AccScience Publishing / ITPS / Online First / DOI: 10.36922/itps.1885

Medicinal plants as a source of natural remedies in the management of diabetes

Zingisia Sitobo1 Liberty Tinotenda Navhaya2 Xolani Henry Makhoba3*
Show Less
1 Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Fort Hare, Alice, Eastern Cape, South Africa
2 Department of Biochemistry, Microbiology and Biotechnology, Faculty of Science and Agriculture, School of Molecular and Life Sciences, University of Limpopo, Mankweng, Limpopo, South Africa
3 Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida Campus, Roodepoort, South Africa
INNOSC Theranostics and Pharmacological Sciences, 1885
Submitted: 21 September 2023 | Accepted: 16 January 2024 | Published: 10 July 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( )

Diabetes is a severe chronic illness that has impacted thousands of individuals worldwide. It is caused by the body’s failure to produce insulin or insufficient production of insulin. While diabetes is not curable, it can be managed with injectable insulin, which decreases blood glucose levels. However, this treatment has several disadvantages that can affect a patient’s health, and it is often unaffordable for some individuals. Previous studies have suggested that phytochemicals can improve insulin sensitivity. Due to the presence of therapeutic phytochemicals in natural plants, medicinal plants emerge as potential candidates for treating diabetes. In addition, compared to conventional diabetes treatments, phytochemical treatment may be affordable for all diabetics and has fewer side effects. This review primarily focuses on the symptoms and treatment options for the four known types of diabetes: type 1 diabetes mellitus, type 2 diabetes mellitus, type 3c diabetes mellitus, and neonatal diabetes. The article reviews medicinal plants that have been used to treat diabetes effectively with minimum side effects, such as Momordica charantia L., Syzygium cumini (L.) Skeels, and Ocimum tenuiflorum L., among others. In addition, some newly approved drugs, such as tirzepatide, sergliflozin, saxagliptin, and liraglutide, recommended for treating patients suffering from various forms of diabetes, are discussed.

Medicinal plants
  1. Cole JB, Florez JC. Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol. 2020;16(7):377-390. doi: 10.1038/s41581-020-0278-y


  1. Poznyak A, Grechko AV, Poggio P, Myasoedova VA, Alfieri V, Orekhov AN. The diabetes mellitus-atherosclerosis connection: The role of lipid and glucose metabolism and chronic inflammation. Int J Mol Sci. 2020;21(5):1835. doi: 10.3390/ijms21051835


  1. Furman BL, Candasamy M, Bhattamisra SK, Veettil SK. Reduction of blood glucose by plant extracts and their use in the treatment of diabetes mellitus; discrepancies in effectiveness between animal and human studies. J Ethnopharmacol. 2020;247:112264. doi: 10.1016/j.jep.2019.112264


  1. Dilworth L, Facey A, Omoruyi F. Diabetes mellitus and its metabolic complications: The role of adipose tissues. Int J Mol Sci. 2021;22(14):7644. doi: 10.3390/ijms22147644


  1. Tkinson MA, Campbell-Thompson M, Kusmartseva I, Kaestner KH. Organisation of the human pancreas in health and in diabetes. Diabetologia. 2020;63:1966-1973. doi: 10.1007/s00125-020-05203-4


  1. Richardson A, Park WG. Acute pancreatitis and diabetes mellitus: A review. Korean J Intern Med. 2021;36(1):15-24. doi: 10.3904/kjim.2020.020


  1. Chen J, Ning C, Mu J, Li D, Ma Y, Meng X. Role of Wnt signaling pathways in type 2 diabetes mellitus. Mol Cell Biochem. 2021;476:2219-2232. doi: 10.1007/s11010-021-04090-2


  1. World Health Organization. Classification of Diabetes Mellitus; 2019. Available from: handle/10665/325182 [Last accessed on 2024 Jul 09].


  1. Latha S, Kumar R. The facts about diabetes mellitus-a review. Galore Int J Health Sci Res. 2019;4:2456-9321.


  1. Alamgir AN. Biotechnology, in vitro production of natural bioactive compounds, herbal preparation, and disease management (treatment and prevention). In: Therapeutic Use of Medicinal Plants and their Extracts. Vol. 2. Germany: Springer; 2018. p. 585-664.


