AccScience Publishing / ITPS / Online First / DOI: 10.36922/itps.5797
ORIGINAL RESEARCH ARTICLE

Preclinical evaluation reveals comparable toxicology and pharmacology of the erythropoietin biosimilar GBpoietin® and Eprex®

Kakon Nag1,2* Mohammad Mohiuddin1 Md. Maksudur Rahman Khan1 Samir Kumar1 Md. Enamul Haq Sarker1 Bipul Kumar Biswas1 Sheikh Rejaul Haq1 Sitesh Chandra Bachar3* Naznin Sultana1,2*
Show Less
1 Globe Biotech Limited, Dhaka, Bangladesh
2 R&D Management Solution Inc., Ontario, Canada
3 Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
INNOSC Theranostics and Pharmacological Sciences, 5797 https://doi.org/10.36922/itps.5797
Submitted: 6 November 2024 | Revised: 9 January 2025 | Accepted: 5 February 2025 | Published: 26 February 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Erythropoietin (EPO) is an essential growth factor for erythropoiesis. We report the results of the preclinical safety evaluation of GBpoietin®, a recombinant human EPO (rhEPO), through a comparative acute toxicity study with the reference product, Eprex®. The products were administered subcutaneously into Wistar rats for both the single-dose and repeated-dose toxicity studies. Hematological and biochemical parameters were measured for all test subjects before the first dose and the day after the last dose in both studies. Necropsy and histopathology of representative subjects from each group were also performed to find any pathological changes, such as degeneration or cellular necrosis in internal organs such as the kidney, liver, lung, and spleen. Both GBpoietin® and Eprex® comparative toxicology studies, which were not significantly different (P > 0.05), revealed similar pharmacologically driven mechanisms of toxicity. Although hematological parameters stayed within the normal range throughout the study, improved profiles of hemoglobin and hematocrit (P < 0.05) confirmed the therapeutic effect of rhEPO in both studies. Moreover, the initial and final values of aspartate aminotransferase, alanine aminotransferase, and blood urea nitrogen were comparable (P > 0.05) for both experimental products. The study established that the toxicological profiles of GBpoietin® and Eprex® were similar and aligned with the known pharmacology of EPO alfa, demonstrating proof of “totality” and “no residual uncertainty.”

Keywords
Erythropoietin
Preclinical study
Single-dose toxicity
Repeat-dose toxicity
GBpoietin®
Drug safety profile
Funding
The study was funded by Globe Biotech Limited.
Conflict of interest
Kakon Nag is the CEO of Globe Biotech Limited, Dhaka, Bangladesh and R&D Management Solution Inc., Ontario, Canada. However, this has not influenced the content of the manuscript. The other authors declare that they have no competing interests.
References
  1. Al Mahtab M, Bachar SC, Nag K, et al. Clinical evaluation in adult human revealed the biosimilarity of recombinant Erythropoietin GBPD002 with eprex®. Arch Clin Biomed Res. 2023;7(4):459-474. doi: 10.26502/acbr.50170361

 

  1. Bhoopalan SV, Huang LJ, Weiss MJ. Erythropoietin regulation of red blood cell production: From bench to bedside and back. F1000Res. 2020;9:F1000 Faculty Rev-1153. doi: 10.12688/f1000research.26648.1

 

  1. Miyake T, Kung CK, Goldwasser E. Purification of human erythropoietin. J Biol Chem. 1977;252(15):5558-5564.

 

  1. Igarashi P. Kidney-specific gene targeting. J Am Soc Nephrol. 2004;15(8):2237-2239. doi: 10.1097/01.ASN.0000136298.09488.D7

 

  1. Jelkmann W. Physiology and pharmacology of erythropoietin. Transfus Med Hemother. 2013;40(5):302-309. doi: 10.1159/000356193

 

  1. Bacardí DM, Cosme K, Gutiérrez A, et al. Preclinical safety demonstration of the human recombinant erythropoietin HEBERITRO®. Biotecnol Apl. 2005;22(4):273-278.

