AccScience Publishing / JCAU / Online First / DOI: 10.36922/JCAU025130030
SHORT COMMUNICATION

Using mobile phone data registration to determine urban mobility patterns: A comparative perspective from Iran and China

Ehsan Dorostkar1*
Show Less
1 Department of Human Geography and Planning, Faculty of Geography, University of Tehran, Tehran, Iran
Journal of Chinese Architecture and Urbanism, 025130030 https://doi.org/10.36922/JCAU025130030
Received: 28 March 2025 | Revised: 16 May 2025 | Accepted: 23 May 2025 | Published online: 13 June 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Urban forms are central to the operation of cities. However, traditional approaches rarely capture human mobility. In this study, we used mobile phone data from Iran (Tehran/Balad.ir) and China (Shanghai/Gaode Maps) to introduce a demand-driven “urban pattern of need.” Using density-based spatial clustering of applications with Noise (radius of neighborhood, ε = 1 km, minimum number of points, min_samples = 50) and kernel density estimation, we analyzed anonymized global positioning system traces (with 15-min windows in Tehran) and multimodal mobility data (5-min frequency in Shanghai). Key findings include a 40% commute asymmetry in Tehran (p<0.05) and 68% of Shanghai’s bike-share trips under 2 km, reflecting differences in urban morphologies shaped by governance. The results validate adaptive urbanism informed by real-time mobility analysis, synthesizing theory with data-driven planning.

Keywords
Human mobility
Urban pattern
Mobile phone
Transportation
China
Iran
Funding
None.
Conflict of interest
The author declares that there are no competing interests.
References

Anjomshoaa, A., Duarte, F., Rennings, D., Matarazzo, T. J., Desouza, P., & Ratti, C. (2018). City scanner: Building and scheduling a mobile sensing platform for smart city services. IEEE Internet of things Journal, 5(6):4567-4579. https://doi.org/10.1109/jiot.2018.2839058

 

Batty, M. (2013). The New Science of Cities. United States: MIT Press.

 

Bengtsson, L., Lu, X., Thorson, A., Garfield, R., & Von Schreeb, J. (2011). Improved response to disasters and outbreaks by tracking population movements with mobile phone network data: A post-earthquake geospatial study in Haiti. PLoS Medicine, 8(8):e1001083. https://doi.org/10.1371/journal.pmed.1001083

 

Dorostkar, E. (2025). Discovering the urban pattern through human mobility and virtual space. Journal of Urban Management, 14:607-614. https://doi.org/10.1016/j.jum.2025.01.004

 

Eisenman, S. B., Lane, N. D., Miluzzo, E., Peterson, R. A., Ahn, G., & Campbell, A. T. (2006). Metrosense Project: People-centric Sensing at Scale. In: Proceedings of the Workshop on World-Sensor-Web (WSW 2006). Boulder.

 

Fenichel, E. P., Castillo-Chavez, C., Ceddia, M. G., Chowell, G., Parra, P. A. G., Hickling, G. J., et al. (2011). Adaptive human behavior in epidemiological models. Proceedings of the National Academy of Sciences, 108(15):6306-6311. https://doi.org/10.1073/pnas.1011250108

 

Funk, S., Gilad, E., Watkins, C., & Jansen, V. A. (2009). The spread of awareness and its impact on epidemic outbreaks. Proceedings of the National Academy of Sciences, 106(16):6872-6877. https://doi.org/10.1073/pnas.0810762106

 

Gao, S., Rao, J., Kang, Y., Liang, Y., Kruse, J., Doepfer, D., et al. (2020). Mobile phone location data reveal the effect and geographic variation of social distancing on the spread of the COVID-19 epidemic. arXiv preprint arXiv:2004.11430.

 

Harrington, L. C., Scott, T. W., Lerdthusnee, K., Coleman, R. C., Costero, A., Clark, G. G., et al. (2005). Dispersal of the dengue vector Aedes aegypti within and between rural communities. The American Journal of Tropical Medicine and Hygiene, 72(2), 209-220.

 

Harvey, D. (1989). The Urban Experience. United States: Johns Hopkins University Press.

Honicky, R., Brewer, E. A., Paulos, E., & White, R. (2008). N-smarts: Networked Suite of Mobile Atmospheric Real-time Sensors. In: Proceedings of the second ACM SIGCOMM Workshop on Networked Systems for Developing Regions, p. 25-30. https://doi.org/10.1145/1397705.1397713

 

Jacobs, J. (1961). The Death and Life of Great American Cities. Vol. 21. United States: Modern Library, p. 13-25.

