoimmune Sensorineural Hearing Loss. Hear Res 2015;330:57-61. doi: 10.1016/j.heares.2015.07.021
[25] Xu YP, Shan XD, Liu YY, Pu Y, Wang CY, Tao QL, et al. Olfactory Epithelium Neural Stem Cell Implantation Restores Noise-Induced Hearing Loss in Rats. Neurosci Lett 2016;616:19-25. doi: 10.1016/j.neulet.2016.01.016
[26] Le TN, Straatman L, Yanai A, Rahmanian R, Garnis C, Häfeli UO, et al. Magnetic Stem Cell Targeting to the Inner Ear. J Magn Magn Mater 2017;443:385-96. doi: 10.1016/j.jmmm.2017.07.033
[27] Chen J, Hong F, Zhang C, Li L, Wang C, Shi H, et al. Differentiation and Transplantation of Human Induced Pluripotent Stem Cell-Derived Otic Epithelial Progenitors in Mouse Cochlea. Stem Cell Res Ther 2018;9:230. doi: 10.1186/s13287-018-0967-1
[28] Bettini S, Franceschini V, Astolfi L, Simoni E, Mazzanti B, Martini A, et al. Human Mesenchymal Stromal Cell Therapy for Damaged Cochlea Repair in Nod-Scid Mice Deafened with Kanamycin. Cytotherapy 2018;20:189-203. doi: 10.1016/j.jcyt.2017.11.003
[29] Mittal R, Ocak E, Zhu A, Perdomo MM, Pena SA, Mittal J, et al. Effect of Bone Marrow-Derived Mesenchymal Stem Cells on Cochlear Function in an Experimental Rat Model. Anat Rec (Hoboken) 2020;303:487-93. doi: 10.1002/ar.24065
[30] Abd El Raouf HH, Galhom RA, Ali MH, Nasr El-Din WA. Harderian Gland-Derived Stem Cells as a Cytotherapy in a Guinea Pig Model of Carboplatin-Induced Hearing Loss. J Chem Neuroanat 2019;98:139-52. doi: 10.1016/j.jchemneu.2019.04.008
[31] Radeloff A, Nada N, El Mahallawi T, Kolkaila E, Vollmer M, Rak K, et al. Transplantation of Adipose-Derived Stromal Cells Protects Functional and Morphological Auditory Nerve Integrity in a Model of Cochlear Implantation. Neuroreport 2021;32:776-82. doi: 10.1097/wnr.0000000000001651
[32] Lou Z, Lou Z. A Comparative Study to Evaluate the Efficacy of EGF, FGF-2, and 0.3% (w/v) Ofloxacin Drops on Eardrum Regeneration. Medicine (Baltimore) 2017;96:e7654. doi: 10.1097/MD.0000000000007654
[33] Lou Z, Wang Y. Evaluation of the Optimum Time for Direct Application of Fibroblast Growth Factor to Human Traumatic Tympanic Membrane Perforations. Growth Factors 2015;33:65-70. doi: 10.3109/08977194.2014.980905
[34] Zheng-Cai L, Zi-Han L. The Short-and Long-Term Adverse Effects of FGF-2 on Tympanic Membrane Perforations. Acta Otorhinolaryngol Ital 2018;38:264-72. doi: 10.14639/0392-100X-1480
[35] Kanemaru SI, Umeda H, Kitani Y, Nakamura T, Hirano S, Ito J. Regenerative Treatment for Tympanic Membrane Perforation. Otol Neurotol 2011;32:1218-23. doi: 10.1097/MAO.0b013e31822e0e53
[36] Rahman A, Olivius P, Dirckx J, Von Unge M, Hultcrantz M. Stem Cells and Enhanced Healing of Chronic Tympanic Membrane Perforation. Acta Otolaryngol 2008;128:352-9. doi: 10.1080/00016480701762508
[37] Goncalves S, Bas E, Goldstein BJ, Angeli S. Effects of cell-based therapy for Treating Tympanic Membrane Perforations in Mice. Otolaryngol Head Neck Surg 2016;154:1106-14. doi: 10.1177/0194599816636845
[38] Goncalves S, Bas E, Langston M, Grobman A, GoldsteinBJ, Angeli S. Histologic Changes of Mesenchymal Stem Cell Repair of Tympanic Membrane Perforation. Acta Otolaryngol 2017;137:411-6. doi: 10.1080/00016489.2016.1261411