  1. Bacanli M, Dilsiz SA, Başaran N, Başaran AA. Effects of phytochemicals against diabetes. Adv Food Nutr Res. 2019;89:209-238. doi: 10.1016/bs.afnr.2019.03.004


  1. Bellary S, Kyrou I, Brown JE, Bailey CJ. Type 2 diabetes mellitus in older adults: Clinical considerations and management. Nat Rev Endocrinol. 2021;17(9):534-548. doi: 10.1038/s41574-021-00497-9


  1. Szmuilowicz ED, Josefson JL, Metzger BE. Gestational diabetes mellitus. Endocrinol Metab Clin North Am. 2019;48(3):479-493. doi: 10.1016/j.ecl.2019.05.001


  1. McIntyre HD, Catalano P, Zhang C, Desoye G, Mathiesen ER, Damm P. Gestational diabetes mellitus. Nat Rev Dis Primers. 2019;5(1):47. doi: 10.1038/s41572-019-0098-8


  1. Jang KM. Maturity-onset diabetes of the young: Update and perspectives on diagnosis and treatment. Yeungnam Univ J Med. 2020;37(1):13-21. doi: 10.12701/yujm.2020.00082


  1. Yahaya TO, Ufuoma SB. Genetics and pathophysiology of maturity-onset diabetes of the young (MODY): A review of current trends. Oman Med J. 2020;35(3):e126. doi: 10.5001/omj.2020.52


  1. Broome DT, Pantalone KM, Kashyap SR, Philipson LH. Approach to the patient with MODY-monogenic diabetes. J Clin Endocrinol Metab. 2021;106(1):237-250. doi: 10.1210/clinem/dgaa701


  1. Beltrand J, Busiah K, Vaivre-Douret L, et al. Neonatal diabetes mellitus. Front Pediatr. 2020;8:540718. doi: 10.3389/fped.2020.540718


  1. Zübarioğlu AU, Bülbül A, Uslu HS. Neonatal diabetes mellitus. Med Bull Sisli Etfal Hosp. 2018;52(2):71-78. doi: 10.14744/SEMB.2017.87947


  1. Lemelman MB, Letourneau L, Greeley SA. Neonatal diabetes mellitus: An update on diagnosis and management. Clin Perinatol. 2018;45(1):41-59. doi: 10.1016/j.clp.2017.10.005


  1. Bhattamisra SK, Siang TC, Rong CY, et al. Type-3c diabetes mellitus, diabetes of exocrine pancreas-an update. Curr Diabetes Rev. 2019;15(5):382-394. doi: 10.2174/1573399815666190425095441


  1. American Diabetes Association Professional Practice Committee. Classification and diagnosis of diabetes: Standards of medical care in diabetes-2022. Diabetes Care. 2022;45:S17-S38. doi: 10.2337/dc22-sint


  1. Davies S. Latent autoimmune diabetes in adults (LADA): What do primary care professionals need to know? J Diabetes Nurs. 2021;25(3): JDN191.


  1. Buzzetti R, Tuomi T, Mauricio D, et al. Management of latent autoimmune diabetes in adults: A consensus statement from an international expert panel. Diabetes. 2020;69(10):2037-2047. doi: 10.2337/db20-0691


  1. Shaikh AA, Kolhatkar MK, Sopane DR, Thorve AN. Review on: Diabetes mellitus is a disease. Int J Res Pharm Sci. 2022;13(1):102-109.


  1. Sapra A, Bhandari P. Diabetes mellitus. In: StatPearls. Treasure Island, FL: StatPearls Publishing; 2022. Available from: [Last accessed on 2024 Jul 09].