 

Liang, Y., Gao, S., Cai, Y., Foutz, N. Z., & Wu, L. (2020). Calibrating the dynamic Huff model for business analysis using location big data. Transactions in GIS, 24(3):681-703. https://doi.org/10.1111/tgis.12624

 

Liebman, K. A., Stoddard, S. T., Morrison, A. C., Rocha, C., Minnick, S., Sihuincha, M., et al. (2012). Spatial dimensions of dengue virus transmission across interepidemic and epidemic periods in Iquitos, Peru (1999-2003). PLoS Neglected Tropical Diseases, 6(2):e1472. https://doi.org/10.1371/journal.pntd.0001472

 

Lu, X., Wetter, E., Bharti, N., Tatem, A. J., & Bengtsson, L. (2013). Approaching the limit of predictability in human mobility. Scientific Reports, 3(1):2923. https://doi.org/10.1038/srep02923

 

Lynch, K. (1960). The Image of the City. United States: MIT Press.

 

Muir, L. E., & Kay, B. H. (1998). Aedes aegypti survival and dispersal estimated by mark-release-recapture in northern Australia. The American Journal of Tropical Medicine and Hygiene, 58(3):277-282. https://doi.org/10.4269/ajtmh.1998.58.277

 

Najarsadeghi, M., & Dorostkar, E. (2022). How do measure the triangle of human mobility in urban nightlife? Cities, 130:103944. https://doi.org/10.1016/j.cities.2022.103944

 

Perkins, T. A., Scott, T. W., Le Menach, A., & Smith, D. L. (2013). Heterogeneity, mixing, and the spatial scales of mosquito-borne pathogen transmission. PLoS Computational Biology, 9(12):e1003327. https://doi.org/10.1371/journal.pcbi.1003327

 

Prestby, T., App, J., Kang, Y., & Gao, S. (2020). Understanding neighborhood isolation through spatial interaction network analysis using location big data. Environment and Planning A: Economy and Space, 52(6):1027-1031. https://doi.org/10.10.1177/0308518X19891911

 

Prosper, O., Ruktanonchai, N., & Martcheva, M. (2012). Assessing the role of spatial heterogeneity and human movement in malaria dynamics and control. Journal of Theoretical Biology, 303:1-14. https://doi.org/10.1016/j.jtbi.2012.02.010

 

Stoddard, S. T., Forshey, B. M., Morrison, A. C., Paz-Soldan, V. A., Vazquez-Prokopec, G. M., Astete, H., et al. (2013). House-to-house human movement drives dengue virus transmission. Proceedings of the National Academy of Sciences, 110(3):994-999. https://doi.org/10.1073/pnas.1213349110

 

Tonekaboni, N. H., Ramaswamy, L., Mishra, D., Grundstein, A., Kulkarni, S., & Yin, Y. (2018). Scouts: A Smart Community Centric Urban Heat Monitoring Framework. In: Proceedings of the 1st ACM SIGSPATIAL Workshop on Advances on Resilient and Intelligent Cities. Seattle, Washingtonp, p. 27-30.

 

Volz, E. M., Miller, J. C., Galvani, A., & Ancel Meyers, L. (2011). Effects of heterogeneous and clustered contact patterns on infectious disease dynamics. PLoS Computational Biology, 7(6):e1002042. https://doi.org/10.1371/journal.pcbi.1002042

 

Wesolowski, A., Eagle, N., Tatem, A. J., Smith, D. L., Noor, A. M., Snow, R. W., & Buckee, C. O. (2012). Quantifying the impact of human mobility on malaria. Science, 338(6104):267-270. https://doi.org/10.1126/science.1223467

 

Yin, Y., Tonekaboni, N. H., Grundstein, A., Mishra, D. R., Ramaswamy, L., & Dowd, J. (2020). Urban ambient air temperature estimation using hyperlocal data from smart vehicle-borne sensors. Computers, Environment and Urban Systems, 84:101538. https://doi.org/10.1016/j.compenvurbsys.2020.101538

 

Zhang, L., Li, X., & Gao, S. (2020). Smart urban mobility: A comparative study of Chinese governance models. Journal of Urban Technology, 27(3):45-67.

 

Share
Back to top
Journal of Chinese Architecture and Urbanism, Electronic ISSN: 2717-5626 Published by AccScience Publishing