Subanesthetic ketamine for reducing the harm of cocaine use disorder
Subanesthetic ketamine offers promising potential for reducing harm in individuals with cocaine use disorder (CUD). Research indicates that even a single dose can lessen cravings and decrease drug-seeking behaviors, though achieving long-term abstinence remains challenging. However, reduced cocaine consumption itself is a meaningful outcome. Ketamine’s potential in reducing the harm of CUD is also supported by its mechanism of action in the dopaminergic system, as it counters cocaine’s effect by interacting with dopamine receptors, stabilizing brain-derived neurotrophic factor levels, and modulating lateral habenula neuron bursting. In addition, concerns about ketamine’s abuse potential are minimized when it is administered in a clinical setting under professional supervision. This is supported by its success as a treatment for depression, indicating that, with appropriate safeguards, ketamine could be a valuable pharmacological strategy for harm reduction in CUD. When developing ketamine as a CUD harm-reduction strategy, it is also important to account for sex differences, which may affect patients’ sensitivity to ketamine and the potential for misuse. Although the promising effects of ketamine in treating depression support its use for CUD, most studies have focused on depression models, and additional research is needed to confirm safety and understand its specific mechanisms in CUD. Nonetheless, subanesthetic ketamine is a promising CUD intervention and should be further explored to provide an efficient and safe solution for patients in need. This narrative review mainly elucidates the ongoing research regarding ketamine’s mechanisms of action, pharmacology, and clinical application potential in CUD.
1. Roque Bravo R, Faria AC, Brito-da-Costa AM, et al. Cocaine: An updated overview on chemistry, detection, biokinetics, and pharmacotoxicological aspects including abuse pattern. Toxins (Basel). 2022;14(4):278. doi: 10.3390/toxins14040278
2. Available from: https://www.unodc.org/documents/data-and-analysis/cocaine/Global_cocaine_report_2023.pdf [Last accessed on 2024 Jul 29].
3. Stimulant Use Disorder. PsychDB; 2022. Available from: https://www.psychdb.com/addictions/stimulants/1-use-disorder [Last accessed on 2024 Jul 29].
4. Ostlund SB, Halbout B. Mesolimbic dopamine signaling in cocaine addiction. In: Preedy VR, editor. The Neuroscience of Cocaine. Ch. 29. United States: Academic Press; 2017. p. 287-295. doi: 10.1016/B978-0-12-803750-8.00029-4
5. Bocklisch C, Pascoli V, Wong JCY, et al. Cocaine disinhibits dopamine neurons by potentiation of GABA transmission in the ventral tegmental area. Science. 2013;341(6153):1521-1525. doi: 10.1126/science.1237059
6. Soares-Cunha C, de Vasconcelos NAP, Coimbra B, et al. Nucleus accumbens medium spiny neurons subtypes signal both reward and aversion. Mol Psychiatry. 2020;25(12):3241-3255. doi: 10.1038/s41380-019-0484-3
7. Liu Z, Le Q, Lv Y, et al. A distinct D1-MSN subpopulation down-regulates dopamine to promote negative emotional state. Cell Res. 2022;32(2):139-156. doi: 10.1038/s41422-021-00588-5
8. Gong S, Fayette N, Heinsbroek JA, Ford CP. Cocaine shifts dopamine D2 receptor sensitivity to gate conditioned behaviors. Neuron. 2021;109(21):3421-3435.e5. doi: 10.1016/j.neuron.2021.08.012
9. Can A, Zanos P, Moaddel R, et al. Effects of ketamine and ketamine metabolites on evoked striatal dopamine release, dopamine receptors, and monoamine transporters. J Pharmacol Exp Ther. 2016;359(1):159-170. doi: 10.1124/jpet.116.235838
10. Wright WJ, Dong Y. Psychostimulant-induced adaptations in nucleus accumbens glutamatergic transmission. Cold Spring Harb Perspect Med. 2020;10(12):a039255. doi: 10.1101/cshperspect.a039255
11. Calipari ES, Bagot RC, Purushothaman I, et al. In vivo imaging identifies temporal signature of D1 and D2 medium spiny neurons in cocaine reward. Proc Natl Acad Sci. 2016;113(10):2726-2731. doi: 10.1073/pnas.1521238113
12. Wright WJ, Graziane NM, Neumann PA, et al. Silent synapses dictate cocaine memory destabilization and reconsolidation. Nat Neurosci. 2020;23(1):32-46. doi: 10.1038/s41593-019-0537-6
13. Chiamulera C, Piva A, Abraham WC. Glutamate receptors and metaplasticity in addiction. Curr Opin Pharmacol. 2021;56:39-45. doi: 10.1016/j.coph.2020.09.005
14. Cepeda C, André VM, Jocoy EL, Levine MS. NMDA and dopamine: Diverse mechanisms applied to interacting receptor systems. In: Van Dongen AM, editor. Biology of the NMDA Receptor. Frontiers in Neuroscience. CRC Press/Taylor & Francis; 2009. Available from: https://www.ncbi.nlm.nih. gov/books/NBK5280 [Last accessed on 2024 Jul 30].
