AccScience Publishing / ITPS / Online First / DOI: 10.36922/itps.3326
REVIEW

Neurobiological understanding of gaming disorder: A narrative review

Mi Jung Rho1*
Show Less
1 College of Health Science, Dankook University, Cheonan-si, Chungcheongnam-do, Republic of Korea
INNOSC Theranostics and Pharmacological Sciences, 3326 https://doi.org/10.36922/itps.3326
Submitted: 31 March 2024 | Accepted: 24 July 2024 | Published: 15 October 2024
(This article belongs to the Special Issue Behavioral Addictions: From Bench to Bedside)
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Gaming disorder (GD) is a mental disorder characterized by impaired control over gaming behaviors and the continuation of gaming despite negative consequences, resulting in functional impairments in important areas of life. Based on a growing body of scientific evidence demonstrating its neurobiological similarities to substance use disorders, GD is listed in the latest 5th edition of the Diagnostic and Statistical Manual of Mental Disorders and the 11th revision of the International Classification of Diseases as a behavioral addiction. Therefore, this review aims to understand the neurobiological underpinnings of GD by reviewing current literature on structural and functional changes in the brain. It is suggested that prolonged and excessive gaming may lead to alterations in the structure or function of the brain reward circuit and fronto-striatal circuit, affecting both reward processing and cognitive control. Changes in brain areas involved in executive function have been observed, indicating that GD is associated with reduced response inhibition and impaired decision-making. Furthermore, brain regions associated with craving exhibit heightened activity in response to gaming stimuli. This review highlights the significance of conducting further research to uncover the underlying mechanisms of GD and to develop effective interventions for its prevention and treatment.

Keywords
Internet gaming disorders
Neurobiology
Neuroimaging
Event-related potentials
Electroencephalography
Funding
None.
Conflict of interest
The author declares that she has no competing interests.
References
  1. Kim HS, Son G, Roh EB, et al. Prevalence of gaming disorder: A meta-analysis. Addict Behav. 2022;126:107183. doi: 10.1016/j.addbeh.2021.107183

 

  1. Stevens MW, Dorstyn D, Delfabbro PH, King DL. Global prevalence of gaming disorder: A systematic review and meta-analysis. Aust N Z J Psychiatry. 2021;55(6):553-568. doi: 10.1177/0004867420962851

 

  1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5. Vol 5. Washington, DC: American Psychiatric Association; 2013.

 

  1. World Health Organization. International Classification of Diseases. 11th ed. ICD-11. Available from: https://icd.who. int/browse/2024-01/mms/en#1448597234 [Last accessed on 2024 Mar 25].

 

  1. Saunders JB, Hao W, Long J, et al. Gaming disorder: Its delineation as an important condition for diagnosis, management, and prevention. J Behav Addict. 2017;6(3):271-279. doi: 10.1556/2006.6.2017.039

 

  1. Rumpf HJ, Achab S, Billieux J, et al. Including gaming disorder in the ICD-11: The need to do so from a clinical and public health perspective. J Behav Addict. 2018;7(3):556-561. doi: 10.1556/2006.7.2018.59

 

  1. Ko CH, Yen JY, Yen CF, Lin HC, Yang MJ. Factors predictive for incidence and remission of internet addiction in young adolescents: A prospective study. Cyberpsychol Behav. 2007;10(4):545-551. doi: 10.1089/cpb.2007.9992

 

  1. Ko CH, Liu GC, Hsiao S, et al. Brain activities associated with gaming urge of online gaming addiction. J Psychiatr Res. 2009;43(7):739-747. doi: 10.1016/j.jpsychires.2008.09.012

 

  1. Van Rooij AJ, Schoenmakers TM, Van de Eijnden RJ, Van de Mheen D. Compulsive internet use: The role of online gaming and other internet applications. J Adolesc Health. 2010;47(1):51-57. doi: 10.1016/j.jadohealth.2009.12.021

 

  1. Müller KW, Beutel ME, Egloff B, Wölfling K. Investigating risk factors for Internet gaming disorder: A comparison of patients with addictive gaming, pathological gamblers and healthy controls regarding the big five personality traits. Eur Addict Res. 2014;20(3):129-136. doi: 10.1159/000355832

 

  1. Yau YH, Crowley MJ, Mayes LC, Potenza MN. Are Internet use and video-game-playing addictive behaviors? Biological, clinical and public health implications for youths and adults. Minerva Psichiatr. 2012;53(3):153.