  1. Karokaro TM, Erika R. The effect of modern dressing treatment on wound healing process of diabetes mellitus. J Keg Gizi (JKG). 2023;5(2):235-240. doi: 10.35451/jkg.v5i2.1663


  1. Padhi S, Nayak AK, Behera A. Type II diabetes mellitus: A review on recent drug-based therapeutics. Biomed Pharmacother. 2020;131:110708. doi: 10.1016/j.biopha.2020.110708


  1. Dhankhar S, Chauhan S, Mehta DK, et al. Novel targets for potential therapeutic use in Diabetes mellitus. Diabetol Metab Syndr. 2023;15(1):17. doi: 10.1186/s13098-023-00744-6


  1. Dhirani, D, Shahid A, Mumtaz H. A new kind of diabetes medication approved by the FDA: Is there hope for obesity? Int J Surg. 2023;109(2):81-82. doi: 10.1016/j.ijsu.2023.05.064


  1. Yu C, Cui M, Yin Y, et al. Influence of Gegenqinlian decoction on pharmacokinetics and pharmacodynamics of saxagliptin in type 2 diabetes mellitus rats. Biopharm Drug Dispos. 2023;44:396-405. doi: 10.1002/bdd.2376


  1. Liu J, Wei L, Wang Z, et al. Protective effect of Liraglutide on diabetic retinal neurodegeneration via inhibiting oxidative stress and endoplasmic reticulum stress. Neurochem Int. 2020;133:104624. doi: 10.1016/j.neuint.2019.104624


  1. Mirabelli M, Chiefari E, Caroleo P, et al. Long-term effectiveness of liraglutide for weight management and glycemic control in type 2 diabetes. Int J Environ Res Public Health. 2020;17(1):207. doi: 10.3390/ijerph17010207


  1. Neeland IJ, Marso SP, Ayers CR, et al. Effects of liraglutide on visceral and ectopic fat in adults with overweight and obesity at high cardiovascular risk: A randomised, double-blind, placebo-controlled, clinical trial. Lancet Diabetes Endocrinol. 2021;9(9):595-605. doi: 10.1016/S2213-8587(21)00175-2


  1. Zhao X, Huang K, Zheng M, Duan J. Effect of liraglutide on blood pressure: A meta-analysis of liraglutide randomized controlled trials. BMC Endocr Disord. 2019;19:4. doi: 10.1186/s12902-019-0362


  1. Jacob B, Narendhirakannan RT. Role of medicinal plants in the management of diabetes mellitus: A review. 3 Biotech. 2019;9:4. doi: 10.1007/s13205-019-1982-4


  1. Salehi B, Ata A, Anil Kumar NV, et al. Antidiabetic potential of medicinal plants and their active components. Biomolecules. 2019;9(10):551. doi: 10.3390/biom9100551


  1. Wadekar AB, Nimbalwar MG, Panchale WA, Gudalwar BR, Manwar JV, Bakal RL. Morphology, phytochemistry and pharmacological aspects of Carica papaya, a review. GSC Biol Pharm Sci. 2020;14(3):234-248. doi: 10.30574/gscbps.2020.14.3.0314


  1. Awuchi CG. Medicinal plants: The medical, food, and nutritional biochemistry and uses. Int J Adv Acad Res. 2019;5(11):220-241. doi: 10.21474/IJAA-NOV-2019-05


  1. Agidew MG. Phytochemical analysis of some selected traditional medicinal plants in Ethiopia. Bull Natl Res Cent. 2022;46(1):87. doi: 10.1186/s42269-022-00611-8


  1. Applequist WL, Brinckmann JA, Cunningham AB, et al. Scientists’ warning on climate change and medicinal plants. Planta Med. 2020;86(1):10-18. doi: 10.1055/a-1060-1475


  1. Ullah R, Alqahtani AS, Noman OM, Alqahtani AM, Ibenmoussa S, Bourhia M. A review on ethno-medicinal plants used in traditional medicine in the Kingdom of Saudi Arabia. Saudi J Biol Sci. 2020;27(10):2706-2718. doi: 10.1016/j.sjbs.2020.06.019


  1. Bansal A, Priyadarsini C. Medicinal Properties of Phytochemicals and their Production. London: IntechOpen; 2021.


  1. Kumar Sharma D, Shah KR, Dave RS. Phytochemicals: Promising potential uses in pharmacology. In: Recent Trends in Pharmaceutical Sciences. Ch. 6. India: JPS Scientific Publications; 2019.