15. Wang YQ, Huang YH, Balakrishnan S, et al. AMPA and NMDA receptor trafficking at cocaine-generated synapses. J Neurosci. 2021;41(9):1996-2011. doi: 10.1523/JNEUROSCI.1918-20.2021
16. Gautam CS, Mahajan SS, Sharma J, Singh H, Singh J. Repurposing potential of ketamine: Opportunities and challenges. Indian J Psychol Med. 2020;42(1):22-29. doi: 10.4103/IJPSYM.IJPSYM_228_19
17. Club Drugs. Available from: https://www.nyc.gov/site/doh/ health/health-topics/club-drugs.page [Last accessed on 2024 Jul 31].
18. Chaves TV, Wilffert B, Sanchez ZM. Overdoses and deaths related to the use of ketamine and its analogues: A systematic review. Am J Drug Alcohol Abuse. 2023;49(2):141-150. doi: 10.1080/00952990.2022.2132506
19. Maltbie EA, Gopinath KS, Howell LL. Effects of ketamine treatment on cocaine-induced reinstatement and disruption of functional connectivity in unanesthetized rhesus monkeys. Psychopharmacology (Berl). 2019;236(7):2105-2118. doi: 10.1007/s00213-019-05204-4
20. Xu L, Nan J, Lan Y. The nucleus accumbens: A common target in the comorbidity of depression and addiction. Front Neural Circuits. 2020;14:37. doi: 10.3389/fncir.2020.00037
21. Sinha R. The clinical neurobiology of drug craving. Curr Opin Neurobiol. 2013;23(4):649-654. doi: 10.1016/j.conb.2013.05.001
22. Fitzpatrick CJ, Morrow JD. Subanesthetic ketamine decreases the incentive-motivational value of reward-related cues. J Psychopharmacol Oxf Engl. 2017;31(1):67-74. doi: 10.1177/0269881116667709
23. Gao Z, Winhusen TJ, Gorenflo M, et al. Repurposing ketamine to treat cocaine use disorder: Integration of artificial intelligence-based prediction, expert evaluation, clinical corroboration and mechanism of action analyses. Addiction. 2023;118(7):1307-1319. doi: 10.1111/add.16168
24. Dakwar E, Levin F, Foltin RW, Nunes EV, Hart CL. The effects of subanesthetic ketamine infusions on motivation to quit and cue-induced craving in cocaine-dependent research volunteers. Biol Psychiatry. 2014;76(1):40-46. doi: 10.1016/j.biopsych.2013.08.009
25. Dakwar E, Hart CL, Levin FR, Nunes EV, Foltin RW. Cocaine self-administration disrupted by the N-methyl-D-aspartate receptor antagonist ketamine: A randomized, crossover trial. Mol Psychiatry. 2017;22(1):76-81. doi: 10.1038/mp.2016.39
26. Le TT, Cordero IP, Jawad MY, et al. The abuse liability of ketamine: A scoping review of preclinical and clinical studies. J Psychiatr Res. 2022;151:476-496. doi: 10.1016/j.jpsychires.2022.04.035
27. Palamar JJ, Fitzgerald ND, Grundy DJ, Black JC, Jewell JS, Cottler LB. Characteristics of poisonings involving ketamine in the United States, 2019–2021. J Psychopharmacol (Oxf). 2023;37(8):802-808. doi: 10.1177/02698811221140006
28. Simmler LD, Li Y, Hadjas LC, Hiver A, van Zessen R, Lüscher C. Dual action of ketamine confines addiction liability. Nature. 2022;608(7922):368-373. doi: 10.1038/s41586-022-04993-7
29. Schoepfer KJ, Strong CE, Saland SK, Wright KN, Kabbaj M. Sex-and dose-dependent abuse liability of repeated subanesthetic ketamine in rats. Physiol Behav. 2019;203:60-69. doi: 10.1016/j.physbeh.2017.10.021
30. Bonaventura J, Lam S, Carlton M, et al. Pharmacological and behavioral divergence of ketamine enantiomers: Implications for abuse liability. Mol Psychiatry. 2021;26(11):6704-6722. doi: 10.1038/s41380-021-01093-2
31. Elersič K, Banjac A, Živin M, Zorović M. Behavioral sensitization and tolerance induced by repeated treatment with ketamine enantiomers in male Wistar rats. PLoS One. 2024;19(3):e0299379. doi: 10.1371/journal.pone.0299379
32. Commissioner O of the. FDA Approves New Nasal Spray Medication for Treatment-Resistant Depression; Available Only at a Certified Doctor’s Office or Clinic. FDA; 2020. Available from: https://www.fda.gov/news-events/ press-announcements/fda-approves-new-nasal-spray-medication-treatment-resistant-depression-available-only-certified [Last accessed on 2024 Jul 30.