 

  1. Ko CH. Internet gaming disorder. Curr Addict Rep. 2014;1:177-185.

 

  1. Dong G, Wang L, Du X, Potenza MN. Gaming increases craving to gaming-related stimuli in individuals with Internet gaming disorder. Biol Psychiatry Cogn Neurosci Neuroimaging. 2017;2(5):404-412. doi: 10.1016/j.bpsc.2017.01.002

 

  1. Niu GF, Sun XJ, Subrahmanyam K, Kong FC, Tian Y, Zhou ZK. Cue-induced craving for internet among internet addicts. Addict Behav. 2016;62:1-5. doi: 10.1016/j.addbeh.2016.06.012

 

  1. Volkow ND, Wang GJ, Fowler JS, Tomasi D, Telang F. Addiction: Beyond dopamine reward circuitry. Proc Natl Acad Sci. 2011;108(37):15037-15042. doi: 10.1073/pnas.1010654108

 

  1. Nestler EJ. Is there a common molecular pathway for addiction? Nat Neurosci. 2005;8(11):1445-1449. doi: 10.1038/nn1578

 

  1. Volkow ND, Fowler JS, Wang GJ, Baler R, Telang F. Imaging dopamine’s role in drug abuse and addiction. Neuropharmacology. 2009;56:3-8. doi: 10.1016/j.neuropharm.2008.05.022

 

  1. Koepp MJ, Gunn RN, Lawrence AD, et al. Evidence for striatal dopamine release during a video game. Nature. 1998;393(6682):266-268. doi: 10.1038/30498

 

  1. Kim SH, Baik SH, Park CS, Kim SJ, Choi SW, Kim SE. Reduced striatal dopamine D2 receptors in people with internet addiction. Neuroreport. 2011;22(8):407-411. doi: 10.1097/WNR.0b013e328346e16e

 

  1. Tian M, Chen Q, Zhang Y, et al. PET imaging reveals brain functional changes in internet gaming disorder. Eur J Nuclear Med Mol Imaging. 2014;41:1388-1397. doi: 10.1007/s00259-014-2708-8

 

  1. Choi J, Cho H, Kim JY, et al. Structural alterations in the prefrontal cortex mediate the relationship between Internet gaming disorder and depressed mood. Sci Rep. 2017;7(1):1245. doi: 10.1038/s41598-017-01275-5

 

  1. Yuan K, Yu D, Cai C, et al. Frontostriatal circuits, resting state functional connectivity and cognitive control in internet gaming disorder. Addict Biol. 2017;22(3):813-822. doi: 10.1111/adb.12348

 

  1. Dong G, Wu L, Wang Z, Wang Y, Du X, Potenza MN. Diffusion-weighted MRI measures suggest increased white-matter integrity in Internet gaming disorder: Evidence from the comparison with recreational Internet game users. Addict Behav. 2018;81:32-38. doi: 10.1016/j.addbeh.2018.01.030

 

  1. Zhang JT, Ma SS, Yip SW, et al. Decreased functional connectivity between ventral tegmental area and nucleus accumbens in Internet gaming disorder: Evidence from resting state functional magnetic resonance imaging. Behav Brain Funct. 2015;11:37. doi: 10.1186/s12993-015-0082-8

 

  1. Wang R, Li M, Zhao M, et al. Internet gaming disorder: Deficits in functional and structural connectivity in the ventral tegmental area-accumbens pathway. Brain Imaging Behav. 2019;13:1172-1181. doi: 10.1007/s11682-018-9929-6

 

  1. Tomasi D, Volkow ND. Striatocortical pathway dysfunction in addiction and obesity: Differences and similarities. Crit Rev Biochem Mol Biol. 2013;48(1):1-19. doi: 10.3109/10409238.2012.735642

 

  1. Everitt BJ, Robbins TW. From the ventral to the dorsal striatum: Devolving views of their roles in drug addiction. Neurosci Biobehav Rev. 2013;37(9):1946-1954. doi: 10.1016/j.neubiorev.2013.02.010

 

  1. Lee D, Namkoong K, Lee J, Jung YC. Dorsal striatal functional connectivity changes in internet gaming disorder: A longitudinal magnetic resonance imaging study. Addict Biol. 2021;26(1):e12868. doi: 10.1111/adb.12868

 

  1. Jin C, Zhang T, Cai C, et al. Abnormal prefrontal cortex resting state functional connectivity and severity of internet gaming disorder. Brain Imaging Behav. 2016;10:719-729. doi: 10.1007/s11682-015-9439-8

 

