Application of robotics in modern surgery and critical operations: Current status, challenges, and future directions

The field of modern surgery has undergone significant transformation with the integration of robotics, which offers unprecedented precision, reduced invasiveness, and improved surgical outcomes. Robotic-assisted surgery has gained popularity across various specialties, including neurosurgery, orthopedics, urology, and cardiac surgery, with systems such as the da Vinci Surgical System serving as a key example. These robotic platforms enhance surgical performance by providing greater control, three-dimensional visualization, and improved dexterity, which collectively reduce operating fatigue, minimize human error, and shorten patient recovery times. Despite these advancements, challenges remain, including high operational costs, the need for specialized training, and the limitations of robotic systems in handling complex or unforeseen situations. This review explores the current state of robotic applications in surgery, addressing both their potential and their limitations. It also discusses future developments, particularly the role of enhanced sensory feedback, machine learning, and artificial intelligence in advancing robotic surgery. While robotic technologies hold the promise of improving patient outcomes, reducing complications, and increasing accessibility, ethical, financial, and technological challenges still need to be addressed. As robotic technologies continue to evolve, they have the potential to reshape the landscape of essential procedures and surgeries.

- Thai MT, Phan PT, Hoang TT, Wong S, Lovell NH, Do TN. Advanced intelligent systems for surgical robotics. Adv Intell Syst. 2020;2:1900138. doi: 10.1002/aisy.201900138
- Dzedzickis A, Subačiūtė-Žemaitienė J, Šutinys E, Samukaitė- Bubnienė U, Bučinskas V. Advanced applications of industrial robotics: New trends and possibilities. Appl Sci. 2021;12:135. doi: 10.3390/app12010135
- Macmanus Q, Okies JE, Phillips SJ, Starr A. Surgical considerations in patients undergoing repeat median sternotomy. J Thorac Cardiovasc Surg. 1975;69:138-143. doi: 10.1016/S0022-5223(19)41621-8
- Güllü AU, Şenay S, Ersin E, et al. Robotic‐assisted cardiac surgery without aortic cross‐clamping: A safe alternative approach. J Cardiac Surg. 2021;36:165-1681. doi: 10.1111/jocs.15160
- Koulaouzidis G, Charisopoulou D, Bomba P, et al. Robotic-assisted solutions for invasive cardiology, cardiac surgery and routine on-ward tasks: A narrative review. J Cardiovasc Dev Dis. 2023;10:399. doi: 10.3390/jcdd10090399
- Ferguson JM, Pitt B, Kuntz A, et al. Comparing the accuracy of the da Vinci Xi and da Vinci Si for image guidance and automation. Int J Med Robot. 2020;16:1-10. doi: 10.1002/rcs.2149
- Ojima T, Nakamura M, Hayata K, Kitadani J, Takeuchi A, Yamaue H. Comparison of short-term surgical outcomes using da Vinci S, Si and Xi surgical system for robotic gastric cancer surgery. Sci Rep. 2021;11:11063. doi: 10.1038/s41598-021-90741-2
- Khan AS, Scherer M, Panni R, et al. Total robotic liver transplant: The final frontier of minimally invasive surgery. Am J Transplant. 2024;24:1467-172. doi: 10.1016/j.ajt.2024.03.030
- Carvalho TC, Borges AKDM, Koifman RJ, De Silva IF. Time trends in colorectal cancer incidence in four regions of Latin America: 1983-2012. Cad Saude Publica. 2021;37:e00175720. doi: 10.1590/0102-311X00175720
- Garcia P, Rosen J, Kapoor C, et al. Trauma pod: A semi‐automated telerobotic surgical system. Int J Med Robot. 2009;5:136-146. doi: 10.1002/rcs.238
- Musquera Felip M, Ajami Fardoun T, Peri Cusi L, Alcaraz Asensio A. Technique description and outcomes of robotic transvaginal-assisted living donor kidney transplantation. Urol Int. 2021;105:148-154. doi: 10.1159/000511756.
- Di Pangrazio M, Pinto F, Martinino A, Toti F, Pozza G, Giovinazzo F. Robotic surgical techniques in transplantation: A comprehensive review. Transplantology. 2024;5:72-84. doi: 10.3390/transplantology5020008
- Whiteman E, Rehman U, Hussien M, Sarwar MS, Harsten R, Brennan PA. The implementation of robotic systems in paediatric craniofacial and head and neck surgery: A narrative review of the literature. Br J Oral Maxillofac Surg. 2024. doi: 10.1016/j.bjoms.2024.11.011
- Weinstein GS, O’Malley BW Jr., Magnuson JS, et al. Transoral robotic surgery: A multicenter study to assess feasibility, safety, and surgical margins. Laryngoscope. 2012;122:1701-1707. doi: 10.1002/lary.23294.