 

  1. Shih HM, Wu CJ, Lin SL. Physiology and pathophysiology of renal erythropoietin-producing cells. J Formos Med Assoc. 2018;117(11):955-963. doi: 10.1016/j.jfma.2018.03.017

 

  1. Zhang Y, Wang L, Dey S, et al. Erythropoietin action in stress response, tissue maintenance and metabolism. Int J Mol Sci. 2014;15(6):10296-10333. doi: 10.3390/ijms150610296

 

  1. Pucaj K, Riddle K, Taylor SR, Ledon N, Bolger GT. Safety and Biosimilarity of ior® EPOCIM compared with eprex® based on toxicologic, pharmacodynamic, and pharmacokinetic studies in the sprague-dawley Rat. J Pharm Sci. 2014;103(11):3432-3441. doi: 10.1002/jps.24164

 

  1. Dzierzak E, Philipsen S. Erythropoiesis: Development and differentiation. Cold Spring Harb Perspect Med. 2013;3(4):a011601. doi: 10.1101/cshperspect.a011601

 

  1. Committee for Medicinal Products for Human Use (CHMP). Guideline on Comparability of Medicinal Products Containing Biotechnology-Derived Proteins as Active Substance. Non-Clinical and Clinical Issues. Netherlands: European Medicines Agency; 2003.

 

  1. Guideline IHT. Guidance on Nonclinical Safety Studies for the Conduct of Human Clinical Trials and Marketing Authorization for Pharmaceuticals M3 (R2); 2009.

 

  1. Parnham MJ, Schindler‐Horvat J, Kozlović M. Non‐clinical safety studies on biosimilar recombinant human erythropoietin. Basic Clin Pharmacol Toxicol. 2007;100(2):73-83. doi: 10.1111/j.1742-7843.2007.00028.x

 

  1. Thachil J, Owusu-Ofori S, Bates I. Haematological diseases in the tropics. In: Manson’s Tropical Infectious Diseases. Amsterdam: Elsevier Health Sciences; 2014. p. 894.

 

  1. Weber G, Gross J, Kromminga A, Loew HH, Eckardt KU. Allergic skin and systemic reactions in a patient with pure red cell aplasia and anti-erythropoietin antibodies challenged with different epoetins. J Am Soc Nephrol. 2002;13(9): 2381-2383. doi: 10.1097/01.asn.0000027031.79843.6c

 

  1. Lewis LD. Preclinical and Clinical Studies: A Preview of Potential Future Applications of Erythropoietic Agents. Netherlands: Elsevier; 2004. p. 17-25.

 

  1. Singh G. Preclinical Drug Development. In: Pharmaceutical Medicine and Translational Clinical Research. Netherlands: Elsevier; 2018. p. 47-63.

 

  1. Broichhausen C, Riquelme P, Ahrens N, et al. In question: The scientific value of preclinical safety pharmacology and toxicology studies with cell-based therapies. Mol Ther Methods Clin Dev. 2014;1:14026. doi: 10.1038/mtm.2014.26

 

  1. De Mora F, Torres R. Biotechnology-derived medicines: What are they? A pharmacological and a historical perspective. J Generic Med. 2010;7(2):145-157. doi: 10.1057/jgm.2010.10

 

  1. Beiraghdar F, Panahi Y, Einollahi B, et al. Evaluation of a biosimilar recombinant alpha epoetin in the management of anemia in hemodialysis patients. Saudi Pharm J. 2015;23(5):544-548. doi: 10.1016/j.jsps.2015.02.007

 

  1. Nag K, Islam MJ, Rahman Khan MM, et al. Development and qualification of a high-yield recombinant human Erythropoietin Biosimilar. bioRxiv [Preprint]; 2023. doi: 10.1101/2023.01.22.525046

 

  1. Pognan F, Beilmann M, Boonen H, et al. The evolving role of investigative toxicology in the pharmaceutical industry. Nat Rev Drug Discov. 2023;22(4):317-335. doi: 10.1038/s41573-022-00633-x

 

  1. Ait‐Oudhia S, Scherrmann JM, Krzyzanski W. Time‐dependent clearance and hematological pharmacodynamics upon erythropoietin multiple dosing in rats. Biopharm Drug Disposit. 2010;31(5‐6):298-315. doi: 10.1002/bdd.712

 

  1. Marone PA, Lau FC, Gupta RC, Bagchi M, Bagchi D. Safety and toxicological evaluation of undenatured type II collagen. Toxicol Mech Methods. 2010;20(4):175-189. doi: 10.3109/15376511003646440

 

  1. Barnes CA. Memory deficits associated with senescence: A neurophysiological and behavioral study in the rat. J Comp Physiol Psychol. 1979;93(1):74. doi: 10.1037/h0077579

 

  1. Haley T, McCormick W. Pharmacological effects produced by intracerebral injection of drugs in the conscious mouse. Br J Pharmacol Chemother. 1957;12(1):12-15. doi: 10.1111/j.1476-5381.1957.tb01354.x

 

  1. Silva I, Alípio C, Pinto R, Mateus V. Potential anti-inflammatory effect of erythropoietin in non-clinical studies in vivo: A systematic review. Biomed Pharmacother. 2021;139:111558. doi: 10.1016/j.biopha.2021.111558

 

  1. Isbrucker R, Edwards J, Wolz E, Davidovich A, Bausch J. Safety studies on epigallocatechin gallate (EGCG) preparations. Part 2: Dermal, acute and short-term toxicity studies. Food Chem Toxicol. 2006;44(5):636-650.