  1. Qadir A, Jahan S, Aqil M, et al. Phytochemical-based nano-pharmacotherapeutics for management of burn wound healing. Gels. 2021;7(4):209. doi: 10.3390/gels7040209


  1. Kumar M, Prakash S, Kumari N, et al. Beneficial role of antioxidant secondary metabolites from medicinal plants in maintaining oral health. Antioxidants (Basel). 2021;10(7):1061. doi: 10.3390/antiox10071061


  1. Przeor M. Some common medicinal plants with antidiabetic activity, known and available in Europe (a mini-review). Pharmaceuticals (Basel). 2022;15(1):65. doi: 10.3390/ph15010065


  1. Alqahtani AS, Ullah R, Shahat AA. Bioactive constituents and toxicological evaluation of selected antidiabetic medicinal plants of Saudi Arabia. Evid Based Complement Alternat Med. 2022;2022:7123521. doi: 10.1155/2022/4435351


  1. Oguntibeju OO. Hypoglycaemic and anti-diabetic activity of selected African medicinal plants. Int J Physiol Pathophysiol Pharmacol. 2019;11(6):224-237.


  1. Mohammed A, Tajuddeen N. Antidiabetic compounds from medicinal plants traditionally used for the treatment of diabetes in Africa: A review update (2015-2020). S Afr J Bot. 2022;146:585-602. doi: 10.1016/j.sajb.2021.07.003


  1. Qamar M, Akhtar S, Ismail T, et al. Phytochemical profile, biological properties, and food applications of the medicinal plant Syzygium cumini. Foods. 2022;11(3):378. doi: 10.3390/foods11030378


  1. Martiz RM, Patil SM, Thirumalapura Hombegowda D, et al. Phyto-computational intervention of diabetes mellitus at multiple stages using isoeugenol from Ocimum tenuiflorum: A combination of pharmacokinetics and molecular modelling approaches. Molecules. 2022;27(19):6222. doi: 10.3390/molecules27196222


  1. Sajal H, Patil SM, Raj R, Shbeer AM, Ageel M, Ramu R. Computer-aided screening of phytoconstituents from Ocimum tenuiflorum against diabetes mellitus targeting DPP4 inhibition: A combination of molecular docking, molecular dynamics, and pharmacokinetics approaches. Molecules. 2022;27(16):5133. doi: 10.3390/molecules27165133


  1. Abdi T, Mahmoudabady M, Marzouni HZ, Niazmand S, Khazaei M. Ginger (Zingiber Officinale Roscoe) extract protects the heart against inflammation and fibrosis in diabetic rats. Can J Diabetes. 2021;45(3):220-227. doi: 10.1016/j.jcjd.2021.01.011


  1. El Gayar MH, Aboromia MM, Ibrahim NA, Hafiz MH. Effects of ginger powder supplementation on glycemic status and lipid profile in newly diagnosed obese patients with type 2 diabetes mellitus. Obes Med. 2019;14:100094. doi: 10.1016/j.obmed.2019.100094


  1. Ebrahimzadeh A, Ebrahimzadeh A, Mirghazanfari SM, Hazrati E, Hadi S, Milajerdi A. The effect of ginger supplementation on metabolic profiles in patients with type 2 diabetes mellitus: A systematic review and meta-analysis of randomized controlled trials. Complement Ther Med. 2022;65:102802. doi: 10.1016/j.ctim.2022.102802


  1. Anaeigoudari A, Safari H, Khazdair MR. Effects of Nigella sativa, Camellia sinensis, and Allium sativum as food additives on metabolic disorders, a literature review. Front Pharmacol. 2021;12:762182. doi: 10.3389/fphar.2021.762182


  1. Paari E, Pari L. Role of some phytochemicals in the management of diabetes mellitus: A review. J Med Pract Rev. 2019;3(4):515-520.