[39] Vozel D, Božič D, Jeran M, Jan Z, Pajnič M, Pađen L, et al. Autologous Platelet-and Extracellular Vesicle-Rich Plasma Is an Effective Treatment Modality for Chronic Postoperative Temporal Bone Cavity Inflammation: Randomized Controlled Clinical Trial. Front Bioeng Biotechnol 2021;9:677541. doi: 10.3389/FBIOE.2021.677541
[40] Raj A, Sayal A, Rathore PK, Meher R. Sutureless Tympanoplasty Using Acellular Dermis. Am J Otolaryngol 2011;32:96-9. doi: 10.1016/j.amjoto.2009.10.007
[41] Röösli C, Von Büren T, Gassmann NB, Huber AM. The Impact of Platelet-Derived Growth Factor on Closure of Chronic Tympanic Membrane Perforations: ARandomized, Double-Blind, Placebo-Controlled Study. Otol Neurotol 2011;32:1224-9. doi: 10.1097/MAO.0b013e31822e96bc
[42] Lou Z. Healing Large Traumatic Eardrum Perforations in Humans Using Fibroblast Growth Factor Applied Directly or Via Gelfoam. Otol Neurotol 2012;33:1553-7. doi: 10.1097/JES.0b013e31826f5640
[43] Zhengcai-Lou, Zihan-Lou, Yongmei-Tang. Comparative Study on the Effects of EGF and bFGF on the Healing of Human Large Traumatic Perforations of the Tympanic Membrane. Laryngoscope 2016;126:E23-8. doi: 10.1002/lary.25715
[44] Lou ZC, Yang J, Tang Y, Fu YH. Topical Application of Epidermal Growth Factor with No Scaffold Material on the Healing of Human Traumatic Tympanic Membrane Perforations. Clin Otolaryngol 2016;41:744-9. doi: 10.1111/coa.12627
[45] Kanemaru SI, Kanai R, Omori K, Yamamoto N, Okano T, Kishimoto I, et al. Multicenter Phase III Trial of Regenerative Treatment for Chronic Tympanic Membrane Perforation. Auris Nasus Larynx 2021;48:1054-60. doi: 10.1016/j.anl.2021.02.007
[46] Lou Z, Lou Z, Jin K, Sun J, Chen Z. Topical Application of bFGF Alone for the Regeneration of Chronic Tympanic Membrane Perforations: A Preliminary Case Series. Stem Cells Int 2021;2021:5583046. doi: 10.1155/2021/5583046
[47] Danti S, D’Alessandro D, Pietrabissa A, Petrini M, BerrettiniS. Development of Tissue-Engineered Substitutes of the Ear Ossicles: PORP-Shaped Poly(Propylene Fumarate)-Based Scaffolds Cultured with Human Mesenchymal Stromal Cells. J Biomed Mater Res Part A 2010;92:1343-56. doi: 10.1002/jbm.a.32447
[48] Lott DG, Janus JR. Tissue Engineering for Otorhinolaryngology-Head and Neck Surgery. Mayo Clin Proc 2014;89:1722-33. doi: 10.1016/J.MAYOCP.2014.09.007
[49] Yanaga H, Yanaga K, Imai K, Koga M, Soejima C, Ohmori K. Clinical Application of Cultured Autologous Human Auricular Chondrocytes with Autologous Serum for Craniofacial or Nasal Augmentation and Repair. PlastReconstr Surg 2006;117:2019-30, discussion 2031-2. doi: 10.1097/01.prs.0000210662.12267.de
[50] Yanaga H, Imai K, Yanaga K. Generative Surgery of Cultured Autologous Auricular Chondrocytes for Nasal Augmentation. Aesthetic Plast Surg 2009;33:795-802. doi: 10.1007/s00266-009-9399-8
[51] Fulco I, Miot S, Haug MD, Barbero A, Wixmerten A, Feliciano S, et al. Engineered Autologous Cartilage Tissue for Nasal Reconstruction after Tumour Resection: An Observational First-in-Human Trial. Lancet 2014;384:337-46. doi: 10.1016/S0140-6736(14)60544-4
[52] Zhou G, Jiang H, Yin Z, Liu Y, Zhang Q, Zhang C, et al. In Vitro Regeneration of Patient-specific Ear-Shaped Cartilage and Its First Clinical Application for Auricular Reconstruction. EBioMedicine 2018;28:287-302. doi: 10.1016/j.ebiom.2018.01.011
