AccScience Publishing / ITPS / Online First / DOI: 10.36922/itps.0332
REVIEW

The potential therapeutic value of terpenes

Henry Lowe1,2,3,4 Amza Ali5,6 Blair Steele1 Lorenzo Gordon7 Justin Grant8*
Show Less
1 Biotech Research and Development Institute, University of the West Indies, Kingston, Jamaica
2 Vilotos Pharmaceuticals Inc., Baltimore, Maryland, United States of America
3 Flavocure Biotech Inc., Baltimore, Maryland, United States of America
4 Cancer Research Unit, Institute of Human Virology (IHV), University of Maryland School of Medicine, Baltimore, Maryland, United States of America
5 Department of Medicine, Faculty of Medicine, University of the West Indies, Kingston, Jamaica
6 Department of Medicine, Kingston Public Hospital, Kingston, Jamaica
7 Department of Internal Medicine, Caribbean School of Medical Sciences, Kingston, Jamaica
8 Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
INNOSC Theranostics and Pharmacological Sciences 2024, 7(3), 0332 https://doi.org/10.36922/itps.0332
Submitted: 15 March 2023 | Accepted: 7 December 2024 | Published: 7 June 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Terpenes form part of a huge and diverse class of naturally occurring and volatile secondary metabolites produced by many plants, fruits, animals, insects, and other organisms. They are the largest group of naturally occurring metabolites, with over 55,000 types of terpenes produced by plants alone, primarily as essential oils. In humans, they contain significant biological properties such as antifungal, antiviral, antimicrobial, anti-inflammatory, antiparasitic, antihyperglycemic, anti-cancer, and analgesic agents. In plants, terpenes also play significant roles in defensive mechanisms against herbivores and invasive plants, disease resistance, chemical signaling and communication between plants, protection against photo-oxidation, plant-environment mediation, thermo-protection, and the attraction of pollinators. In addition, terpenes are responsible for a plant’s scent, taste, flavor, and pigmentation, leading to their commercial use as fragrances and food dyes. Terpenes are also used in the production of synthetic polymers, natural rubbers (polyisoprene), organic solvents, varnishes, inks, adhesives, cleaning products, biofuels, pesticides, and food and drink products. For these reasons, terpenes have significant value in modern medicine, pharmacy, nutraceuticals, cosmetics, and other industries.

Keywords
Terpenes Terpenoids
Metabolites
Cannabis sativa
Essential oils
Sterol
Squalene
Phytotherapeutics
Funding
None.
Conflict of interest
The authors declare no conflict of interest.
References
  1. Terpene. Available from: https://en.wikipedia.org/wiki/ Terpene#cite_note-4 [Last accessed on 2023 Feb 07].

 

  1. Kekulé A. Lehrbuch der Organischen Chemie [Textbook of Organic Chemistry]. Stuttgart: Ferdinand Enke; 1882. p. 464-465. (In German)

 

  1. Noma Y, Asakawa Y. Comprehensive natural products II. Chem Biol. 2010;3:669-801.

 

  1. Weston-Green K, Clunas H, Jimenez Naranjo C. A review of the potential use of pinene and linalool as terpene-based medicines for brain health: Discovering novel therapeutics in the flavours and fragrances of cannabis. Front Psychiatry. 2021;12:583211. doi: 10.3389/fpsyt.2021.583211

 

  1. Ninkuu V, Zhang L, Yan J, Fu Z, Yang T, Zeng H. Biochemistry of terpenes and recent advances in plant protection. Int J Mol Sci. 2021;22(11):5710. doi: 10.3390/ijms22115710

 

  1. Sharma E, Anand G, Kapoor R. Terpenoids in plant and arbuscular mycorrhiza-reinforced defence against herbivorous insects. Ann Bot. 2017;119(5):791-801. doi: 10.1093/aob/mcw263

 

  1. Huang AC, Osbourn A. Plant terpenes that mediate below‐ground interactions: Prospects for bioengineering terpenoids for plant protection. Pest Manage Sci. 2019;75(9):2368-2377. doi: 10.1002/ps.5410

 

  1. Naidoo S, Christie N, Acosta JJ, et al. Terpenes associated with resistance against the gall wasp, Leptocybe invasa, in Eucalyptus grandis. Plant Cell Environ. 2018;41(8):1840-1851. doi: 10.1111/pce.13323

 

  1. Block AK, Vaughan MM, Schmelz EA, Christensen SA. Biosynthesis and function of terpenoid defense compounds in maize (Zea mays). Planta. 2019;249:21-30. doi: 10.1007/s00425-018-2999-2

 

  1. Sparagano O, Khallaayoune K, Duvallet G, Nayak S, George D. Comparing terpenes from Plant essential oils as pesticides for the poultry red Mite (Dermanyssus gallinae). Transbound Emerg Dis. 2013;60:150-153. doi: 10.1111/tbed.12138

 

  1. Armbruster WS, Steiner KE. Pollination ecology of four Dalechampia species (Euphorbiaceae) in Northern Natal, South Africa. Am J Bot. 1992;79(3):306-313. doi: 10.2307/2445020

 

  1. Dodson CH, Dressler RL, Hills HG, Adams RM, Williams NH. Biologically active compounds in orchid fragrances. Science. 1969;164(3885):1243-1249. doi: 10.1126/science.164.3885.1243

 

  1. Terry I, Walter GH, Moore C, Roemer R, Hull C. Odor-mediated push-pull pollination in cycads. Science. 2007;318(5847):70. doi: 10.1126/science.1145147

 

  1. Lemaire M, Nagnan P, Clement JL, Lange C, Peru L, Basselier JJ. Geranyllinalool (Diterpene Alcohol) an insecticidal component of pine wood and termites (Isoptera: Rhinotermitidae) in four European ecosystems. J Chem Ecol. 1990;16:2067-2079. doi: 10.1007/BF01020517

 

  1. Youngsteadt E, Baca JA, Osborne J, Schal C. Species-specific seed dispersal in an obligate ant-plant mutualism. PLoS One. 2009;4(2):e4335. doi: 10.1371/journal.pone.0004335.

 

  1. Boncan DAT, Tsang SS, Li C, et al. Terpenes and terpenoids in plants: Interactions with environment and insects. Int J Mol Sci. 2020;21(19):7382. doi: 10.3390/ijms21197382

 

  1. Rodríguez A, Shimada T, Cervera M, et al. Resistance to pathogens in terpene down-regulated orange fruits inversely correlates with the accumulation of D-limonene in peel oil glands. Plant Sign Behav 2015;10(6):e1028704. doi: 10.1080/15592324.2015.1028704

 

  1. Mahizan NA, Yang SK, Moo CL, et al. Terpene derivatives as a potential agent against antimicrobial resistance (AMR) pathogens. Molecules. 2019;24(14):2631. doi: 10.3390/molecules24142631

 

  1. Cappiello F, Loffredo MR, Del Plato C, et al. The revaluation of plant-derived terpenes to fight antibiotic-resistant infections. Antibiotics (Basel). 2020;9(6):325. doi: 10.3390/antibiotics9060325

 

  1. Rodríguez A, Shimada T, Cervera M, et al. Terpene down-regulation triggers defense responses in transgenic orange leading to resistance against fungal pathogens. Plant Physiol. 2014;164(1):321-339. doi: 10.1104/pp.113.224279

 

  1. Li X, Hu Y, Su M, et al. Genome-wide analysis of terpene synthase gene family to explore candidate genes related to disease resistance in Prunus persica. Front Plant Sci. 2022;13:1032838. doi: 10.3389/fpls.2022.1032838

 

  1. Zhang Z, Lu S, Yu W, et al. Jasmonate increases terpene synthase expression, leading to strawberry resistance to Botrytis cinerea infection. Plant Cell Rep. 2022;41(5):1243-1260. doi: 10.1007/s00299-022-02854-1

 

  1. Sarma R, Adhikari K, Mahanta S, Khanikor B. Combinations of plant essential oil based terpene compounds as larvicidal and adulticidal agent against Aedes aegypti (Diptera: Culicidae). Sci Re. 2019;9(1):9471. doi: 10.1038/s41598-019-45908-3

 

  1. Ricciardi V, Marcianò D, Sargolzaei M, et al. From plant resistance response to the discovery of antimicrobial compounds: The role of volatile organic compounds (VOCs) in grapevine downy mildew infection. Plant Physiol Biochem. 2021;160:294-305. doi: 10.1016/j.plaphy.2021.01.035