 

  1. Lim HK, Choi J, Kim D, et al. Single-and repeat-dose toxicity of HM10760A, a long-acting erythropoietin, in rats and monkeys. Toxicol Appl Pharmacol. 2020;402:115126. doi: 10.1016/j.taap.2020.115126

 

  1. Patterson ZR, Abizaid A. Stress induced obesity: Lessons from rodent models of stress. Front Neurosci. 2013;7:130. doi: 10.3389/fnins.2013.00130

 

  1. Everds NE, Snyder PW, Bailey KL, et al. Interpreting stress responses during routine toxicity studies: A review of the biology, impact, and assessment. Toxicol Pathol. 2013;41(4):560-614. doi: 10.1177/0192623312466452

 

  1. Mehany HM, El-Shafai NM, Attia AM, Ibrahim MM, El-Mehasseb IM. Potential of chitosan nanoparticle/fluoride nanocomposite for reducing the toxicity of fluoride an in-vivo study on the rat heart functions: Hematopoietic and immune systems. Int J Biol Macromol. 2022;216:251-262. doi: 10.1016/j.ijbiomac.2022.06.171

 

  1. Lin N, Liu B, Zhang J, et al. Acute toxicity, 28-day repeated-dose toxicity and toxicokinetic study of timosaponin BII in rats. Regul Toxicol Pharmacol. 2017;90:244-257. doi: 10.1016/j.yrtph.2017.09.021

 

  1. Risso A, Turello M, Biffoni F, Antonutto G. Red blood cell senescence and neocytolysis in humans after high altitude acclimatization. Blood Cells Mol Dis. 2007;38(2):83-92. doi: 10.1016/j.bcmd.2006.10.161

 

  1. Martell RE, Peterson BL, Cohen H, et al. Analysis of age, estimated creatinine clearance and pretreatment hematologic parameters as predictors of fludarabine toxicity in patients treated for chronic lymphocytic leukemia: A CALGB (9011) coordinated intergroup study. Cancer Chemother Pharmacol. 2002;50:37-45. doi: 10.1007/s00280-002-0443-5

 

  1. Neben S, Marcus K, Mauch P. Mobilization of hematopoietic stem and progenitor cell subpopulations from the marrow to the blood of mice following cyclophosphamide and/ or granulocyte colony-stimulating factor. Blood. 1993;81: 1960-1967.

 

  1. Wazis C, Anuka J, Timothy S, Zezi A, Mohammed G, Hussaini I. Acute toxicity and in-vivo effects of leaf extracts of Byrsocarpus coccineus Shum and Thonn in pregnant rat uterus. J Appl Pharm Sci. 2012;2(12):130-136.

 

  1. El-Hak HNG, Moustafa ARA, Mansour SR. Toxic effect of Moringa peregrina seeds on histological and biochemical analyses of adult male Albino rats. Toxicol Rep. 2018;5:38-45. doi: 10.1016/j.toxrep.2017.12.012

 

  1. Vessal S, Naidoo S, Hodson J, Stella DL, Gibson RN. Hepatic vein morphology: A new sonographic diagnostic parameter in the investigation of cirrhosis? J Ultrasound Med. 2009;28(9):1219-1227. doi: 10.7863/jum.2009.28.9.1219

 

  1. Inam S, Irfan M, Lali NUA, et al. Development and characterization of eudragit® EPO-based solid dispersion of rosuvastatin calcium to foresee the impact on solubility, dissolution and antihyperlipidemic activity. Pharmaceuticals (Basel). 2022;15(4):492. doi: 10.3390/ph15040492

 

  1. Oleaga C, Bernabini C, Smith AS, et al. Multi-Organ toxicity demonstration in a functional human in vitro system composed of four organs. Sci Rep. 2016;6(1):20030. doi: 10.1038/srep20030

 

 

Share
Back to top
INNOSC Theranostics and Pharmacological Sciences, Electronic ISSN: 2705-0823 Print ISSN: 2705-0734, Published by AccScience Publishing