[53] Jung JW, Ha DH, Kim BY, Seo BF, Han HH, Kim DH, et al. Nasal Reconstruction Using a Customized ThreeDimensional-Printed Stent for Congenital Arhinia: ThreeYear Follow-up. Laryngoscope 2019;129:582-5. doi: 10.1002/LARY.27335
[54] Cao Y, Vacanti JP, Paige KT, Upton J, Vacanti CA. Transplantation of Chondrocytes Utilizing a Polymer-Cell Construct to Produce Tissue-Engineered Cartilage in the Shape of A Human Ear. Plast Reconstr Surg 1997;100:297- 304, discussion 303-4. doi: 10.1097/00006534-199708000-00001
[55] Yanaga H, Imai K, Fujimoto T, Yanaga K. Generating Ears from Cultured Autologous Auricular Chondrocytes by Using Two-Stage Implantation in Treatment of Microtia. Plast Reconstr Surg 2009;124:817-25. doi: 10.1097/PRS.0b013e3181b17c0e
[56] Yanaga H, Imai K, Tanaka Y, Yanaga K. Two-Stage Transplantation of cell-Engineered Autologous Auricular Chondrocytes to Regenerate Chondrofat Composite Tissue: Clinical Application in Regenerative Surgery. Plast Reconstr Surg 2013;132:1467-77. doi: 10.1097/01.prs.0000434408.32594.52
[57] Emmerson E, Knox SM. Salivary Gland Stem Cells: A Review of Development, Regeneration and Cancer. Genesis 2018;56:e23211. doi: 10.1002/dvg.23211
[58] Lombaert I, Movahednia MM, Adine C, Ferreira JN. Concise Review: Salivary Gland Regeneration: Therapeutic Approaches from Stem Cells to Tissue Organoids. Stem Cells 2017;35:97-105. doi: 10.1002/stem.2455
[59] Sumita Y, Liu Y, Khalili S, Maria OM, Xia D, Key S, et al. Bone Marrow-Derived Cells Rescue Salivary Gland Function in Mice with Head and Neck Irradiation. Int J Biochem Cell Biol 2011;43:80-7. doi: 10.1016/j.biocel.2010.09.023
[60] Grønhøj C, Jensen DH, Glovinski PV, Jensen SB, Bardow A, Oliveri RS, et al. First-in-Man Mesenchymal Stem Cells for Radiation-Induced Xerostomia (MESRIX): Study Protocol for a Randomized Controlled Trial. Trials 2017;18:108. doi: 10.1186/s13063-017-1856-0
[61] Hirano S. Current Treatment of Vocal Fold Scarring. Curr Opin Otolaryngol Head Neck Surg 2005;13:143-47. doi: 10.1097/01.moo.0000162261.49739.b7
[62] Hirano S, Minamiguchi S, Yamashita M, Ohno T, Kanemaru SI, Kitamura M. Histologic Characterization of Human Scarred Vocal Folds. J Voice 2009;23:399-407. doi: 10.1016/j.jvoice.2007.12.002
[63] Hansen JK, Thibeault SL. Current Understanding and Review of the Literature: Vocal Fold Scarring. J Voice 2006;20:110-20. doi: 10.1016/j.jvoice.2004.12.005
[64] Chhetri DK, Head C, Revazova E, Hart S, Bhuta S, Berke GS. Lamina Propria Replacement Therapy with Cultured Autologous Fibroblasts for Vocal Fold Scars. Otolaryngol Head Neck Surg 2004;131:864-70. doi: 10.1016/j.otohns.2004.07.010
[65] Chhetri DK, Berke GS. Injection of Cultured Autologous Fibroblasts for Human Vocal Fold Scars. Laryngoscope 2011;121:785-92. doi: 10.1002/lary.21417
[66] Ma Y, Long J, Amin MR, Branski RC, Damrose EJ, Sung CK, et al. Autologous Fibroblasts for Vocal Scars and Age-Related Atrophy: A Randomized Clinical Trial. Laryngoscope 2020;130:2650-8. doi: 10.1002/lary.28453
[67] Kanemaru SI, Kojima H, Hirano S, Omori K, Kojima H, Magrufov A, et al. Regeneration of the Vocal Fold Using Autologous Mesenchymal Stem Cells. Ann Otol Rhinol Laryngol 2003;112:915-20. doi: 10.1177/000348940311201101