 

  1. Kopaczyk JM, Warguła J, Jelonek T. The variability of terpenes in conifers under developmental and environmental stimuli. Environ Exp Bot. 2020;180:104197. doi: 10.1016/j.envexpbot.2020.104197

 

  1. Bartwal A, Mall R, Lohani P, Guru S, Arora S. Role of secondary metabolites and brassinosteroids in plant defense against environmental stresses. J Plant Growth Regul. 2013;32:216-232. doi: 10.1007/s00344-012-9272-x

 

  1. Rosenkranz M, Chen Y, Zhu P, Vlot AC. Volatile terpenes-mediators of plant‐to‐plant communication. Plant J. 2021;108(3):617-631. doi: 10.1111/tpj.15453

 

  1. Loreto F, Mannozzi M, Maris C, Nascetti P, Ferranti F, Pasqualini S. Ozone quenching properties of isoprene and its antioxidant role in leaves. Plant Physiol. 2001;126(3):993-1000. doi: 10.1104/pp.126.3.993

 

  1. Bitterling H, Mailänder L, Vetter W, Kammerer DR, Stintzing FC. Photo-protective effects of furocoumarins on terpenes in lime, lemon and bergamot essential oils upon UV light irradiation. Eur Food Res Technol. 2022;248(4):1049-1057. doi: 10.1007/s00217-021-03945-1

 

  1. Peñuelas J, Munné-Bosch S. Isoprenoids: An evolutionary pool for photoprotection. Trends Plant Sci. 2005;10(4):166-169. doi: 10.1016/j.tplants.2005.02.005

 

  1. Roberts SC. Production and engineering of terpenoids in plant cell culture. Nat Chem Biol. 2007;3(7):387-395. doi: 10.1038/nchembio.2007.8

 

  1. Adam D. Scientists Discover Cloud-thickening Chemicals in Trees that Could Offer a New Weapon in the Fight against Global Warming. London: The Guardian; 2008.

 

  1. Paulo FAPESP. Study Reveals How Particles that Seed Clouds in the Amazon are Produced. Available from: https://phys. org/news/2016-11-reveals-particles-seed-clouds-amazon. html [Last accessed on 2023 Feb 07].

 

  1. Bonn B, Hirsikko A, Hakola H, et al. Ambient sesquiterpene concentration and its link to air ion measurements. Atmos Chem Phys. 2007;7(11):2893-2916.

 

  1. Bonn B, Korhonen H, Petäjä T, Boy M, Kulmala M. Understanding the formation of biogenic secondary organic aerosol formation from alpha-pinene in smog chamber studies: Role of organic peroxy radicals. Atmos Chem Phys Discuss. 2007;7(2):3901-3939. doi: 10.5194/acpd-7-3901-2007

 

  1. Bonn B, Kulmala M, Riipinen I, Sihto SL, Ruuskanen TM. How biogenic terpenes govern the correlation between sulfuric acid concentrations and new particle formation. J Geophys Res Atmos. 2008;113(D12): 1-14. doi: 10.1029/2007JD009327

 

  1. Bonn B, Moortgat GK. Sesquiterpene ozonolysis: Origin of atmospheric new particle formation from biogenic hydrocarbons. Geophys Res Lett. 2003;30(11):1585. doi: 10.1029/2003GL017000

 

  1. Bonn B, Schuster G, Moortgat GK. Influence of water vapor on the process of new particle formation during monoterpene ozonolysis. J Phys Chem A. 2002;106(12):2869-2881. doi: 10.1021/jp012713p

 

  1. Sellegri K, Hanke M, Umann B, Arnold F, Kulmala M. Measurements of organic gases during aerosol formation events in the boreal forest atmosphere during QUEST. Atmos Chem Phys. 2005;5(2):373-384. doi: 10.5194/acp-5-373-2005

 

  1. Monge ME, Rosenørn T, Favez O, et al. Alternative pathway for atmospheric particles growth. Proc Natl Acad Sci. 2012;109(18):6840-6844. doi: 10.1073/pnas.1120593109

 

  1. Faiola C, Buchholz A, Kari E, et al. Terpene composition complexity controls secondary organic aerosol yields from scots pine volatile emissions. Sci Rep. 2018;8(1):3053. doi: 10.1038/s41598-018-21045-1

 

  1. Zengin H, Baysal AH. Antibacterial and antioxidant activity of essential oil terpenes against pathogenic and spoilage-forming bacteria and cell structure-activity relationships evaluated by SEM microscopy. Molecules. 2014;19(11):17773-17798. doi: 10.3390/molecules191117773

 

  1. Camargos HS, Moreira RA, Mendanha SA, Fernandes KS, Dorta ML, Alonso A. Terpenes increase the lipid dynamics in the Leishmania plasma membrane at concentrations similar to their IC50 values. PLoS One. 2014;9(8):e104429. doi: 10.1371/journal.pone.0104429

 

  1. Vermaas JV, Bentley GJ, Beckham GT, Crowley MF. Membrane permeability of terpenoids explored with molecular simulation. J Phys Chem B. 2018;122(45):10349-10361. doi: 10.1021/acs.jpcb.8b08688

 

  1. Abramov AY, Zamaraeva MV, Hagelgans AI, Azimov RR, Krasilnikov OV. Influence of plant terpenoids on the permeability of mitochondria and lipid bilayers. Biochim Biophys Acta. 2001;1512(1):98-110. doi: 10.1016/s0005-2736(01)00307-8

 

  1. Raza S, Miller M, Vermaas JV. Plant terpenoid permeability through biological membranes explored via molecular simulations. Biophys J. 2022;121(3):72a.

 

  1. Sikkema J, de Bont JA, Poolman B. Interactions of cyclic hydrocarbons with biological membranes. J Biol Chem. 1994;269(11):8022-8028.

 

  1. Perveen S, Al-Taweel A. Terpenes and terpenoids. Norderstedt, Germany: BoD-Books on Demand; 2018.

 

  1. Lowe H, Toyang N, Steele B, Bryant J, Ngwa W. The endocannabinoid system: A potential target for the treatment of various diseases. Int J Mol Sci. 2021;22(17):9472. doi: 10.3390/ijms22179472

 

  1. Jiang Z, Kempinski C, Chappell J. Extraction and analysis of terpenes/terpenoids. Curr Protoc Plant Biol. 2016;1(2):345-358. doi: 10.1002/cppb.20024

 

  1. Jin D, Dai K, Xie Z, Chen J. Secondary metabolites profiled in cannabis inflorescences, leaves, stem barks, and roots for medicinal purposes. Sci Rep. 2020;10(1):3309. doi: 10.1038/s41598-020-60172-6

 

  1. Kandi S, Godishala V, Rao P, Ramana K. Biomedical significance of terpenes: An insight. Biomed Biotechnol. 2015;3(1):8-10. doi: 10.12691/bb-3-1-2

 

  1. Li HL. An archaeological and historical account of cannabis in China. Econ Bot. 1974;28(4):437-448. doi: 10.1007/BF02862859

 

  1. Li HL. The origin and use of Cannabis in Eastern Asia linguistic-cultural implications. Econ Bot. 1974;28(3):293-301. doi: 10.1007/BF02861426

 

  1. Touw M. The religious and medicinal uses of Cannabis in China, India and Tibet. J Psychoactive Drugs. 1981;13(1):23-34. doi: 10.1080/02791072.1981.10471447

 

  1. Zuardi AW. History of cannabis as a medicine: A review. Braz J Psychiatry. 2006;28:153-157. doi: 10.1590/s1516-44462006000200015

 

  1. Charitos IA, Gagliano-Candela R, Santacroce L, Bottalico L. The Cannabis spread throughout the continents and its therapeutic use in history. Endocr Metab Immune Disord Drug Targets. 2021;21(3):407-417. doi: 10.2174/1871530320666200520095900

 

  1. Crocq MA. History of cannabis and the endocannabinoid system. Dialogues Clin Neurosci. 2020;22:223-228. doi: 10.31887/DCNS.2020.22.3/mcrocq

 

  1. Brand EJ, Zhao Z. Cannabis in Chinese medicine: Are some traditional indications referenced in ancient literature related to cannabinoids? Front Pharmacol. 2017;8:108. doi: 10.3389/fphar.2017.00108

 