  1. Volkow ND, Wang GJ, Tomasi D, Baler RD. Unbalanced neuronal circuits in addiction. Curr Opinion Neurobiol. 2013;23(4):639-648. doi: 10.1016/j.conb.2013.01.002

 

  1. Kim J, Kang E. Internet game overuse is associated with an alteration of fronto-striatal functional connectivity during reward feedback processing. Front Psychiatry. 2018;9:371. doi: 10.3389/fpsyt.2018.00371

 

  1. Dong GH, Wang M, Zheng H, Wang Z, Du X, Potenza MN. Disrupted prefrontal regulation of striatum-related craving in Internet gaming disorder revealed by dynamic causal modeling: Results from a cue-reactivity task. Psychol Med. 2021;51(9):1549-1561. doi: 10.1017/S003329172000032X

 

  1. Kim H, Kim YK, Lee JY, Choi AR, Choi JS. Hypometabolism and altered metabolic connectivity in patients with internet gaming disorder and alcohol use disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2019;95:109680. doi: 10.1016/j.pnpbp.2019.109680

 

  1. Lee D, Namkoong K, Lee J, Jung YC. Abnormal gray matter volume and impulsivity in young adults with Internet gaming disorder. Addict Biol. 2018;23(5):1160-1167. doi: 10.1111/adb.12552

 

  1. Weng CB, Qian RB, Fu XM, et al. Gray matter and white matter abnormalities in online game addiction. Eur J Radiol. 2013;82(8):1308-1312. doi: 10.1016/j.ejrad.2013.01.031

 

  1. Wang Z, Wu L, Yuan K, et al. Cortical thickness and volume abnormalities in Internet gaming disorder: Evidence from comparison of recreational internet game users. Eur J Neurosci. 2018;48(1):1654-1666. doi: 10.1111/ejn.13987

 

  1. Weinstein A, Livny A, Weizman A. New developments in brain research of internet and gaming disorder. Neurosci Biobehav Rev. 2017;75:314-330. doi: 10.1016/j.neubiorev.2017.01.040

 

  1. Zhang J, Hu Y, Li H, et al. Altered brain activities associated with cue reactivity during forced break in subjects with Internet gaming disorder. Addict Behav. 2020;102:106203. doi: 10.1016/j.addbeh.2019.106203

 

  1. Kim J, Park J, Park YM, et al. Diminished frontal theta activity during gaming in young adults with internet gaming disorder. Front Neurosci. 2019;13:446465. doi: 10.3389/fnins.2019.01183

 

  1. Son K, Choi J, Lee J, et al. Neurophysiological features of Internet gaming disorder and alcohol use disorder: A resting-state EEG study. Transl Psychiatry. 2015;5(9):e628-e628. doi: 10.1038/tp.2015.124

 

  1. Ridderinkhof KR, Van den Wildenberg WP, Segalowitz SJ, Carter CS. Neurocognitive mechanisms of cognitive control: The role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward-based learning. Brain Cogn. 2004;56(2):129-140. doi: 10.1016/j.bandc.2004.09.016

 

  1. Potenza MN. Should addictive disorders include non‐substance‐related conditions? Addiction. 2006;101:142-151. doi: 10.1111/j.1360-0443.2006.01591.x

 

  1. Yuan K, Qin W, Yu D, et al. Core brain networks interactions and cognitive control in internet gaming disorder individuals in late adolescence/early adulthood. Brain Struct Funct. 2016;221(3):1427-1442. doi: 10.1007/s00429-014-0982-7

 

  1. Yuan K, Cheng P, Dong T, et al. Cortical thickness abnormalities in late adolescence with online gaming addiction. PLoS One. 2013;8(1):e53055. doi: 10.1371/journal.pone.0053055

 

  1. Xing L, Yuan K, Bi Y, et al. Reduced fiber integrity and cognitive control in adolescents with internet gaming disorder. Brain Res. 2014;1586:109-117. doi: 10.1016/j.brainres.2014.08.044

 

  1. Littel M, Van den Berg I, Luijten M, Van Rooij AJ, Keemink L, Franken IH. Error processing and response inhibition in excessive computer game players: An event‐related potential study. Addict Biol. 2012;17(5):934-947. doi: 10.1111/j.1369-1600.2012.00467.x

 

  1. Ko CH, Hsieh TJ, Chen CY, et al. Altered brain activation during response inhibition and error processing in subjects with Internet gaming disorder: A functional magnetic imaging study. Eur Arch Psychiatry Clin Neurosci. 2014;264:661-672. doi: 10.1007/s00406-013-0483-3