  1. Sobhani Z, Mohtashami L, Amiri MS, Ramezani M, Emami SA, Simal‐Gandara J. Ethnobotanical and phytochemical aspects of the edible herb Coriandrum sativum L. J Food Sci. 2022;87(4):1386-1422. doi: 10.1111/1750-3841.17233


  1. Sen DB, Balaraman R, Sen AK, Zanwar AS, Greeshma KP, Maheshwari RA. Anti-Diabetic Activity of Herbal Remedies. 2023; 373-381.


  1. Nigam V, Nambiar VS. Aegle marmelos leaf juice as a complementary therapy to control type 2 diabetes-randomised controlled trial in Gujarat, India. Adv Integr Med. 2019;6(1):11-22. doi: 10.1016/j.aimed.2018.07.003


  1. Birudu RB, Pamulapati P, Manoharan SK. Evaluation of biochemical changes in diabetic rats treated with Aegle marmelos (L.) methanolic leaf extract. Pharmacogn Res. 2020;12(2):127-130. doi: 10.4103/pr.pr_53_19


  1. Murthy HN, Bhat MA, Dalawai D. Bioactive compounds of bael (Aegle marmelos (L.) correa). In: Bioactive Compounds in Underutilized Fruits and Nuts. New York City: Springer International Publishing; 2020. p. 459-486. doi: 10.1016/B978-0-12-816490-3.00023-1


  1. Kim HS, Lee D, Seo YH, et al. Chemical constituents from the roots of Angelica reflexa that improve glucose-stimulated insulin secretion by regulating pancreatic β-cell metabolism. Pharmaceutics. 2023;15(4):1239. doi: 10.3390/pharmaceutics15041239


  1. Ghosh D, Mukherjee PK, editors. Natural Medicines: Clinical Efficacy, Safety and Quality. United States: CRC Press; 2019. Available from: natural-medicines-clinical-efficacy-safety-and-quality/ ghosh-mukherjee/p/book/9781138745497 [Last accessed on 2024 Jul 09].


  1. Bhupatiraju L, Bethala K, Goh KW, et al. Influence of Murraya koenigii extract on diabetes induced rat brain aging. J Med Life. 2023;16(2):307-316. doi: 10.25122/jml-2022-0151


  1. Abeysinghe DT, Alwis DD, Kumara KA, Chandrika UG. Nutritive importance and therapeutic uses of three different varieties (Murraya koenigii, Micromelum minutum, and Clausena indica) of curry leaves: An updated review. Evid Based Complement Alternat Med. 2021;2021:5523252. doi: 10.1155/2021/3649062


  1. Upadhye MC, Deokate UA, Pujari RR. Antidiabetic effect of ethanolic extract of Murraya koenigii (Linn.) stem bark in alloxan induced diabetic rats. Int J Pharmacogn. 2019;6(6):193-201.


  1. Ahmad B, Hafeez N, Rauf A, et al. Phyllanthus emblica: A comprehensive review of its therapeutic benefits. S Afr J Bot. 2021;138:278-310. doi: 10.1016/j.sajb.2020.10.003


  1. Fruit AW. 17 Indian Gooseberry (Phyllanthus emblica). In: Asian Berries: Health Benefits. United States: CRC Press; 2020. p. 343.


  1. Sharma P, Joshi T, Joshi T, Chandra S, Tamta S. In silico screening of potential antidiabetic phytochemicals from Phyllanthus emblica against therapeutic targets of type 2 diabetes. J Ethnopharmacol. 2020;248:112268. doi: 10.1016/j.jep.2019.112268


  1. Huang HZ, Qiu M, Lin JZ, et al. Potential effect of tropical fruits Phyllanthus emblica L. for the prevention and management of type 2 diabetic complications: A systematic review of recent advances. Eur J Nutr. 2021;60:3525-3542. doi: 10.1007/s00394-021-02621-3


  1. Dabur R, Sharma B, Mittal A. Mechanistic approach of anti-diabetic compounds identified from natural sources. Chem Biol Lett. 2018;5(2):63-99. doi: 10.17795/cbl.31043