  1. Pisanti S, Bifulco M. Medical Cannabis: A plurimillennial history of an evergreen. J Cell Physiol. 2019;234(6):8342-8351. doi: 10.1002/jcp.27725

 

  1. Sommano SR, Chittasupho C, Ruksiriwanich W, Jantrawut P. The cannabis terpenes. Molecules. 2020;25(24):5792. doi: 10.3390/molecules25245792

 

  1. Koltai H, Namdar D. Cannabis phytomolecule ‘entourage’: From domestication to medical use. Trends Plant Sci. 2020;25(10):976-984. doi: 10.1016/j.tplants.2020.04.007

 

  1. Russo EB. Taming THC: Potential cannabis synergy and phytocannabinoid‐terpenoid entourage effects. Br J Pharmacol. 2011;163(7):1344-1364. doi: 10.1111/j.1476-5381.2011.01238.x

 

  1. Baron EP. Medicinal properties of cannabinoids, terpenes, and flavonoids in cannabis, and benefits in migraine, headache, and pain: An update on current evidence and cannabis science. Headache. 2018;58(7):1139-1186. doi: 10.1111/head.13345

 

  1. Ghasemi-Gojani E, Kovalchuk I, Kovalchuk O. Cannabinoids and terpenes for diabetes mellitus and its complications: From mechanisms to new therapies. Trends Endocrinol Metab. 2022;33:828-849. doi: 10.1016/j.tem.2022.08.003

 

  1. Liktor-Busa E, Keresztes A, LaVigne J, Streicher JM, Largent-Milnes TM. Analgesic potential of terpenes derived from Cannabis sativa. Pharmacol Rev. 2021;73(4):98-126. doi: 10.1124/pharmrev.120.000046

 

  1. Booth JK, Bohlmann J. Terpenes in Cannabis sativa-From plant genome to humans. Plant Sci. 2019;284:67-72. doi: 10.1016/j.plantsci.2019.03.022

 

  1. Stone E. What are Cannabis Terpenes and what do they do? Available from: https://www.leafly.com/news/cannabis-101/ terpenes-the-flavors-of-cannabis-aromatherapy [Last accessed on 2023 Feb 07].

 

  1. Agarwal C, Máthé K, Hofmann T, Csóka L. Ultrasound‐assisted extraction of cannabinoids from Cannabis sativa L. optimized by response surface methodology. J Food Sci. 2018;83(3):700-710. doi: 10.1111/1750-3841.14075

 

  1. Chemat S, Aït-Amar H, Lagha A, Esveld D. Microwave-assisted extraction kinetics of terpenes from caraway seeds. Chem Eng Process Process Intensif. 2005;44(12):1320-1326. doi: 10.1016/j.cep.2005.03.011

 

  1. Péres VF, Saffi J, Melecchi MIS, et al. Comparison of soxhlet, ultrasound-assisted and pressurized liquid extraction of terpenes, fatty acids and Vitamin E from Piper gaudichaudianum Kunth. J Chromatogr A. 2006;1105(1-2):115-118. doi: 10.1016/j.chroma.2005.07.113

 

  1. Reddy SN, Nanda S, Dalai AK, Kozinski JA. Supercritical water gasification of biomass for hydrogen production. Int J Hydrog Energy. 2014;39(13):6912-6926. doi: 10.1016/j.ijhydene.2014.02.125

 

  1. Moreno T, Montanes F, Tallon SJ, Fenton T, King JW. Extraction of cannabinoids from hemp (Cannabis sativa L.) using high pressure solvents: An overview of different processing options. J Supercrit Fluids. 2020;161:104850. doi: 10.1016/j.supflu.2020.104850

 

  1. Extracts CC. Solventless Cannabis Extraction. Available from: https://www.coldcreekextracts.com/solventless-cannabis-extraction [Last accessed on 2023 Jan 29].

 

  1. Sarmento-Neto JF, Do Nascimento LG, Felipe CFB, De Sousa DP. Analgesic potential of essential oils. Molecules. 2015;21(1):E20. doi: 10.3390/molecules21010020

 

  1. Patrignani F, Prasad S, Novakovic M, Marin PD, Bukvicki D. Lamiaceae in the treatment of cardiovascular diseases. Front Biosci (Landmark Ed). 2021;26(4):612-643. doi: 10.2741/4909

 

  1. Guimarães AC, Meireles LM, Lemos MF, et al. Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules. 2019;24(13):2471. doi: 10.3390/molecules24132471

 

  1. Muhammad R, Ahmad T. Malay Camphor in Arabic Text and Its Latest Trend of Research. In: European Proceedings of Social and Behavioural Sciences.

 

  1. Schoff WH. Camphor. J Am Orient Soc. 1922;42:355-370.

 

  1. Groom N. The Perfume Handbook. Berlin: Springer Science and Business Media; 2012.

 

  1. Marsden W. The History of Sumatra: Containing an Account of the Government, Laws, Customs, and Manners of the Native Inhabitants, with a Description of the Natural Productions, and a Relation to the Ancient Political State of That Island. London: Longman; 1811.

 

  1. Camphor Cream and Ointment Information. Available from: https://www.drugs.com/cdi/camphor-cream-and-ointment. html [Last accessed on 2023 Feb 07].

 

  1. Young E. Mummy-making Complexity Revealed; 2001. Available from: https://www.newscientist.com/article/ dn1475-mummy-making-complexity-revealed/#. vkvwgmksoow [Last accessed on 2023 Feb 07].

 

  1. Aʿlam H. Encyclopedia Iranica; 1990. Available from: https://www.iranicaonline.org/articles/camphor-npers [Last accessed on 2023 Feb 07].

 

  1. Wang C, Li M, Zhang L, Fu S, Wang C. Properties of camphor oil/poly (methyl methacrylate) composites and their application on cotton fabrics. Text Res J. 2017;87(11):1318-1325. doi: 10.1177/0040517516652344

 

  1. Goodman L, Gilman A. The Pharmacological basis of Therapeutics. New York: McGraw Hill Professional; 1965.

 

  1. Clarke C. Ice cream ingredients. In: The science of Ice Cream. Cambridge: Royal Society of Chemistry Publishing; 2004. p. 38-57

 

  1. Titley NM. The Ni’matnama Manuscript of the Sultans of Mandu: The Sultan’s Book of Delights. Milton Park: Routledge; 2004.

 

  1. Muller HG. Baking and Bakeries. London: Shire Publications; 1986.

 

  1. Nasrallah N. Annals of the Caliphs’ Kitchens: Ibn Sayy?r Al-Warr?q’s Tenth-century Baghdadi Cookbook. Islamic History and Civilization: Leiden: Brill; 2007. p. 70.

 

  1. Bahadur OL. The Book of Hindu Festivals and Ceremonies. Seattle: University of Washington Press; 1997.

 

  1. Chen W, Vermaak I, Viljoen A. Camphor--a fumigant during the black death and a coveted fragrant wood in ancient Egypt and Babylon--a review. Molecules. 2013;18(5):5434-5454. doi: 10.3390/molecules18055434

 

  1. Cox-Georgian D, Ramadoss N, Dona C, Basu C. Therapeutic and medicinal uses of terpenes. Med Plants. 2019;333-359. doi: 10.1007/978-3-030-31269-5_15

 

  1. Yang W, Chen X, Li Y, Guo S, Wang Z, Yu X. Advances in pharmacological activities of terpenoids. Nat Prod Commun. 2020;15(3):1-13. doi: 10.1177/1934578X20903555

 

  1. Johnson J, Theise E. What Are Terpenes? Available from: https://www.medicalnewstoday.com/articles/what-are-terpenes [Last accessed on 2020 Jul 28].

 

  1. McPartland JM, Russo EB. Non-phytocannabinoid constituents of cannabis and herbal synergy. In: Handbook of Cannabis. Oxford: Oxford Univeristy Press; 2014. p. 280-295.

 

  1. Souza R, Cardoso M, Menezes C, Silva J, De Sousa D, Batista J. Gastroprotective activity of α-terpineol in two experimental models of gastric ulcer in rats. DARU. 2011;19(4):277-281.

 

  1. Vieira-Brock PL, Vaughan BM, Vollmer DL. Comparison of antimicrobial activities of natural essential oils and synthetic fragrances against selected environmental pathogens. Biochimie Open. 2017;5:8-13. doi: 10.1016/j.biopen.2017.09.001

 

  1. Delivering the Finest and Freshest Citrus for Over a Century. Available from: http://limoneira.com/lemons-in-traditional-chinese-medicine [Last accessed on 2023 Feb 07].