[68] Hertegård S, Cedervall J, Svensson B, Forsberg K, Maurer FH, Vidovska D, et al. Viscoelastic and Histologic Properties in Scarred Rabbit Vocal Folds after Mesenchymal Stem Cell Injection. Laryngoscope 2006;116:1248-54. doi: 10.1097/01.mlg.0000224548.68499.35
[69] Hertegård S, Nagubothu SR, Malmström E, Leblanc K. Treatment of Vocal Fold Scarring with Autologous Bone Marrow-Derived Human Mesenchymal Stromal CellsFirst Phase I/II Human Clinical Study. Stem Cell Res Ther 2020;11:128. doi: 10.1186/s13287-020-01632-8
[70] Lasso JM, Poletti D, Scola B, Gómez-Vilda P, GarcíaMartín AI, Fernández-Santos ME. Injection Laryngoplasty Using Autologous Fat Enriched with Adipose-Derived Regenerative Stem Cells: A Safe Therapeutic Option for the Functional Reconstruction of the Glottal Gap after Unilateral Vocal Fold Paralysis. Stem Cells Int 2018;2018:8917913. doi: 10.1155/2018/8917913
[71] Hirano S, Kishimoto Y, Suehiro A, Kanemaru SI, Ito J. Regeneration of Aged Vocal Fold: First Human Case Treated with Fibroblast Growth Factor. Laryngoscope 2009;119:197-202. doi: 10.1002/lary.20004
[72] Hirano S, Sugiyama Y, Kaneko M, Mukudai S, Fuse S, Hashimoto K. Intracordal Injection of Basic Fibroblast Growth Factor in 100 Cases of Vocal Fold Atrophy and Scar. Laryngoscope 2020;131:2059-64. doi: 10.1002/lary.29200
[73] Hirano S, Tateya T, Nagai H, Ford CN, Tateya I, Bless DM. Regeneration of Aged Vocal Folds with Basic Fibroblast Growth Factor in a Rat Model: A Preliminary Report. Ann Otol Rhinol Laryngol 2005;114:304-8. doi: 10.1177/000348940511400409
[74] Hirano S, Tateya I, Kishimoto Y, Kanemaru SI, Ito J. Clinical Trial of Regeneration of Aged Vocal Folds with Growth Factor Therapy. Laryngoscope 2012;122:327-31. doi: 10.1002/lary.22393
[75] Kumai Y, Kobler JB, Herrera VL, Zeitels SM. Perspectives on Adipose-Derived Stem/Stromal Cells as Potential Treatment for Scarred Vocal Folds: Opportunity and Challenges. Curr Stem Cell Res Ther 2010;5:175-81. doi: 10.2174/157488810791268591
[76] Hirano S, Thibeault S, Bless DM, Ford CN, Kanemaru SI. Hepatocyte Growth Factor and Its Receptor c-Met in Rat and Rabbit Vocal Folds. Ann Otol Rhinol Laryngol 2002;111:661-6. doi: 10.1177/000348940211100801
[77] Hirano S, Bless DM, Nagai H, Rousseau B, Welham NV, Montequin DW, et al. Growth Factor Therapy for Vocal Fold Scarring in a Canine Model. Ann Otol Rhinol Laryngol 2004;113:777-85. doi: 10.1177/000348940411301002
[78] Hirano S, Kawamoto A, Tateya I, Mizuta M, Kishimoto Y, Hiwatashi N, et al. A phase I/II exploratory clinical trial for intracordal injection of recombinant hepatocyte growth factor for vocal fold scar and sulcus. J Tissue Eng Regen Med 2018;12:1031-8. doi: 10.1002/term.2603
[79] Long JL. Tissue Engineering for Treatment of Vocal Fold Scar. Curr Opin Otolaryngol Head Neck Surg 2010;18:521-5. doi: 10.1097/MOO.0b013e32833febf2
[80] Imaizumi M, Nakamura R, Nakaegawa Y, Dirja BT, Tada Y, Tani A, et al. Regenerative Potential of Basic Fibroblast Growth Factor Contained in Biodegradable Gelatin Hydrogel Microspheres Applied Following Vocal Fold Injury: Early Effect on Tissue Repair in a Rabbit Model. Braz J Otorhinolaryngol 2021;87:274-82. doi: 10.1016/j.bjorl.2019.09.003