33. Ketamine for Intractable Headache. Practical Neurology. Available from: https://practicalneurology.com/ articles/2022-nov-dec/ketamine-for-intractable-headache [Last accessed on 2024 Jun 29.
34. Rothberg RL, Azhari N, Haug NA, Dakwar E. Mystical-type experiences occasioned by ketamine mediate its impact on at-risk drinking: Results from a randomized, controlled trial. J Psychopharmacol (Oxf). 2021;35(2):150-158. doi: 10.1177/0269881120970879
35. Dakwar E, Anerella C, Hart CL, Levin FR, Mathew SJ, Nunes EV. Therapeutic infusions of ketamine: Do the psychoactive effects matter? Drug Alcohol Depend. 2014;136:153-157. doi: 10.1016/j.drugalcdep.2013.12.019
36. Dakwar E, Nunes E, Hart C, Hu M, Foltin R, Levin F. A sub-set of psychoactive effects may be critical to the behavioral impact of ketamine on cocaine use disorder: Results from a randomized, controlled laboratory study. Neuropharmacology. 2018;142:270-276. doi: 10.1016/j.neuropharm.2018.01.005
37. Chan B, Kondo K, Freeman M, Ayers C, Montgomery J, Kansagara D. Pharmacotherapy for cocaine use disorder-a systematic review and meta-analysis. J Gen Intern Med. 2019;34(12):2858-2873. doi: 10.1007/s11606-019-05074-8
38. Angarita GA, Hadizadeh H, Cerdena I, Potenza MN. Can pharmacotherapy improve treatment outcomes in people with co-occurring major depressive and cocaine use disorders? Expert Opin Pharmacother. 2021;22(13):1669-1683. doi: 10.1080/14656566.2021.1931684
39. Carey TL. Use of antidepressants in patients with co-occurring depression and substance use disorders. In: Macaluso M, Preskorn SH, editors. Antidepressants: From Biogenic Amines to New Mechanisms of Action. Berlin: Springer International Publishing; 2019. p. 359-370. doi: 10.1007/164_2018_162
40. Aharonovich E, Scodes J, Wall MM, Hasin DS. The relationship of frequency of cocaine use to substance and psychiatric disorders in the U.S. general population. Drug Alcohol Depend. 2021;227:108933. doi: 10.1016/j.drugalcdep.2021.108933
41. Samet S, Fenton MC, Nunes E, Greenstein E, Aharonovich E, Hasin D. Effects of independent and substance-induced major depressive disorder on remission and relapse of alcohol, cocaine and heroin dependence. Addiction. 2013;108(1):115-123. doi: 10.1111/j.1360-0443.2012.04010.x
42. Zilkha N, Barnea-Ygael N, Keidar L, Zangen A. Increased relapse to cocaine-seeking in a genetic model for depression. Addict Biol. 2020;25(3):e12756. doi: 10.1111/adb.12756
43. Cabé J, Brousse G, Pereira B, et al. Influence of clinical markers of dopaminergic behaviors on depressive symptoms during withdrawal in cocaine users. Front Psychiatry. 2021;12:775670. doi: 10.3389/fpsyt.2021.775670
44. Tobón KE, Catuzzi JE, Cote SR, Sonaike A, Kuzhikandathil EV. Post-transcriptional regulation of dopamine D1 receptor expression in caudate-putamen of cocaine-sensitized mice. Eur J Neurosci. 2015;42(2):1849-1857. doi: 10.1111/ejn.12933
45. Park K, Volkow ND, Pan Y, Du C. Chronic cocaine dampens dopamine signaling during cocaine intoxication and unbalances D1 over D2 receptor signaling. J Neurosci. 2013;33(40):15827-15836. doi: 10.1523/JNEUROSCI.1935-13.2013
46. Kaushik S, Ahmad F, Choudhary S, et al. Critical appraisal and systematic review of genes linked with cocaine addiction, depression and anxiety. Neurosci Biobehav Rev. 2023;152:105270. doi: 10.1016/j.neubiorev.2023.105270