 

  1. Juniper Leaf Oil. Ayurvedic Oils. Available from: https:// ayurvedicoils.com/tag/ayurvedic-uses-of-juniper-leaf-oil [Last accessed on 2023 Feb 07].

 

  1. Juniper. Available from: https://herbshealthhappiness.com/ juniper.html [Last accessed on 2023 Feb 07].

 

  1. Nagdeve M. 14 Proven Benefits of Ashwagandha. Organic Facts. Available from: https://www.organicfacts.net/ health-benefits/herbs-and-spices/health-benefits-of-ashwagandha-or-indian-ginseng.html [Last accessed on 2023 Feb 07].

 

  1. Colbert M. Terpene Profile: Humulene. The Leaf Online. Available from: https://www.theleafonline.com/c/ science/2014/11/terpene-profile-humulene [Last accessed on 2023 Feb 07].

 

  1. Foundation W. Ginseng. Available from: https:// en.wikipedia.org/wiki/ginseng#uses [Last accessed on 2023 Feb 07].

 

  1. O’brien P. Garlic in Traditional Chinese Medicine. Available from: https://www.meridian-acupuncture-clinic. com/support-files/garlic-in-tcm.pdf [Last accessed on 2023 Feb 07].

 

  1. Moosa M. Ayurvedic Wonder Drug-Garlic. Health Benefits of Garlic. Available from: https://ayurveda-foryou.com/ health_articles/garlic_benefits.html [Last accessed on 2023 Feb 07].

 

  1. Kendall J. Ginger: An Ayurvedic Medicine Chest. Ginger in Ayurveda: Benefits and Uses. Maharishi AyurVeda. Available from: https://mapi.com/blogs/articles/ginger-an-ayurvedic-medicine-chest [Last accessed on 2023 Feb 07].

 

  1. Shalom E. Ginger in Ayurveda and Chinese Medicine. San Diego Acupuncture, Eyton Shalom, Body Mind Wellness Center. Available from: https://bodymindwellnesscenter. com/ginger-in-ayurveda-and-chinese-medicine [Last accessed on 2023 Feb 07].

 

  1. Ravindran P, Shylaja M, Babu KN, Krishnamoorthy B. Botany and crop improvement of cinnamon and cassia. In: Cinnamon and Cassia. Boca Raton: CRC Press; 2003. p. 30-95.

 

  1. Lowe H, Steele B, Bryant J, Toyang N, Ngwa W. Non-cannabinoid metabolites of Cannabis sativa L. with therapeutic potential. Plants (Basel). 2021;10(2):400. doi: 10.3390/plants10020400

 

  1. Andre CM, Larondelle Y, Evers D. Dietary antioxidants and oxidative stress from a human and plant perspective: A review. Curr Nutr Food Sc. 2010;6(1):2-12. doi: 10.2174/157340110790909563

 

  1. Gonçalves J, Rosado T, Soares S, et al. Cannabis and its secondary metabolites: Their use as therapeutic drugs, toxicological aspects, and analytical determination. Medicines (Basel). 2019;6(1):31. doi: 10.3390/medicines6010031

 

  1. Hammer KA, Carson CF. Antibacterial and antifungal activities of essential oils. In: Lipids and Essential oils as Antimicrobial Agents. Hoboken: John Wiley and Sons; 2011. p. 255-306.

 

  1. Tirapelli CR, Filho MAN, Bonaventura D, et al. Pimaradienoic acid inhibits vascular contraction and induces hypotension in normotensive rats. J Pharm Pharmacol. 2008;60(4):453-459. doi: 10.1211/jpp.60.4.0007

 

  1. Oliveira JR, Ribeiro GH, Rezende LF, Fraga-Silva RA. Plant terpenes on treating cardiovascular and metabolic disease: A review. Protein Pept Lett. 2021;28(7):750-760. doi: 10.2174/0929866528999210128210145

 

  1. Gonzalez-Burgos E, Gomez-Serranillos M. Terpene compounds in nature: A review of their potential antioxidant activity. Curr Med Chem. 2012;19(31):5319-5341. doi: 10.2174/092986712803833335

 

  1. Sánchez-Martínez JD, Bueno M, Alvarez-Rivera G, Tudela J, Ibañez E, Cifuentes A. In vitro neuroprotective potential of terpenes from industrial orange juice by-products. Food Funct. 2021;12(1):302-314. doi: 10.1039/d0fo02809f

 

  1. Sánchez-Martínez JD, Alvarez-Rivera G, Gallego R, et al. Neuroprotective potential of terpenoid-rich extracts from orange juice by-products obtained by pressurized liquid extraction. Food Chemi X. 2022;13:100242. doi: 10.1016/j.fochx.2022.100242

 

  1. Eddin LB, Jha NK, Meeran MN, Kesari KK, Beiram R, Ojha S. Neuroprotective potential of limonene and limonene containing natural products. Molecules. 2021;26(15):4535. doi: 10.3390/molecules26154535

 

  1. Price E. Researchers see Promising Results Using Cannabis Terpenes to Treat Covid-19. Forbes. Available from: https:// www.forbes.com/sites/emilyprice/2020/08/09/researchers-see-promising-results-using-cannabis-terpenes-to-treat-covid-19/?sh=4d021d574071 [Last accessed on 2023 Feb 07].

 

  1. Keyser Z. Israeli Study finds Efficacy in Using Cannabis Terpenes to Treat COVID-19. The Jerusalem Post. Available from: https://www.jpost.com/health-science/israeli-study-finds-efficacy-in-using-cannabis-terpenes-to-treat-covid-19-638198 [Last accessed on 2023 Feb 07].

 

  1. Tomko AM, Whynot EG, O’Leary LF, Dupré DJ. Anti-cancer potential of cannabis terpenes in a taxol-resistant model of breast cancer. Can J Physiol Pharmacol. 2022;100(8):806-817. doi: 10.1139/cjpp-2021-0792

 

  1. Miller JA, Pappan K, Thompson PA, et al. Plasma metabolomic profiles of breast cancer patients after short-term limonene intervention. Cancer Prev Res (Phila). 2015;8(1):86-93. doi: 10.1158/1940-6207.CAPR-14-0100

 

  1. Ye Z, Liang Z, Mi Q, Guo Y. Limonene terpenoid obstructs human bladder cancer cell (T24 cell line) growth by inducing cellular apoptosis, caspase activation, G2/M phase cell cycle arrest and stops cancer metastasis. J BUON. 2020;25:280-285.

 

  1. Hou J, Zhang Y, Zhu Y, et al. α-Pinene induces apoptotic cell death via caspase activation in human ovarian cancer cells. Med Sci Monit. 2019;25:6631-6638. doi: 10.12659/MSM.916419

 

  1. Zhao Y, Chen R, Wang Y, Yang Y. α-Pinene inhibits human prostate cancer growth in a mouse xenograft model. Chemotherapy. 2018;63(1):1-7. doi: 10.1159/000479863

 

  1. Chen H, Yuan J, Hao J, et al. α-Humulene inhibits hepatocellular carcinoma cell proliferation and induces apoptosis through the inhibition of Akt signaling. Food Chem Toxicol. 2019;134:110830. doi: 10.1016/j.fct.2019.110830

 

  1. Sobral MV, Xavier AL, Lima TC, de Sousa DP. Antitumor activity of monoterpenes found in essential oils. ScientificWorldJournal. 2014;2014:953451. doi: 10.1155/2014/953451

 

  1. Arul S, Rajagopalan H, Ravi J, Dayalan H. Beta-caryophyllene suppresses ovarian cancer proliferation by inducing cell cycle arrest and apoptosis. AntiCancer Agents Med Chem. 2020;20(13):1530-1537. doi: 10.2174/1871520620666200227093216

 

  1. Jia SS, Xi GP, Zhang M, et al. Induction of apoptosis by D-limonene is mediated by inactivation of Akt in LS174T human colon cancer cells. Oncol Rep. 2013;29(1):349-354. doi: 10.3892/or.2012.2093

 

  1. Iwasaki K, Zheng YW, Murata S, et al. Anticancer effect of linalool via cancer-specific hydroxyl radical generation in human colon cancer. World J Gastroenterol. 2016;22(44):9765-9774. doi: 10.3748/wjg.v22.i44.9765

 