  1. Mutha RE, Tatiya AU, Surana SJ. Flavonoids as natural phenolic compounds and their role in therapeutics: An overview. Future J Pharm Sci. 2021;7:25. doi: 10.1186/s43094-021-00176-6


  1. Saikat AS, Hossain R, Mina FB, et al. Antidiabetic effect of garlic. Rev Bras Farmacogn. 2021;32:1-11. doi: 10.1007/s43450-021-00171-2


  1. Kalhotra P, Chittepu VC, Osorio-Revilla G, Gallardo- Velazquez T. Phytochemicals in garlic extract inhibit therapeutic enzyme DPP-4 and induce skeletal muscle cell proliferation: A possible mechanism of action to benefit the treatment of diabetes mellitus. Biomolecules. 2020;10(2):305. doi: 10.3390/biom10020305


  1. Behera PK, Devi S, Mittal N. Therapeutic potential of gallic acid in obesity: Considerable shift! Obes Med. 2022;37:100473. doi: 10.1016/j.obmed.2022.100473


  1. Chowdhury SS, Tareq AM, Tareq SM, Farhad S, Sayeed MA. Screening of antidiabetic and antioxidant potential along with phytochemicals of Annona genus: A review. Future J Pharm Sci. 2021;7:144. doi: 10.1186/s43094-021-00300-9


  1. Ahmed RH, Mariod AA. Annona squamosa: Phytochemical constituents, bioactive compounds, traditional and medicinal uses. In: Wild Fruits: Composition, Nutritional Value and Products. Germany: Springer Nature; 2019. p. 143-155. doi: 10.5772/intechopen.87821


  1. Hassan PI, Berinyuy EB. Nutritional management of diabetes mellitus: An appraisal of the role of medicinal plants. Nat Prod Res. 2021;1(1):1-27. doi: 10.1016/j.npr.2021.100001


  1. Chanda S, Ramachandra TV. Phytochemical and pharmacological importance of turmeric (Curcuma longa): A review. Res Rev J Pharmacol. 2019;9(1):16-23. doi: 10.37591/rrjph.v9i1.1164


  1. Sharma V, Gautam DN, Radu A, et al. Reviewing the traditional/modern uses, phytochemistry, essential oils/ extracts and pharmacology of Embelia ribes Burm. Antioxidants. 2022;11(7):359. doi: 10.3390/antiox11071359


  1. Samanta S, Chanda R, Ganguli S, Reddy AG, Banerjee J. Anti-diabetic activity of mango (Mangifera indica): A review. MOJ Bioequiv Availab. 2019;6(2):23-26. doi: 10.15406/mojbb.2019.06.00184


  1. Idm’hand E, Msanda F, Cherifi K. Ethnopharmacological review of medicinal plants used to manage diabetes in Morocco. Clin Phytosci. 2020;6:1-32. doi: 10.1186/s40816-019-0138-6


  1. Gupta R, Sood H. Optimizing nutrient media conditions for continuous production of shoot biomass enriched in major medicinal constituents, amarogentin and mangiferin of endangered medicinal herb, Swertia chirayita. Vegetos. 2023;36(3):833-841. doi: 10.1007/s42535-022-00342-8


  1. Ranjha MM, Shafique B, Wang L, et al. A comprehensive review on phytochemistry, bioactivity and medicinal value of bioactive compounds of pomegranate (Punica granatum). Adv Tradit Med. 2021;1-21. doi: 10.1007/s13596-021-00526-7


  1. Gupta M, Vaghela JS. Recent advances in pharmacological and phytochemistry studies on Phyllanthus amarus. Pharm Biosci J. 2019;7:1-8. doi: 10.2174/25908183219991211114222


  1. Prodhan AH, Mridu FS. Antidiabetic properties of Nymphaea species (Water lilies): A review. Nat Prod J. 2023;13(1):78-112. doi: 10.2174/2210315507666210205132344
Conflict of interest
The authors declare that they have no competing interests.
Back to top
INNOSC Theranostics and Pharmacological Sciences, Electronic ISSN: 2705-0823 Published by AccScience Publishing