47. Dackis CA, Gold MS. New concepts in cocaine addiction: The dopamine depletion hypothesis. Neurosci Biobehav Rev. 1985;9(3):469-477. doi: 10.1016/0149-7634(85)90022-3
48. Volkow ND, Tomasi D, Wang GJ, et al. Stimulant-induced dopamine increases are markedly blunted in active cocaine abusers. Mol Psychiatry. 2014;19(9):1037-1043. doi: 10.1038/mp.2014.58
49. Cui L, Li S, Wang S, et al. Major depressive disorder: Hypothesis, mechanism, prevention and treatment. Signal Transduct Target Ther. 2024;9(1):1-32. doi: 10.1038/s41392-024-01738-y
50. Deng J, Zhang T, Zheng X, Shang L, Zhan CG, Zheng F. Recovery of dopaminergic system after cocaine exposure and impact of a long-acting cocaine hydrolase. Addict Biol. 2022;27(4):e13179. doi: 10.1111/adb.13179
51. Belujon P, Grace AA. Restoring mood balance in depression: Ketamine reverses deficit in dopamine-dependent synaptic plasticity. Biol Psychiatry. 2014;76(12):927-936. doi: 10.1016/j.biopsych.2014.04.014
52. Witkin JM, Monn JA, Schoepp DD, et al. The rapidly acting antidepressant ketamine and the mGlu2/3 receptor antagonist LY341495 rapidly engage dopaminergic mood circuits. J Pharmacol Exp Ther. 2016;358(1):71-82. doi: 10.1124/jpet.116.233627
53. Li Y, Zhu ZR, Ou BC, et al. Dopamine D2/D3 but not dopamine D1 receptors are involved in the rapid antidepressant-like effects of ketamine in the forced swim test. Behav Brain Res. 2015;279:100-105. doi: 10.1016/j.bbr.2014.11.016
54. Li X jin, Yu J han, Wu X, et al. Ketamine enhances dopamine D1 receptor expression by modulating microRNAs in a ketamine-induced schizophrenia-like mouse model. Neurotoxicol Teratol. 2022;91:107079. doi: 10.1016/j.ntt.2022.107079
55. Hare BD, Shinohara R, Liu RJ, Pothula S, DiLeone RJ, Duman RS. Optogenetic stimulation of medial prefrontal cortex Drd1 neurons produces rapid and long-lasting antidepressant effects. Nat Commun. 2019;10(1):223. doi: 10.1038/s41467-018-08168-9
56. Galvanho JP, Manhães AC, Carvalho-Nogueira ACC, Silva JM, Filgueiras CC, Abreu-Villaça Y. Profiling of behavioral effects evoked by ketamine and the role of 5HT2 and D2 receptors in ketamine-induced locomotor sensitization in mice. Prog Neuropsychopharmacol Biol Psychiatry. 2020;97:109775. doi: 10.1016/j.pnpbp.2019.109775
57. Bock R, Shin JH, Kaplan AR, et al. Strengthening the accumbal indirect pathway promotes resilience to compulsive cocaine use. Nat Neurosci. 2013;16(5):632-638. doi: 10.1038/nn.3369
58. Hanada T. Ionotropic glutamate receptors in epilepsy: A review focusing on AMPA and NMDA receptors. Biomolecules. 2020;10(3):464. doi: 10.3390/biom10030464
59. Cavalleri L, Merlo Pich E, Millan MJ, et al. Ketamine enhances structural plasticity in mouse mesencephalic and human iPSC-derived dopaminergic neurons via AMPAR-driven BDNF and mTOR signaling. Mol Psychiatry. 2018;23(4):812-823. doi: 10.1038/mp.2017.241
60. El Iskandrani KS, Oosterhof CA, El Mansari M, Blier P. Impact of subanesthetic doses of ketamine on AMPA-mediated responses in rats: An in vivo electrophysiological study on monoaminergic and glutamatergic neurons. J Psychopharmacol (Oxf). 2015;29(7):792-801. doi: 10.1177/0269881115573809
61. Liu Y, Lin D, Wu B, Zhou W. Ketamine abuse potential and use disorder. Brain Res Bull. 2016;126:68-73. doi: 10.1016/j.brainresbull.2016.05.016
62. Sun Z, Ma Y, Xie L, et al. Behavioral changes and neuronal damage in rhesus monkeys after 10 weeks of ketamine administration involve prefrontal cortex dopamine D2 receptor and dopamine transporter. Neuroscience. 2019;415:97-106. doi: 10.1016/j.neuroscience.2019.07.022