  1. Sampath S, Subramani S, Janardhanam S, Subramani P, Yuvaraj A, Chellan R. Bioactive compound 1, 8-Cineole selectively induces G2/M arrest in A431 cells through the upregulation of the p53 signaling pathway and molecular docking studies. Phytomedicine. 2018;46:57-68. doi: 10.1016/j.phymed.2018.04.007

 

  1. Meng X, Dong X, Wang W, et al. Natural borneol enhances paclitaxel‐induced apoptosis of ESCC cells by inactivation of the PI3K/AKT. J Food Sci. 2018;83(5):1436-1443. doi: 10.1111/1750-3841.14143

 

  1. Murata S, Shiragami R, Kosugi C, et al. Antitumor effect of 1, 8-cineole against colon cancer. Oncol Rep. 2013;30(6):2647-2652. doi: 10.3892/or.2013.2763

 

  1. Rigo A, Vinante F. The antineoplastic agent α-bisabolol promotes cell death by inducing pores in mitochondria and lysosomes. Apoptosis. 2016;21:917-927. doi: 10.1007/s10495-016-1257-y

 

  1. Cavalieri E, Mariotto S, Fabrizi C, et al. α-Bisabolol, a nontoxic natural compound, strongly induces apoptosis in glioma cells. Biochem Biophys Res Commun. 2004;315(3):589-594. doi: 10.1016/j.bbrc.2004.01.088

 

  1. Rigo A, Ferrarini I, Bonalumi A, et al. Efficient lysis of B-chronic lymphocytic leukemia cells by the plant-derived sesquiterpene alcohol α-bisabolol, a dual proapoptotic and antiautophagic agent. Oncotarget. 2018;9(40):25877-25890. doi: 10.18632/oncotarget.25398

 

  1. Chang MY, Shieh DE, Chen CC, Yeh CS, Dong HP. Linalool induces cell cycle arrest and apoptosis in leukemia cells and cervical cancer cells through CDKIs. Int J Mol Sci. 2015;16(12):28169-28179. doi: 10.3390/ijms161226089

 

  1. Rao V, Menezes A, Viana G. Effect of myrcene on nociception in mice. J Pharm Pharmacol. 1990;42(12):877-878. doi: 10.1111/j.2042-7158.1990.tb07046.x

 

  1. Hempfy. Potential Health Benefits of Cannabis Terpenes. Available from: https://hempfy.com/blogs/articles/ cannabis-terpenes [Last accessed on 2023 Feb 07].

 

  1. The Essential Oil and Terpene Connection. Naturally Inspired®. Available from: https://naturallyinspiredcbd. com/naturally-inspired-content/learn-about-cbd/the-essential-oil-and-terpene-connection [Last accessed on 2023 Feb 07].

 

  1. Ambrosch S, Duliban C, Heger H, et al. Effects of 1,8‐ Cineole and (-)‐Linalool on functional brain activation in a working memory task. Flavour Fragr J. 2018;33(3):235-244. doi: 10.1002/ffj.3436

 

  1. Hashiesh HM, Meeran MN, Sharma C, Sadek B, Kaabi JA, Ojha SK. Therapeutic potential of β-caryophyllene: A dietary cannabinoid in diabetes and associated complications. Nutrients. 2020;12(10):2963. doi: 10.3390/nu12102963

 

  1. Shin M, Liu QF, Choi B, et al. Neuroprotective effects of limonene (+) against Aβ42-induced neurotoxicity in a Drosophila model of Alzheimer’s disease. Biol Pharm Bull. 2020;43(3):409-417. doi: 10.1248/bpb.b19-00495

 

  1. Salehi B, Upadhyay S, Erdogan Orhan I, et al. Therapeutic potential of α-and β-pinene: A miracle gift of nature. Biomolecules. 2019;9(11):738. doi: 10.3390/biom9110738

 

  1. Choi H-J. Chemical constituents of essential oils possessing anti-influenza A/WS/33 virus activity. Osong Public Health Res Perspect. 2018;9(6):348-353. doi: 10.24171/j.phrp.2018.9.6.09

 

  1. Held S, Schieberle P, Somoza V. Characterization of α-terpineol as an anti-inflammatory component of orange juice by in vitro studies using oral buccal cells. J Agric Food Chem. 2007;55(20):8040-8046. doi: 10.1021/jf071691m

 

  1. Ashokkumar K, Murugan M, Dhanya M, Raj S, Kamaraj D. Phytochemical variations among four distinct varieties of Indian cardamom Elettaria cardamomum (L.) Maton. Nat Prod Res. 2020;34(13):1919-1922. doi: 10.1080/14786419.2018.1561687

 

  1. Khaleel C, Tabanca N, Buchbauer G. α-Terpineol, a natural monoterpene: A review of its biological properties. Open Chem. 2018;16(1):349-361. doi: 10.1515/chem-2018-0040

 

  1. Quintans-Júnior LJ, Oliveira MG, Santana MF, et al. α-Terpineol reduces nociceptive behavior in mice. Pharm Biol. 2011;49(6):583-586. doi: 10.3109/13880209.2010.529616

 

  1. De Sousa DP, Junior EV, Oliveira FS, De Almeida RN, Nunes XP, Barbosa-Filho JM. Antinociceptive activity of structural analogues of rotundifolone: Structure-activity relationship. Z Naturforsch C J Biosci. 2007;62(1-2):39-42. doi: 10.1515/znc-2007-1-207

 

  1. De Sousa DP, Quintans L Jr., de Almeida RN. Evolution of the anticonvulsant activity of α-terpineol. Pharma Biol. 2007;45(1):69-70. doi: 10.1080/13880200601028388

 

  1. Gaggiotti S, Palmieri S, Della Pelle F, et al. Piezoelectric peptide-hpDNA based electronic nose for the detection of terpenes; Evaluation of the aroma profile in different Cannabis sativa L.(hemp) samples. Sens Actuators B Chem. 2020;308:127697. doi: 10.1016/j.snb.2020.127697

 

  1. Sharma C, Al Kaabi JM, Nurulain SM, Goyal SN, Amjad Kamal M, Ojha S. Polypharmacological properties and therapeutic potential of β-caryophyllene: A dietary phytocannabinoid of pharmaceutical promise. Curr Pharm Design. 2016;22(21):3237-3264. doi: 10.2174/1381612822666160311115226

 

  1. Hanuš LO, Hod Y. Terpenes/terpenoids in cannabis: Are they important? Med Cannabis Cannabinoids. 2020;3(1):25-60. doi: 10.1159/000509733

 

  1. Francomano F, Caruso A, Barbarossa A, et al. β-Caryophyllene: A sesquiterpene with countless biological properties. Appl Sci. 2019;9(24):5420. doi: 10.3390/app9245420

 

  1. Valente J, Zuzarte M, Gonçalves M, et al. Antifungal, antioxidant and anti-inflammatory activities of Oenanthe crocata L. essential oil. Food Chem Toxicol. 2013;62:349-354. doi: 10.1016/j.fct.2013.08.083

 

  1. Cavaleiro C, Salgueiro L, Gonçalves MJ, Hrimpeng K, Pinto J, Pinto E. Antifungal activity of the essential oil of Angelica major against Candida, Cryptococcus, Aspergillus and dermatophyte species. J Nat Med. 2015;69:241-248. doi: 10.1007/s11418-014-0884-2

 

  1. Golfakhrabadi F, Khanavi M, Ostad SN, et al. Biological activities and composition of Ferulago carduchorum essential oil. J Arthropod Borne Dis. 2015;9(1):104-115.

 

  1. Kim MJ, Yang KW, Kim SS, et al. Chemical composition and anti-inflammation activity of essential oils from Citrus unshiu flower. Nat Prod Commun. 2014;9(5):727-730.