- Dziegielewski PT, Teknos TN, Durmus K, et al. Transoral robotic surgery for oropharyngeal cancer: Long-term quality of life and functional outcomes. JAMA Otolaryngol Head Neck Surg. 2013;139:1099-1108. doi: 10.1001/jamaoto.2013.2747
- Hussain T, Lang S, Haßkamp P, Holtmann L, Höing B, Mattheis S. The Flex robotic system compared to transoral laser microsurgery for the resection of supraglottic carcinomas: First results and preliminary oncologic outcomes. Eur Arch Otorhino-Laryngol. 2020;277:917-924. doi: 10.1007/s00405-019-05767-0
- Mattioni G, Palleschi A, Mendogni P, Tosi D. Approaches and outcomes of robotic-assisted thoracic surgery (RATS) for lung cancer: A narrative review. J Robotic Surg. 2023;17:797-809. doi: 10.1007/s11701-022-01512-8
- Visco AG, Advincula AP. Robotic gynecologic surgery. Obstetr Gynecol. 2008;112:1369-1384. doi: 10.1097/AOG.0b013e31818f3c17
- Mei H, Tang S. Robotic-assisted surgery in the pediatric surgeons’ world: Current situation and future prospectives. Front Pediatr. 2023;11:1120831. doi: 10.3389/fped.2023.1120831
- Gonzalez-Rivas D, Bosinceanu M, Motas N, Manolache V. Uniportal robotic-assisted thoracic surgery for lung resections. Eur J Cardiothorac Surg. 2022;62:ezac410. doi: 10.1093/ejcts/ezac410
- Gonzalez-Rivas D, Manolache V, Bosinceanu ML, et al. Uniportal pure robotic-assisted thoracic surgery-technical aspects, tips and tricks. Ann Transl Med. 2022;11:362. doi: 10.21037/atm-22-1866
- Watanabe M, Kuriyama K, Terayama M, Okamura A, Kanamori J, Imamura Y. Robotic-assisted esophagectomy: Current situation and future perspectives. Ann Thorac Cardiovasc Surg. 2023;29:168-176.
- Fujita T, Sato K, Fujiwara N, et al. Robot-assisted transcervical esophagectomy with a bilateral cervical approach for thoracic esophagectomy. Surg Endosc. 2024;38:1617-1625. doi: 10.1007/s00464-024-10692-3
- Esagian SM, Ziogas IA, Skarentzos K, et al. Robot-assisted minimally invasive esophagectomy versus open esophagectomy for esophageal cancer: A systematic review and meta-analysis. Cancers (Basel). 2022;14:3177. doi: 10.3390/cancers14133177
- Smith JA, Jivraj J, Wong R, Yang V. 30 years of neurosurgical robots: Review and trends for manipulators and associated navigational systems. Ann Biomed Eng. 2016;44:836-846. doi: 10.1007/s10439-015-1475-4
- Pangal DJ, Cote DJ, Ruzevick J, et al. Robotic and robot-assisted skull base neurosurgery: Systematic review of current applications and future directions. Neurosurg Focus. 2022;52:E15. doi: 10.3171/2021.10.FOCUS21505
- Elswick CM, Strong MJ, Joseph JR, Saadeh Y, Oppenlander M, Park P. Robotic-assisted spinal surgery: Current generation instrumentation and new applications. Neurosurg Clin N Am. 2019;31:103-110. doi: 10.1016/j.nec.2019.08.012
- Singh R, Wang K, Qureshi MB, Rangel IC, et al. Robotics in neurosurgery: Current prevalence and future directions. Surg Neurol Int. 2022;3:373. doi: 10.25259/SNI_522_2022
- Mallela AN, Beiriger J, Gersey ZC, et al. Targeting the future: Developing a training curriculum for robotic assisted neurosurgery. World Neurosurg. 2022;167:e770-e777. doi: 10.1016/j.wneu.2022.08.076
- Oszwald M, Westphal R, Klepzig D, et al. Robotized access to the medullary cavity for intramedullary nailing of the femur. Technol Health Care. 2010;18:173-180. doi: 10.3233/THC-2010-0580
- Xu D, Lou W, Li M, Xiao J, Wu H, Chen J. Current status of robot-assisted surgery in the clinical application of trauma orthopedics in China: A systematic review. Health Sci Rep. 2022;5:e930. doi: 10.1002/hsr2.93 0
- Diaz-Aguilar LD, Brown NJ, Bui N, et al. The use of robot-assisted surgery for the unstable traumatic spine: A retrospective cohort study. North Am Spine Soc J (NASSJ). 2023;15:100234. doi: 10.1016/j.xnsj.2023.100234
- Lenihan JP Jr., Kovanda C, Seshadri-Kreaden U. What is the learning curve for robotic assisted gynecologic surgery? J Minim Invasive Gynecol. 2008;15:589-594. doi: 10.1016/j.jmig.2008.06.015
- Moss EL, Morgan G, Martin AP, Sarhanis P, Ind T. Surgical trends, outcomes and disparities in minimal invasive surgery for patients with endometrial cancer in England: A retrospective cohort study. BMJ Open. 2020;10:e036222. doi: 10.1136/bmjopen-2019-036222
- Nobbenhuis MA, Gul N, Barton‐Smith P, et al. Robotic surgery in gynaecology: Scientific impact paper No. 71 (July 2022). BJOG. 2023;130:e1-e8. doi: 10.1111/1471-0528.17242
- Ind TE, Marshall C, Kasius J, Butler J, Barton D, Nobbenhuis M. Introducing robotic radical hysterectomy for stage 1bi cervical cancer-a prospective evaluation of clinical and economic outcomes in a single UK institution. Int J Med Robot. 2019;15:e1970. doi: 10.1002/rcs.1970
- Wakimoto M, Michalsky M, Nafiu O, Tobias J. Anesthetic implications of robotic-assisted surgery in pediatric patients. Robot Surg. 2021;8:9-19. doi: 10.2147/RSRR.S308185
- Krebs TF, Schnorr I, Heye P, Häcker FM. Robotically assisted surgery in children-a perspective. Children (Basel). 2022;9:839. doi: 10.3390/children9060839
- Rassweiler JJ, Teber D. Advances in laparoscopic surgery in urology. Nat Rev Urol. 2016;13:387-399. doi: 10.1038/nrurol.2016.70
- Boscarelli A, Giglione E, Caputo MR, et al. Robotic-assisted surgery in pediatrics: What is evidence-based?-A literature review. Transl Pediatr. 2023;12:271. doi: 10.21037/tp-22-338
- Ferrero PA, Blanc T, Binet A. The potential and the limitations of esophageal robotic surgery in children. Eur J Pediatr Surg. 2022;32:170-176. doi: 10.1055/s-0040-1721770