63. Wu M, Minkowicz S, Dumrongprechachan V, Hamilton P, Kozorovitskiy Y. Ketamine rapidly enhances glutamate-evoked dendritic spinogenesis in medial prefrontal cortex through dopaminergic mechanisms. Biol Psychiatry. 2021;89(11):1096-1105. doi: 10.1016/j.biopsych.2020.12.022
64. Abdel-Hay N, Kabirova M, Yaka R. A discrete subpopulation of PFC-LHb neurons govern cocaine place preference. Transl Psychiatry. 2024;14(1):1-11. doi: 10.1038/s41398-024-02988-8
65. Weiss T, Veh RW. Morphological and electrophysiological characteristics of neurons within identified subnuclei of the lateral habenula in rat brain slices. Neuroscience. 2011;172:74-93. doi: 10.1016/j.neuroscience.2010.10.047
66. Yang Y, Cui Y, Sang K, et al. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature. 2018;554(7692):317-322. doi: 10.1038/nature25509
67. Cui Y, Yang Y, Ni Z, et al. Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression. Nature. 2018;554(7692):323-327. doi: 10.1038/nature25752
68. Cui Y, Hu S, Hu H. Lateral habenular burst firing as a target of the rapid antidepressant effects of ketamine. Trends Neurosci. 2019;42(3):179-191. doi: 10.1016/j.tins.2018.12.002
69. Ma S, Chen M, Jiang Y, et al. Sustained antidepressant effect of ketamine through NMDAR trapping in the LHb. Nature. 2023;622(7984):802-809. doi: 10.1038/s41586-023-06624-1
70. Meye FJ, Valentinova K, Lecca S, et al. Cocaine-evoked negative symptoms require AMPA receptor trafficking in the lateral habenula. Nat Neurosci. 2015;18(3):376-378. doi: 10.1038/nn.3923
71. Diering GH, Heo S, Hussain NK, Liu B, Huganir RL. Extensive phosphorylation of AMPA receptors in neurons. Proc Natl Acad Sci. 2016;113(33):E4920-E4927. doi: 10.1073/pnas.1610631113
72. Li X, Wolf ME. Multiple faces of BDNF in cocaine addiction. Behav Brain Res. 2015;279:240-254. doi: 10.1016/j.bbr.2014.11.018
73. Brunoni AR, Lopes M, Fregni F. A systematic review and meta-analysis of clinical studies on major depression and BDNF levels: Implications for the role of neuroplasticity in depression. Int J Neuropsychopharmacol. 2008;11(8):1169-1180. doi: 10.1017/S1461145708009309
74. Miuli A, d’Andrea G, Pettorruso M, et al. From a cycle to a period: The potential role of BDNF as plasticity and phase-specific biomarker in cocaine use disorder. Curr Neuropharmacol. 2022;20(11):2024-2028. doi: 10.2174/1570159X20666220114152052
75. Pianca TG, Rosa RL, Ceresér KMM, et al. Differences in biomarkers of crack-cocaine adolescent users before/after abstinence. Drug Alcohol Depend. 2017;177:207-213. doi: 10.1016/j.drugalcdep.2017.03.043
76. von Diemen L, Kapczinski F, Sordi AO, et al. Increase in brain-derived neurotrophic factor expression in early crack cocaine withdrawal. Int J Neuropsychopharmacol. 2014;17(1):33-40. doi: 10.1017/S146114571300103X
77. Corominas-Roso M, Roncero C, Eiroa-Orosa FJ, et al. Brain-derived neurotrophic factor serum levels in cocaine-dependent patients during early abstinence. Eur Neuropsychopharmacol. 2013;23(9):1078-1084. doi: 10.1016/j.euroneuro.2012.08.016
78. Le Foll B, Diaz J, Sokoloff P. A single cocaine exposure increases BDNF and D3 receptor expression: Implications for drug-conditioning. Neuroreport. 2005;16(2):175. doi: 10.1097/00001756-200502080-00022
79. Ornell F, Hansen F, Schuch FB, et al. Brain-derived neurotrophic factor in substance use disorders: A systematic review and meta-analysis. Drug Alcohol Depend. 2018;193:91-103. doi: 10.1016/j.drugalcdep.2018.08.036