 

  1. Loizzo MR, Saab AM, Tundis R, et al. Phytochemical analysis and in vitro antiviral activities of the essential oils of seven Lebanon species. Chem Biodivers. 2008;5(3):461-470. doi: 10.1002/cbdv.200890045

 

  1. Aizpurua-Olaizola O, Elezgarai I, Rico-Barrio I, Zarandona I, Etxebarria N, Usobiaga A. Targeting the endocannabinoid system: Future therapeutic strategies. Drug Discov Today. 2017;22(1):105-110. doi: 10.1016/j.drudis.2016.08.005

 

  1. Salzet M, Stefano G. The endocannabinoid system in invertebrates. Prostaglandins Leukot Essent Fatty Acids. 2002;66(2-3):353-361. doi: 10.1054/plef.2001.0347

 

  1. Battista N, Di Tommaso M, Bari M, Maccarrone M. The endocannabinoid system: An overview. Front Behav Neurosci. 2012;6:9. doi: 10.3389/fnbeh.2012.00009

 

  1. Di Marzo V. The endocannabinoid system: Its general strategy of action, tools for its pharmacological manipulation and potential therapeutic exploitation. Pharmacol Res. 2009;60(2):77-84. doi: 10.1016/j.phrs.2009.02.010

 

  1. Marzo VD, Bifulco M, Petrocellis LD. The endocannabinoid system and its therapeutic exploitation. Nat Rev Drug Discov. 2004;3(9):771-784. doi: 10.1038/nrd1495

 

  1. Pacher P, Bátkai S, Kunos G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev. 2006;58(3):389-462. doi: 10.1124/pr.58.3.2

 

  1. Eid BG. Cannabinoids for treating cardiovascular disorders: Putting together a complex puzzle. J Microsc Ultrastruct. 2018;6(4):171-176. doi: 10.4103/JMAU.JMAU_42_18

 

  1. Mendizabal VE, Adler‐Graschinsky E. Cannabinoids as therapeutic agents in cardiovascular disease: A tale of passions and illusions. Br J Pharmacol. 2007;151(4):427-440. doi: 10.1038/sj.bjp.0707261

 

  1. Piomelli D. The endocannabinoid system: A drug discovery perspective. Curr Opin Investig Drugs. 2005;6(7):672-679.

 

  1. Nazzaro F, Fratianni F, Coppola R, De Feo V. Essential oils and antifungal activity. Pharmaceuticals (Basel). 2017;10(4):86. doi: 10.3390/ph10040086

 

  1. Wang CY, Chen YW, Hou CY. Antioxidant and antibacterial activity of seven predominant terpenoids. Int J Food Prop. 2019;22(1):230-238. doi: 10.1080/10942912.2019.1582541

 

  1. Achika J, Ayo R, Habila J, Oyewale A. Terpenes with antimicrobial and antioxidant activities from Lannea humilis (Oliv.). Sci Afr. 2020;10:e00552. doi: 10.1016/j.sciaf.2020.e00552

 

  1. Sieniawska E, Swatko-Ossor M, Sawicki R, Skalicka-Woźniak K, Ginalska G. Natural terpenes influence the activity of antibiotics against isolated Mycobacterium tuberculosis. Med Princ Pract. 2017;26(2):108-112. doi: 10.1159/000454680

 

  1. Park YJ, Baskar TB, Yeo SK, et al. Composition of volatile compounds and in vitro antimicrobial activity of nine Mentha spp. Springerplus. 2016;5:1628. doi: 10.1186/s40064-016-3283-1

 

  1. Pattnaik S, Subramanyam VR, Bapaji M, Kole CR. Antibacterial and antifungal activity of aromatic constituents of essential oils. Microbios. 1997;89(358):39-46.

 

  1. Osawa K, Saeki T, Yasuda H, Hamashima H, Sasatsu M, Arai T. The antibacterial activities of peppermint oil and green tea polyphenols, alone and in combination, against Enterohemorrhagic Escherichia coil. Biocontrol Sci. 1999;4(1):1-7. doi: 10.4265/bio.4.1

 

  1. Inouye S, Takizawa T, Yamaguchi H. Antibacterial activity of essential oils and their major constituents against respiratory tract pathogens by gaseous contact. J Antimicrob Chemother. 2001;47(5):565-573. doi: 10.1093/jac/47.5.565

 

  1. Trombetta D, Castelli F, Sarpietro MG, et al. Mechanisms of antibacterial action of three monoterpenes. Antimicrob Agents Chemother. 2005;49(6):2474-2478. doi: 10.1128/AAC.49.6.2474-2478.2005

 

  1. Esmael A, Hassan MG, Amer MM, et al. Antimicrobial activity of certain natural-based plant oils against the antibiotic-resistant acne bacteria. Saudi J Biol Sci. 2020;27(1):448-455. doi: 10.1016/j.sjbs.2019.11.006

 

  1. GSK Consumer Healthcare. Global Pain Index Report; 2020. Available from: https://www.gsk.com/media/6351/2020- global-plain-index-report.pdf [Last accessed on 2023 Feb 07].

 

  1. Gouveia DN, Pina LT, Rabelo TK, da Rocha Santos WB, Quintans JSS, Guimaraes AG. Monoterpenes as perspective to chronic pain management: A systematic review. Curr Drug Targets. 2018;19(8):960-972. doi: 10.2174/1389450118666170711145308

 

  1. De Sousa DP. Analgesic-like activity of essential oils constituents. Molecules. 2011;16(3):2233-2252. doi: 10.3390/molecules16032233

 

  1. Bispo M, Mourão R, Franzotti E, et al. Antinociceptive and antiedematogenic effects of the aqueous extract of Hyptis pectinata leaves in experimental animals. J Ethnopharmacol. 2001;76(1):81-86. doi: 10.1016/s0378-8741(01)00172-6

 

  1. Menezes IA, Marques MS, Santos TC, et al. Antinociceptive effect and acute toxicity of the essential oil of Hyptis fruticosa in mice. Fitoterapia. 2007;78(3):192-195. doi: 10.1016/j.fitote.2006.11.020

 

  1. Dantas MC, De Oliveira FS, Bandeira SM, et al. Central nervous system effects of the crude extract of Erythrina velutina on rodents. J Ethnopharmacol. 2004;94(1):129-133. doi: 10.1016/j.jep.2004.05.007

 

  1. Singh O, Khanam Z, Misra N, Srivastava M. Chamomile (Matricaria chamomilla L.): An overview. Pharmacogn Rev. 2011;5(9):82-95. doi: 10.4103/0973-7847.79103

 

  1. Elisabetsky E, Coelho de Souza G, Dos Santos MC, Siquieira IR, Amador TA, Nunes DS. Sedative properties of linalool. Fitoterapia. 1995;66(5):407-414.

 

  1. Do Amaral JF, Silva MIG, de Aquino Neto MRA, et al. Antinociceptive effect of the monoterpene R-(+)-limonene in mice. Biol Pharm Bull. 2007;30(7):1217-1220. doi: 10.1248/bpb.30.1217

 

  1. Santos F, Rao V. Antiinflammatory and antinociceptive effects of 1,8‐cineole a terpenoid oxide present in many plant essential oils. Phytother Res. 2000;14(4):240-244. doi: 10.1002/1099-1573(200006)14::4<240:aid-ptr573>3.0.co;2-x

 

  1. Liapi C, Anifandis G, Chinou I, Kourounakis A, Theodosopoulos S, Galanopoulou P. Antinociceptive properties of 1,8-cineole and beta-pinene, from the essential oil of Eucalyptus camaldulensis Leaves, in Rodents. Planta Med. 2008;74(7):789 doi: 10.1055/s-2008-1074563

 

  1. Parenti A, De Logu F, Geppetti P, Benemei S. What is the evidence for the role of TRP channels in inflammatory and immune cells? Br J Pharmacol. 2016;173(6):953-969. doi: 10.1111/bph.13392

 

  1. Park SH, Sim YB, Lee JK, et al. The analgesic effects and mechanisms of orally administered eugenol. Arch Pharm Res. 2011;34:501-507. doi: 10.1007/s12272-011-0320-z

 

  1. Ohkubo T, Shibata M. The selective capsaicin antagonist capsazepine abolishes the antinociceptive action of eugenol and guaiacol. J Dent Res. 1997;76(4):848-851. doi: 10.1177/00220345970760040501

 

  1. Lee MH, Yeon KY, Park CK, et al. Eugenol inhibits calcium currents in dental afferent neurons. J Dent Res. 2005;84(9):848-851. doi: 10.1177/154405910508400913

 

  1. Peana AT, Rubattu P, Piga GG, et al. Involvement of adenosine A1 and A2A receptors in (-)-linalool-induced antinociception. Life Sci. 2006;78(21):2471-2474. doi: 10.1016/j.lfs.2005.10.025

 

  1. Perri F, Coricello A, Adams JD. Monoterpenoids: The next frontier in the treatment of chronic pain? J. 2020;3(2):195-214. doi: 10.3390/j3020016