 

  1. Ko CH, Hsieh TJ, Wang PW, et al. Altered gray matter density and disrupted functional connectivity of the amygdala in adults with Internet gaming disorder. Prog Neuro Psychopharmacol Biol Psychiatry. 2015;57:185-192. doi: 10.1016/j.pnpbp.2014.11.003

 

  1. Horn NR, Dolan M, Elliott R, Deakin JF, Woodruff PW. Response inhibition and impulsivity: An fMRI study. Neuropsychologia. 2003;41(14):1959-1966. doi: 10.1016/S0028-3932(03)00077-0

 

  1. Zhou F, Montag C, Sariyska R, et al. Orbitofrontal gray matter deficits as marker of Internet gaming disorder: Converging evidence from a cross‐sectional and prospective longitudinal design. Addict Biol. 2019;24(1):100-109. doi: 10.1111/adb.12570

 

  1. Lin X, Dong G, Wang Q, Du X. Abnormal gray matter and white matter volume in ‘Internet gaming addicts. Addict Behav. 2015;40:137-143. doi: 10.1016/j.addbeh.2014.09.010

 

  1. Dong G, DeVito EE, Du X, Cui Z. Impaired inhibitory control in ‘internet addiction disorder’: A functional magnetic resonance imaging study. Psychiatry Res Neuroimaging. 2012;203(2-3):153-158. doi: 10.1016/j.pscychresns.2012.02.001

 

  1. Ding WN, Sun JH, Sun YW, et al. Trait impulsivity and impaired prefrontal impulse inhibition function in adolescents with internet gaming addiction revealed by a Go/No-Go fMRI study. Behav Brain Funct. 2014;10:20. doi: 10.1186/1744-9081-10-20

 

  1. Taylor SF, Stern ER, Gehring WJ. Neural systems for error monitoring: Recent findings and theoretical perspectives. Neuroscientist. 2007;13(2):160-172. doi: 10.1177/1073858406298184

 

  1. Desender K, Ridderinkhof KR, Murphy PR. Understanding neural signals of post-decisional performance monitoring: An integrative review. Elife. 2021;10:e67556. doi: 10.7554/eLife.67556

 

  1. Luijten M, Machielsen MW, Veltman DJ, Hester R, De Haan L, Franken IH. Systematic review of ERP and fMRI studies investigating inhibitory control and error processing in people with substance dependence and behavioural addictions. J Psychiatry Neurosci. 2014;39(3):149-169. doi: 10.1503/jpn.130052

 

  1. Kim M, Lee TH, Choi JS, et al. Neurophysiological correlates of altered response inhibition in internet gaming disorder and obsessive-compulsive disorder: Perspectives from impulsivity and compulsivity. Sci Rep. 2017;7(1):41742. doi: 10.1038/srep41742

 

  1. Schiebener J, Brand M. Decision making under objective risk conditions-a review of cognitive and emotional correlates, strategies, Feedback processing, and External influences. Neuropsychol Rev. 2015;25(2):171-198. doi: 10.1007/s11065-015-9285-x

 

  1. Brevers D, Bechara A, Cleeremans A, Kornreich C, Verbanck P, Noël X. Impaired decision‐making under risk in individuals with alcohol dependence. Alcohol Clin Exp Res. 2014;38(7):1924-1931. doi: 10.1111/acer.12447

 

  1. Gowin JL, May AC, Wittmann M, Tapert SF, Paulus MP. Doubling down: Increased risk-taking behavior following a loss by individuals with cocaine use disorder is associated with striatal and anterior cingulate dysfunction. Biol Psychiatry Cogn Neurosci Neuroimaging. 2017;2(1):94-103. doi: 10.1016/j.bpsc.2016.02.002

 

  1. Jia Z, Worhunsky PD, Carroll KM, et al. An initial study of neural responses to monetary incentives as related to treatment outcome in cocaine dependence. Biol Psychiatry. 2011;70(6):553-560. doi: 10.1016/j.biopsych.2011.05.008

 

  1. Dong G, Potenza MN. Risk-taking and risky decision-making in Internet gaming disorder: Implications regarding online gaming in the setting of negative consequences. J Psychiatr Res. 2016;73:1-8. doi: 10.1016/j.jpsychires.2015.11.011

 

  1. Wang Z, Liu X, Hu Y, Zheng H, Du X, Dong G. Altered brain functional networks in Internet gaming disorder: independent component and graph theoretical analysis under a probability discounting task. CNS Spectr. 2019;24(5):544-556. doi: 10.1017/S1092852918001505