80. Cavaleri D, Moretti F, Bartoccetti A, et al. The role of BDNF in major depressive disorder, related clinical features, and antidepressant treatment: Insight from meta-analyses. Neurosci Biobehav Rev. 2023;149:105159. doi: 10.1016/j.neubiorev.2023.105159
81. Pettorruso M, Miuli A, Clemente K, et al. Enhanced peripheral levels of BDNF and proBDNF: Elucidating neurotrophin dynamics in cocaine use disorder. Mol Psychiatry. 2024;29(3):760-766. doi: 10.1038/s41380-023-02367-7
82. Fonseca F, Mestre-Pinto JI, Rodríguez-Minguela R, et al. BDNF and cortisol in the diagnosis of cocaine-induced depression. Front Psychiatry. 2022;13:836771. doi: 10.3389/fpsyt.2022.836771
83. Tooley J, Marconi L, Alipio J, et al. Glutamatergic ventral pallidal neurons modulate activity of the habenula-tegmental circuitry and constrain reward seeking. Biol Psychiatry. 2018;83(12):1012-1023. doi: 10.1016/j.biopsych.2018.01.003
84. Viana GSB, Vale EM, Araujo ARA, et al. Rapid and long-lasting antidepressant-like effects of ketamine and their relationship with the expression of brain enzymes, BDNF, and astrocytes. Braz J Med Biol Res. 2020;54:e10107. doi: 10.1590/1414-431X202010107
85. Zheng W, Zhou YL, Wang CY, et al. Plasma BDNF concentrations and the antidepressant effects of six ketamine infusions in unipolar and bipolar depression. PeerJ. 2021;9:e10989. doi: 10.7717/peerj.10989
86. Woelfer M, Li M, Colic L, et al. Ketamine-induced changes in plasma brain-derived neurotrophic factor (BDNF) levels are associated with the resting-state functional connectivity of the prefrontal cortex. World J Biol Psychiatry. 2020;21(9):696-710. doi: 10.1080/15622975.2019.1679391
87. Haile CN, Murrough JW, Iosifescu DV, et al. Plasma brain derived neurotrophic factor (BDNF) and response to ketamine in treatment-resistant depression. Int J Neuropsychopharmacol. 2014;17(2):331-336. doi: 10.1017/S1461145713001119
88. Berglind WJ, Whitfield TW, LaLumiere RT, Kalivas PW, McGinty JF. A single intra-PFC infusion of BDNF prevents cocaine-induced alterations in extracellular glutamate within the nucleus accumbens. J Neurosci. 2009;29(12):3715-3719. doi: 10.1523/JNEUROSCI.5457-08.2009
89. Schmidt HD, Sangrey GR, Darnell SB, et al. Increased brain-derived neurotrophic factor (BDNF) expression in the ventral tegmental area during cocaine abstinence is associated with increased histone acetylation at BDNF exon I-containing promoters. J Neurochem. 2012;120(2):202-209. doi: 10.1111/j.1471-4159.2011.07571.x
90. McGinty JF, Whitfield TW, Berglind WJ. Brain-derived neurotrophic factor and cocaine addiction. Brain Res. 2010;1314:183-193. doi: 10.1016/j.brainres.2009.08.078
91. Sarkar A, Kabbaj M. Sex differences in effects of ketamine on behavior, spine density, and synaptic proteins in socially isolated rats. Biol Psychiatry. 2016;80(6):448-456. doi: 10.1016/j.biopsych.2015.12.025
92. Thelen C, Sens J, Mauch J, Pandit R, Pitychoutis PM. Repeated ketamine treatment induces sex-specific behavioral and neurochemical effects in mice. Behav Brain Res. 2016;312:305-312. doi: 10.1016/j.bbr.2016.06.041
93. Ponton E, Turecki G, Nagy C. Sex differences in the behavioral, molecular, and structural effects of ketamine treatment in depression. Int J Neuropsychopharmacol. 2022;25(1):75-84. doi: 10.1093/ijnp/pyab082