[81] Kutty JK, Webb K. Mechanomimetic Hydrogels for Vocal Fold Lamina Propria Regeneration. J Biomater Sci Polym Ed 2009;20:737-56. doi: 10.1163/156856209X426763
[82] Jotz GP, Da Luz Soster PR, Kunrath SO, Steffens D, Braghirolli DI, Zettler CG, et al. Mesenchymal Stem Cells and Nanofibers as Scaffolds for the Regeneration of Thyroid Cartilage. Laryngoscope 2014;124:E455-60. doi: 10.1002/lary.24805
[83] Zhang H, Voytik-Harbin S, Brookes S, Zhang L, Wallace J, Parker N, et al. Use of Autologous Adipose-Derived Mesenchymal Stem Cells for Creation of Laryngeal Cartilage. Laryngoscope 2018;128:E123-9. doi: 10.1002/lary.26980
[84] Cain RB, Gnagi SH, Jaroszewski DE, Lott DG. Adult Laryngeal Rhabdomyoma with Extralaryngeal Extension: Surgical Excision and Reconstruction with Aortic Homograft. Otolaryngol Head Neck Surg 2014;150:501-2. doi: 10.1177/0194599813516748
[85] Zeitels SM, Wain JC, Barbu AM, Bryson PC, Burns JA. Aortic Homograft Reconstruction of Partial Laryngectomy Defects: A New Technique. Ann Otol Rhinol Laryngol 2012;121:301-6. doi: 10.1177/000348941212100504
[86] Brookes S, Voytik-Harbin S, Zhang H, Halum S. ThreeDimensional Tissue-Engineered Skeletal Muscle for Laryngeal Reconstruction. Laryngoscope 2018;128:603-9. doi: 10.1002/lary.26771
[87] Baiguera S, Gonfiotti A, Jaus M, Comin CE, Paglierani M, Del Gaudio C, et al. Development of Bioengineered Human Larynx. Biomaterials 2011;32:4433-42. doi: 10.1016/J.BIOMATERIALS.2011.02.055
[88] Al-Qurayshi Z, Wafa EI, Hoffman H, Chang K, Salem AK. Tissue-Engineering the Larynx: Effect of Decellularization on Human Laryngeal Framework and the Cricoarytenoid Joint. J Biomed Mater Res B Appl Biomater 2021;109:2030-40. doi: 10.1002/JBM.B.34851
[89] Moser PT, Gerli M, Diercks GR, Evangelista-Leite D, Charest JM, Gershlak JR, et al. Creation of Laryngeal Grafts from Primary Human Cells and Decellularized Laryngeal Scaffolds. Tissue Eng Part A 2020;26:543-55. doi: 10.1089/TEN.TEA.2019.0128
[90] Huber JE, Spievack A, Simmons-Byrd A, Ringel RL, Badylak S. Extracellular Matrix as a Scaffold for Laryngeal Reconstruction. Ann Otol Rhinol Laryngol 2003;112:428-33. doi: 10.1177/000348940311200508
[91] Ansari T, Lange P, Southgate A, Greco K, Carvalho C, Partington L, et al. Stem Cell-Based Tissue-Engineered Laryngeal Replacement. Stem Cells Transl Med 2017;6:677-87. doi: 10.5966/sctm.2016-0130
[92] Herrmann P, Ansari T, Southgate A, Varanou Jenkins A, Partington L, Carvalho C, et al. In Vivo Implantation of a Tissue Engineered Stem Cell Seeded Hemi-Laryngeal Replacement Maintains Airway, Phonation, and Swallowing in Pigs. J Tissue Eng Regen Med 2019;13:1943-54. doi: 10.1002/term.2596
[93] Hamilton NJ, Kanani M, Roebuck DJ, Hewitt RJ, Cetto R, Culme-Seymour EJ, et al. Tissue-Engineered Tracheal Replacement in a Child: A 4-Year Follow-Up Study. Am J Transplant 2015;15:2750-7. doi: 10.1111/ajt.13318
[94] Elliott MJ, Butler CR, Varanou-Jenkins A, Partington L, Carvalho C, Samuel E, et al. Tracheal Replacement Therapy with a Stem Cell-Seeded Graft: Lessons from Compassionate Use Application of a GMP-Compliant Tissue-Engineered Medicine. Stem Cells Transl Med 2017;6:1458-64. doi: 10.1002/sctm.16-0443