 

  1. De Almeida RN, Araújo DAM, Gonçalves JCR, et al. Rosewood oil induces sedation and inhibits compound action potential in rodents. J Ethnopharmacol. 2009;124(3):440-443. doi: 10.1016/j.jep.2009.05.044

 

  1. Peana AT, D’Aquila, PS, Chessa ML, Moretti MDL, Serra G, Pippia P. (-)-Linalool produces antinociception in two experimental models of pain. Eur J Pharmacol. 2003;460(1):37-41. doi: 10.1016/s0014-2999(02)02856-x

 

  1. Peana AT, Marzocco S, Popolo A, Pinto A. (-)-Linalool inhibits in vitro NO formation: Probable involvement in the antinociceptive activity of this monoterpene compound. Life Sci. 2006;78(7):719-723. doi: 10.1016/j.lfs.2005.05.065

 

  1. Peana AT, De Montis MG, Nieddu E, Spano MT, D’Aquila, PS, Pippia P. Profile of spinal and supra-spinal antinociception of (-)-linalool. Eur J Pharmacol. 2004;485(1-3):165-174. doi: 10.1016/j.ejphar.2003.11.066

 

  1. Galeotti N, Di Cesare Mannelli, L, Mazzanti G, Bartolini A, Ghelardini C. Menthol: A natural analgesic compound. Neurosci Lett. 2002;322(3):145-148. doi: 10.1016/s0304-3940(01)02527-7

 

  1. Beer AM, Lukanov J, Sagorchev P. Effect of thymol on the spontaneous contractile activity of the smooth muscles. Phytomedicine. 2007;14(1):65-69. doi: 10.1016/j.phymed.2006.11.010

 

  1. Siqueira-Lima PS, Passos FR, Lucchese AM, et al. Central nervous system and analgesic profiles of Lippia genus. Rev Bras Farmacogn. 2019;29:125-135. doi: 10.1016/j.bjp.2018.11.006

 

  1. Haeseler G, Maue D, Grosskreutz J, et al. Voltage-dependent block of neuronal and skeletal muscle sodium channels by thymol and menthol. Eur J Anaesthesiol. 2002;19(8):571-579. doi: 10.1017/s0265021502000923

 

  1. Elliott AA, Elliott JR. Voltage-dependent inhibition of RCK1 K+ channels by phenol, p-cresol, and benzyl alcohol. Mol Pharmacol. 1997;51(3):475-483.

 

  1. Mohammadi B, Haeseler G, Leuwer M, Dengler R, Krampfl K, Bufler J. Structural requirements of phenol derivatives for direct activation of chloride currents via GABAA receptors. Eur J Pharmacol. 2001;421(2):85-91. doi: 10.1016/S0014-2999(01)01033-0

 

  1. Salminen A, Lehtonen M, Suuronen T, Kaarniranta K, Huuskonen J. Terpenoids: Natural inhibitors of NF-κB signaling with anti-inflammatory and anticancer potential. Cell Mol Life Sci. 2008;65:2979-2999. doi: 10.1007/s00018-008-8103-5

 

  1. George CRP. From Fahrenheit to cytokines: Fever, inflammation and the kidney. J Nephrol. 2006;19:S88-97.

 

  1. Prakash V. Terpenoids as source of anti-inflammatory compounds. Asian J Pharm Clin Res. 2017;10(3):68-76. doi: 10.22159/ajpcr.2017.v10i3.16435

 

  1. De las Heras B, Hortelano S. Molecular basis of the anti-inflammatory effects of terpenoids. Inflamm Allergy Drug Targets. 2009;8(1):28-39. doi: 10.2174/187152809787582534

 

  1. Park MH, Hong JT. Roles of NF-κB in cancer and inflammatory diseases and their therapeutic approaches. Cells. 2016;5(2):15. doi: 10.3390/cells5020015

 

  1. Marques FM, Figueira MM, Schmitt EFP, et al. In vitro anti-inflammatory activity of terpenes via suppression of superoxide and nitric oxide generation and the NF-κB signalling pathway. Inflammopharmacology. 2019;27:281-289. doi: 10.1007/s10787-018-0483-z

 

  1. Yoon WJ, Lee NH, Hyun CG. Limonene suppresses lipopolysaccharide-induced production of nitric oxide, prostaglandin E2, and pro-inflammatory cytokines in RAW 264.7 macrophages. J Oleo Sci. 2010;59(8):415-421. doi: 10.5650/jos.59.415

 

  1. Huo M, Cui X, Xue J, et al. Anti-inflammatory effects of linalool in RAW 264.7 macrophages and lipopolysaccharide-induced lung injury model. J Surg Res. 2013;180(1):e47-e54. doi: 10.1016/j.jss.2012.10.050

 

  1. De Christo Scherer MM, Marques FM, Figueira MM, et al. Wound healing activity of terpinolene and α-phellandrene by attenuating inflammation and oxidative stress in vitro. J Tissue Viability. 2019;28(2):94-99. doi: 10.1016/j.jtv.2019.02.003

 

  1. Li F, Zhang J, Lin M, et al. Anti-inflammatory terpenes from Schefflera rubriflora C. J. Tseng & G. Hoo with their TNF-α and IL-6 inhibitory activities. Phytochemistry. 2019;163:23-32. doi: 10.1016/j.phytochem.2019.03.021

 

  1. D’alessio PA, Ostan R, Bisson JF, Schulzke JD, Ursini MV, Béné MC. Oral administration of d-limonene controls inflammation in rat colitis and displays anti-inflammatory properties as diet supplementation in humans. Life Sci. 2013;92(24-26):1151-1156. doi: 10.1016/j.lfs.2013.04.013

 

  1. Xin Q, Yuan R, Shi W, Zhu Z, Wang Y, Cong W. A review for the anti-inflammatory effects of paeoniflorin in inflammatory disorders. Life Sci. 2019;237:116925. doi: 10.1016/j.lfs.2019.116925

 

  1. Lemanske RF Jr., Busse WW. Asthma: Clinical expression and molecular mechanisms. J Allergy Clin Immunol. 2010;125(2):S95-S102. doi: 10.1016/j.jaci.2009.10.047

 

  1. Kim T, Song B, Cho KS, Lee I-S. Therapeutic potential of volatile terpenes and terpenoids from forests for inflammatory diseases. Int J Mol Sci. 2020;21(6):2187. doi: 10.3390/ijms21062187

 

  1. Singh S, Singh TG, Mahajan K, Dhiman S. Medicinal plants used against various inflammatory biomarkers for the management of rheumatoid arthritis. J Pharm Pharmacol. 2020;72(10):1306-1327. doi: 10.1111/jphp.13326

 

  1. Zhang L, Wei W. Anti-inflammatory and immunoregulatory effects of paeoniflorin and total glucosides of paeony. Pharmacol Ther. 2020;207:107452. doi: 10.1016/j.pharmthera.2019.107452

 

  1. Wang KS, Li J, Wang Z, et al. Artemisinin inhibits inflammatory response via regulating NF-κB and MAPK signaling pathways. Immunopharmacol Immunotoxicol. 2017;39(1):28-36. doi: 10.1080/08923973.2016.1267744

 

  1. Ma J, Xu H, Wu J, Qu C, Sun F, Xu S. Linalool inhibits cigarette smoke-induced lung inflammation by inhibiting NF-κB activation. Int Immunopharmacol. 2015;29(2):708-713. doi: 10.1016/j.intimp.2015.09.005

 

  1. Lawrence T. The nuclear factor NF-κB pathway in inflammation. Cold Spring Harb Perspect Biol. 2009;1(6):a001651. doi: 10.1101/cshperspect.a001651

 

  1. Li XJ, Yang YJ, Li YS, Zhang WK, Tang HB. α-Pinene, linalool, and 1-octanol contribute to the topical anti-inflammatory and analgesic activities of frankincense by inhibiting COX-2. J Ethnopharmacol. 2016;179:22-26. doi: 10.1016/j.jep.2015.12.039

 

  1. De Cássia da Silveira e Sá R, Andrade LN, de Sousa DP. A review on anti-inflammatory activity of monoterpenes. Molecules. 2013;18(1):1227-1254. doi: 10.3390/molecules18011227

 

  1. Bachheti RK, Worku LA, Gonfa YH, et al. Prevention and treatment of cardiovascular diseases with plant phytochemicals: A review. Evid Based Complement Alternat Med. 2022;2022:5741198. doi: 10.1155/2022/5741198