94. Saland SK, Schoepfer KJ, Kabbaj M. Hedonic sensitivity to low-dose ketamine is modulated by gonadal hormones in a sex-dependent manner. Sci Rep. 2016;6(1):21322. doi: 10.1038/srep21322
95. Ardalan M, Elfving B, Rafati AH, et al. Rapid effects of S-ketamine on the morphology of hippocampal astrocytes and BDNF serum levels in a sex-dependent manner. Eur Neuropsychopharmacol. 2020;32:94-103. doi: 10.1016/j.euroneuro.2020.01.001
96. Dossat AM, Wright KN, Strong CE, Kabbaj M. Behavioral and biochemical sensitivity to low doses of ketamine: Influence of estrous cycle in C57BL/6 mice. Neuropharmacology. 2018;130:30-41. doi: 10.1016/j.neuropharm.2017.11.022
97. Highland JN, Farmer CA, Zanos P, et al. Sex-dependent metabolism of ketamine and (2R,6R)-hydroxynorketamine in mice and humans. J Psychopharmacol (Oxf). 2022;36(2):170-182. doi: 10.1177/02698811211064922
98. Di Ianni T, Ewbank SN, Levinstein MR, et al. Sex dependence of opioid-mediated responses to subanesthetic ketamine in rats. Nat Commun. 2024;15(1):893. doi: 10.1038/s41467-024-45157-7
99. Klein ME, Chandra J, Sheriff S, Malinow R. Opioid system is necessary but not sufficient for antidepressive actions of ketamine in rodents. Proc Natl Acad Sci U S A. 2020;117(5):2656-2662. doi: 10.1073/pnas.1916570117
100. Marton T, Barnes DE, Wallace A, Woolley JD. Concurrent use of buprenorphine, methadone, or naltrexone does not inhibit ketamine’s antidepressant activity. Biol Psychiatry. 2019;85(12):e75-e76. doi: 10.1016/j.biopsych.2019.02.008
101. Strong CE, Schoepfer KJ, Dossat AM, Saland SK, Wright KN, Kabbaj M. Locomotor sensitization to intermittent ketamine administration is associated with nucleus accumbens plasticity in male and female rats. Neuropharmacology. 2017;121:195-203. doi: 10.1016/j.neuropharm.2017.05.003
102. Liu CL, Wang YK, Jin GZ, Shi WX, Gao M. Cocaine-induced locomotor sensitization associates with slow oscillatory firing of neurons in the ventral tegmental area. Sci Rep. 2018;8(1):3274. doi: 10.1038/s41598-018-21592-7
103. Valjent E, Bertran-Gonzalez J, Aubier B, Greengard P, Hervé D, Girault JA. Mechanisms of locomotor sensitization to drugs of abuse in a two-injection protocol. Neuropsychopharmacology. 2010;35(2):401-415. doi: 10.1038/npp.2009.143
104. Garcia-Carachure I, Flores-Ramirez FJ, Castillo SA, et al. Enduring effects of adolescent ketamine exposure on cocaine-and sucrose-induced reward in male and female C57BL/6 mice. Neuropsychopharmacology. 2020;45(9):1536-1544. doi: 10.1038/s41386-020-0654-7
105. McDougall SA, Park GI, Ramirez GI, Gomez V, Adame BC, Crawford CA. Sex-dependent changes in ketamine-induced locomotor activity and ketamine pharmacokinetics in preweanling, adolescent, and adult rats. Eur Neuropsychopharmacol. 2019;29(6):740-755. doi: 10.1016/j.euroneuro.2019.03.013
106. Chen WC, Wang TS, Chang FY, Chen PA, Chen YC. Age, dose, and locomotion: Decoding vulnerability to ketamine in C57BL/6J and BALB/c mice. Biomedicines. 2023;11(7):1821. doi: 10.3390/biomedicines11071821
107. Nicolas C, Russell TI, Pierce AF, et al. Incubation of cocaine craving after intermittent-access self-administration: Sex differences and estrous cycle. Biol Psychiatry. 2019;85(11):915-924. doi: 10.1016/j.biopsych.2019.01.015
108. Kokane SS, Perrotti LI. Sex differences and the role of estradiol in mesolimbic reward circuits and vulnerability to cocaine and opiate addiction. Front Behav Neurosci. 2020;14:74. doi: 10.3389/fnbeh.2020.00074