[95] Omori K, Nakamura T, Kanemaru S, Asato R, Yamashita M, Tanaka S, et al. Regenerative Medicine of the Trachea: The First Human Case. Ann Otol Rhinol Laryngol 2005;114:429-33. doi: 10.1177/000348940511400603
[96] Omori K, Tada Y, Suzuki T, Nomoto Y, Matsuzuka T, Kobayashi K, et al. Clinical Application of in Situ Tissue Engineering Using a Scaffolding Technique for Reconstruction of the Larynx and Trachea. Ann Otol Rhinol Laryngol 2008;117:673-8. doi: 10.1177/000348940811700908
[97] Martinod E, Seguin A, Pfeuty K, Fornes P, KambouchnerM, Azorin JF, et al. Long-Term Evaluation of the Replacement of the Trachea with an Autologous Aortic Graft. Ann Thorac Surg 2003;75:1572-8. doi: 10.1016/S0003-4975(03)00120-6
[98] Martinod E, Seguin A, Holder-Espinasse M, KambouchnerM, Duterque-Coquillaud M, Azorin JF, et al. Tracheal regeneration following tracheal replacement with an allogenic aorta. Ann Thorac Surg 2005;79:942-8, discussion 949. doi: 10.1016/j.athoracsur.2004.08.035
[99] Wurtz A, Porte H, Conti M, Dusson C, Desbordes J, Copin MC, et al. Surgical Technique and Results of Tracheal and Carinal Replacement with Aortic Allografts for Salivary Gland-Type Carcinoma. J Thorac Cardiovasc Surg 2010;140:387-93.e2. doi: 10.1016/j.jtcvs.2010.01.043
[100] Martinod E, Chouahnia K, Radu DM, Joudiou P, UzunhanY, Bensidhoum M, et al. Feasibility of Bioengineered Tracheal and Bronchial Reconstruction Using Stented Aortic Matrices. JAMA 2018;319:2212-22. doi: 10.1001/jama.2018.4653
[101] Martinod E, Paquet J, Dutau H, Radu DM, Bensidhoum M, Abad S, et al. In Vivo Tissue Engineering of Human Airways. Ann Thorac Surg 2017;103:1631-40. doi: 10.1016/j.athoracsur.2016.11.027
[102] Kim H, Lee JY, Han H, Cho WW, Han H, Choi A, et al. Improved Chondrogenic Performance with Protective Tracheal Design of Chitosan Membrane Surrounding 3D-Printed Trachea. Sci Rep 2021;11:9258. doi: 10.1038/s41598-021-88830-3
[103] Pepper V, Best CA, Buckley K, Schwartz C, Onwuka E, King N, et al. Factors Influencing Poor Outcomes in Synthetic Tissue-Engineered Tracheal Replacement. Otolaryngol Head Neck Surg 2019;161:458-67. doi: 10.1177/0194599819844754
[104] Yu YS, Ahn CB, Son KH, Lee JW. Motility Improvement of Biomimetic Trachea Scaffold Via Hybrid 3d-Bioprinting Technology. Polymers (Basel) 2021;13:971. doi: 10.3390/polym13060971
[105] Dharmadhikari S, Liu L, Shontz K, Wiet M, White A, Goins A, et al. Deconstructing Tissue Engineered Trachea: Assessing the Role of Synthetic Scaffolds, Segmental Replacement and Cell Seeding on Graft Performance. Acta Biomater 2020;102:181-91. doi: 10.1016/j.actbio.2019.11.008
[106] She Y, Fan Z, Wang L, Li YG, Peng J, Wei CL, et al. 3D Printed Biomimetic PCL Scaffold as Framework Interspersed With Collagen for Long Segment Tracheal Replacement. Front Cell Dev Biol 2021;9:629796. doi: 10.3389/fcell.2021.629796
[107] Kim IG, Park SA, Lee SH, Choi JK, Cho H, Lee SJ, et al. Transplantation of a 3D-Printed Tracheal Graft Combined with iPS Cell-Derived MSCs and Chondrocytes. Sci Rep 2020;10:4326. doi: 10.1038/s41598-020-61405-4
[108] Choi JS, Lee MS, Kim J, Eom MR, Jeong EJ, Lee M, et al. Hyaluronic Acid Coating on Hydrophobic Tracheal Scaffold Enhances Mesenchymal Stem Cell Adhesion and Tracheal Regeneration. Tissue Eng Regen Med 2021;18:225-33. doi: 10.1007/s13770-021-00335-2