 

  1. Zhang R, Han D, Li Z, et al. Ginkgolide C alleviates myocardial ischemia/reperfusion-induced inflammatory injury via inhibition of CD40-NF-κB pathway. Front Pharmacol. 2018;9:109. doi: 10.3389/fphar.2018.00109

 

  1. Cho KS, Lim YR, Lee K, Lee J, Lee JH, Lee IS. Terpenes from forests and human health. Toxicol Res. 2017;33:97-106. doi: 10.5487/TR.2017.33.2.097

 

  1. Kim DS, Lee HJ, Jeon YD, et al. Alpha-pinene exhibits anti-inflammatory activity through the suppression of MAPKs and the NF-κB pathway in mouse peritoneal macrophages. Am J Chin Med. 2015;43(4):731-742. doi: 10.1142/S0192415X15500457

 

  1. Li Y, Lv O, Zhou F, Li Q, Wu Z, Zheng Y. Linalool inhibits LPS-induced inflammation in BV2 microglia cells by activating Nrf2. Neurochem Res. 2015;40:1520-1525. doi: 10.1007/s11064-015-1629-7

 

  1. Del Prado-Audelo ML, Cortés H, Caballero-Florán IH, et al. Therapeutic applications of terpenes on inflammatory diseases. Front Pharmacol. 2021;12:704197. doi: 10.3389/fphar.2021.704197

 

  1. Games E, Guerreiro M, Santana FR, et al. Structurally related monoterpenes p-cymene, carvacrol and thymol isolated from essential oil from leaves of Lippia sidoides Cham. (Verbenaceae) protect mice against elastase-induced emphysema. Molecules. 2016;21(10):1390. doi: 10.3390/molecules21101390

 

  1. Zhang Y, Huang X, Chen H, et al. Discovery of anti-inflammatory terpenoids from Mallotus conspurcatus croizat. J Ethnopharmacol. 2019;231:170-178. doi: 10.1016/j.jep.2018.11.002

 

  1. Karthikeyan R, Kanimozhi G, Prasad NR, Agilan B, Ganesan M, Srithar G. Alpha pinene modulates UVA-induced oxidative stress, DNA damage and apoptosis in human skin epidermal keratinocytes. Life Sci. 2018;212:150-158. doi: 10.1016/j.lfs.2018.10.004

 

  1. Lorigooini Z, Boroujeni SN, Sayyadi-Shahraki M, Rahimi- Madiseh M, Bijad E, Amini-Khoei H. Limonene through attenuation of neuroinflammation and nitrite level exerts antidepressant-like effect on mouse model of maternal separation stress. Behav Neurol. 2021;2021:8817309. doi: 10.1155/2021/8817309

 

  1. World Health Organization. WHO Mental Disorders. Available from: https://www.who.int/news-room/ fact-sheets/detail/mental-disorders [Last accessed on 2023 Mar 21].

 

  1. Rehm J, Shield KD. Global burden of disease and the impact of mental and addictive disorders. Curr Psychiatry Rep. 2019;21:10. doi: 10.1007/s11920-019-0997-0

 

  1. World Health Organization. WHO World Mental Health Day: An Opportunity to Kick-Start a Massive Scale-Up in Investment in Mental Health. Available from: https://www. who.int/news/item/27-08-2020-world-mental-health-day-an-opportunity-to-kick-start-a-massive-scale-up-in-investment-in-mental-health [Last accessed on 2023 Feb 07].

 

  1. Ritchie H, Roser, M. Mental Health. Available from: https:// ourworldindata.org/mental-health [Last accessed on 2023 Mar 24].

 

  1. Fedotova J, Kubatka P, Büsselberg D, et al. Therapeutical strategies for anxiety and anxiety-like disorders using plant-derived natural compounds and plant extracts. Biomed Pharmacother. 2017;95:437-446. doi: 10.1016/j.biopha.2017.08.107

 

  1. Ferber SG, Namdar D, Hen-Shoval D, et al. The “entourage effect”: Terpenes coupled with cannabinoids for the treatment of mood disorders and anxiety disorders. Curr Neuropharmacol. 2020;18(2):87-96. doi: 10.2174/1570159X17666190903103923

 

  1. Li D, Ilnytskyy Y, Ghasemi Gojani E, Kovalchuk O, Kovalchuk I. Analysis of anti-cancer and anti-inflammatory properties of 25 high-THC cannabis extracts. Molecules. 2022;27(18):6057. doi: 10.3390/molecules27186057

 

  1. Stack SK, Wheate NJ, Schubert EA. Medicinal cannabis for the treatment of anxiety disorders: A narrative review. Curr Treat Options Psychiatry. 2022;9(3):163-173. doi: 10.1007/s40501-022-00260-8

 

  1. Agatonovic-Kustrin S, Kustrin E, Gegechkori V, Morton D. Anxiolytic terpenoids and aromatherapy for anxiety and depression. Adv Exp Med Biol. 2020;1260:283-296. doi: 10.1007/978-3-030-42667-5_11

 

  1. Buskirk EV. Using Terpenes for Anxiety? Here’s what the Science Says. True Blue. Available from: https://www.true-blue.co/blogs/news/using-terpenes-for-anxiety-here-s-what-the-science-says [Last accessed on 2023 Feb 07].

 

  1. Souto-Maior FN, de Carvalho FL, de Morais LCS, Netto SM, de Sousa DP, de Almeida RN. Anxiolytic-like effects of inhaled linalool oxide in experimental mouse anxiety models. Pharmacol Biochem Behav. 2011;100(2):259-263. doi: 10.1016/j.pbb.2011.08.029

 

  1. Linck VdM, da Silva AL, Figueiró M, Caramao EB, Moreno PRH, Elisabetsky E. Effects of inhaled Linalool in anxiety, social interaction and aggressive behavior in mice. Phytomedicine. 2010;17(8-9):679-683. doi: 10.1016/j.phymed.2009.10.002

 

  1. Caputo L, Reguilon MD, Mińarro J, De Feo V, Rodriguez- Arias M. Lavandula angustifolia essential oil and linalool counteract social aversion induced by social defeat. Molecules. 2018;23(10):2694. doi: 10.3390/molecules23102694

 

  1. Malcolm BJ, Tallian K. Essential oil of lavender in anxiety disorders: Ready for prime time? Mental Health Clin. 2017;7(4):147-155. doi: 10.9740/mhc.2017.07.147

 

  1. Cline M, Taylor JE, Flores J, Bracken S, McCall S, Ceremuga TE. Investigation of the anxiolytic effects of linalool, a lavender extract, in the male Sprague-Dawley rat. AANA J. 2008;76(1):47-52.

 

  1. Harada H, Kashiwadani H, Kanmura Y, Kuwaki T. Linalool odor-induced anxiolytic effects in mice. Front Behav Neurosci. 2018;12:241. doi: 10.3389/fnbeh.2018.00241

 

  1. Lima NGP, De Sousa DP, Pimenta FCF, et al. Anxiolytic-like activity and GC-MS analysis of (R)-(+)-limonene fragrance, a natural compound found in foods and plants. Pharmacol Biochem Behav. 2013;103(3):450-454. doi: 10.1016/j.pbb.2012.09.005

 

  1. Medeiros KAA, Dos Santos JR, de S Melo TC, et al. Depressant effect of geraniol on the central nervous system of rats: Behavior and ECoG power spectra. Biomed J. 2018;41(5):298-305. doi: 10.1016/j.bj.2018.08.008

 

  1. Bahi A, Al Mansouri S, Al Memari E, Al Ameri M, Nurulain SM, Ojha S. β-Caryophyllene, a CB2 receptor agonist produces multiple behavioral changes relevant to anxiety and depression in mice. Physiol Behav. 2014;135:119-124. doi: 10.1016/j.physbeh.2014.06.003

 

  1. Stojanović NM, Mladenović MZ, Maslovarić A, Stojiljković NI, Randjelović PJ, Radulović NS. Lemon balm (Melissa officinalis L.) essential oil and citronellal modulate anxiety-related symptoms-In vitro and in vivo studies. J Ethnopharmacol. 2022;284:114788. doi: 10.1016/j.jep.2021.114
Share
Back to top
INNOSC Theranostics and Pharmacological Sciences, Electronic ISSN: 2705-0823 Print ISSN: 2705-0734, Published by AccScience Publishing