109. Freeman MP, Papakostas GI, Hoeppner B, et al. Sex differences in response to ketamine as a rapidly acting intervention for treatment resistant depression. J Psychiatr Res. 2019;110:166-171. doi: 10.1016/j.jpsychires.2019.01.010
110. Benitah K, Siegel AN, Lipsitz O, et al. Sex differences in ketamine’s therapeutic effects for mood disorders: A systematic review. Psychiatry Res. 2022;312:114579. doi: 10.1016/j.psychres.2022.114579
111. Dakwar E, Nunes EV, Hart CL, et al. A single ketamine infusion combined with mindfulness-based behavioral modification to treat cocaine dependence: A randomized clinical trial. Am J Psychiatry. 2019;176(11):923-930. doi: 10.1176/appi.ajp.2019.18101123
112. Abuse NI on D. Reduced Drug Use is a Meaningful Treatment Outcome for People with Stimulant Use Disorders. National Institute on Drug Abuse (NIDA); 2024. Available from: https://nida.nih.gov/news-events/news-releases/2024/01/ reduced-drug-use-is-a-meaningful-treatment-outcome-for-people-with-stimulant-use-disorders [Last accessed on 2024 Jul 30].
113. Amin-Esmaeili M, Farokhnia M, Susukida R, et al. Reduced drug use as an alternative valid outcome in individuals with stimulant use disorders: Findings from 13 multisite randomized clinical trials. Addict Abingdon Engl. 2024;119(5):833-843. doi: 10.1111/add.16409
114. Roos CR, Nich C, Mun CJ, et al. Clinical validation of reduction in cocaine frequency level as an endpoint in clinical trials for cocaine use disorder. Drug Alcohol Depend. 2019;205:107648. doi: 10.1016/j.drugalcdep.2019.107648
115. Low Barrier Models of Care for Substance Use Disorders. Samhsa.gov; 2024. Available from: www.samhsa.gov/ resource/spark/low-barrier-models-care-substance-use-disorders [Last accessed on 2024 Dec 26].
116. Facher L. Drug Treatment that Insists on Abstinence? Federal Agencies are Just Saying no. STAT; 2024. Available from: https://www.statnews.com/2024/05/31/drug-policy-shifts-from-abstinence-to-harm-reduction [Last accessed on 2024 Jul 30].
117. Kampman K. Stimulant Use Disorder: Treatment Overview. UpToDate. Available from: https://www. uptodate.com/contents/stimulant-use-disorder-treatment-overview?search=cocaine%20use%20 disorder&topicRef=7802&source=see_link#H1717002511 [Last accessed on 2024 Nov 15].
118. Topiramate: Drug Information. UpToDate. Available from: https://www.uptodate.com/contents/topiramate-drug-infor mation?search=cocaine+use+disorder&topicRef=106878& source=see_link#F229242 [Last accessed on 2024 Nov 15].
119. Bentzley BS, Han SS, Neuner S, Humphreys K, Kampman KM, Halpern CH. Comparison of treatments for cocaine use disorder among adults: A systematic review and meta-analysis. JAMA Netw Open. 2021;4(5):e218049. doi: 10.1001/jamanetworkopen.2021.8049
120. Walsh Z, Mollaahmetoglu OM, Rootman J, et al. Ketamine for the treatment of mental health and substance use disorders: Comprehensive systematic review. BJPsych Open. 2021;8(1):e19. doi: 10.1192/bjo.2021.1061
121. Slomski A. Ketamine to help treat cocaine use disorder. JAMA. 2019;322(8):717. doi: 10.1001/jama.2019.12352
122. Xin J, Shan W, Li J, Yu H, Zuo Z. Activation of the lateral habenula-ventral tegmental area neural circuit contributes to postoperative cognitive dysfunction in mice. Adv Sci. 2022;9(22):2202228. doi: 10.1002/advs.202202228
123. Lüscher C, Malenka RC. NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harb Perspect Biol. 2012;4(6):a005710. doi: 10.1101/cshperspect.a005710