 

  1. Yao YW, Chen PR, Li S, et al. Decision-making for risky gains and losses among college students with internet gaming disorder. PLoS One. 2015;10(1):e0116471. doi: 10.1371/journal.pone.0116471

 

  1. Liu L, Xue G, Potenza MN, et al. Dissociable neural processes during risky decision-making in individuals with Internet-gaming disorder. NeuroImage Clin. 2017;14:741-749. doi: 10.1016/j.nicl.2017.03.010

 

  1. Xue G, Lu Z, Levin IP, Weller JA, Li X, Bechara A. Functional dissociations of risk and reward processing in the medial prefrontal cortex. Cereb Cortex. 2008;19(5):1019-1027. doi: 10.1093/cercor/bhn147

 

  1. Krain AL, Wilson AM, Arbuckle R, Castellanos FX, Milham MP. Distinct neural mechanisms of risk and ambiguity: A meta-analysis of decision-making. Neuroimage. 2006;32(1):477-484. doi: 10.1016/j.neuroimage.2006.02.047

 

  1. Vickery TJ, Jiang YV. Inferior parietal lobule supports decision making under uncertainty in humans. Cereb Cortex. 2009;19(4):916-925. doi: 10.1093/cercor/bhn140

 

  1. Dong G, Huang J, Du X. Enhanced reward sensitivity and decreased loss sensitivity in internet addicts: An fMRI study during a guessing task. J Psychiatr Res. 2011;45(11):1525-1529. doi: 10.1016/j.jpsychires.2011.06.017

 

  1. Hyman SE, Malenka RC, Nestler EJ. Neural mechanisms of addiction: The role of reward-related learning and memory. Annu Rev Neurosci. 2006;29:565-598. doi: 10.1146/annurev.neuro.29.051605.113009

 

  1. Kalivas PW, Volkow ND. The neural basis of addiction: A pathology of motivation and choice. Am J Psychiatry. 2005;162(8):1403-1413. doi: 10.1176/appi.ajp.162.8.1403

 

  1. Kim YJ, Lim JA, Lee JY, et al. Impulsivity and compulsivity in internet gaming disorder: A comparison with obsessive-compulsive disorder and alcohol use disorder. J Behav Addict. 2017;6(4):545-553. doi: 10.1556/2006.6.2017.069

 

  1. Petruccelli F, Diotaiuti P, Verrastro V, et al. Obsessive‐compulsive aspects and pathological gambling in an Italian sample. Biomed Res Int. 2014;2014(1):167438. doi: 10.1155/2014/167438

 

  1. Dong G, Zheng H, Liu X, Wang Y, Du X, Potenza MN. Gender-related differences in cue-elicited cravings in Internet gaming disorder: The effects of deprivation. J Behav Addict. 2018;7(4):953-964. doi: 10.1556/2006.7.2018.118

 

  1. Ma SS, Worhunsky PD, Xu JS, et al. Alterations in functional networks during cue-reactivity in Internet gaming disorder. J Behav Addict. 2019;8(2):277-287. doi: 10.1556/2006.8.2019.25

 

  1. Ko CH, Liu GC, Yen JY, Chen CY, Yen CF, Chen CS. Brain correlates of craving for online gaming under cue exposure in subjects with internet gaming addiction and in remitted subjects. Addict Biol. 2013;18(3):559-569. doi: 10.1111/j.1369-1600.2011.00405.x

 

  1. Dong G, Wang M, Liu X, Liang Q, Du X, Potenza MN. Cue‐elicited craving-related lentiform activation during gaming deprivation is associated with the emergence of Internet gaming disorder. Addict Biol. 2020;25(1):e12713. doi: 10.1111/adb.12713

 

  1. Kim SN, Kim M, Lee TH, et al. Increased attentional bias toward visual cues in internet gaming disorder and obsessive-compulsive disorder: An event-related potential study. Front Psychiatry. 2018;9:315. doi: 10.3389/fpsyt.2018.00315

 

  1. He J, Zheng Y, Fan L, Pan T, Nie Y. Automatic processing advantage of cartoon face in internet gaming disorder: Evidence from P100, N170, P200, and MMN. Front Psychiatry. 2019;10:824. doi: 10.3389/fpsyt.2019.00824
Share
Back to top
INNOSC Theranostics and Pharmacological Sciences, Electronic ISSN: 2705-0823 Print ISSN: 2705-0734, Published by AccScience Publishing