AccScience Publishing / ITPS / Volume 8 / Issue 4 / DOI: 10.36922/ITPS025260039
REVIEW ARTICLE

Nanomedicine in bone healing: A review of innovative silver nanoparticle therapies and theranostic advances

Paula V. Messina1*
Show Less
1 Department of Chemistry, Southern Chemistry Institute–National Scientific and Technical Research Council (INQUISUR-CONICET), National University of The South, Bahía Blanca, Buenos Aires, Argentina
INNOSC Theranostics and Pharmacological Sciences 2025, 8(4), 25–52; https://doi.org/10.36922/ITPS025260039
Received: 27 June 2025 | Revised: 22 November 2025 | Accepted: 28 November 2025 | Published online: 16 December 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Nanomedicine, at the convergence of nanotechnology and medicine, holds transformative potential for bone healing through advanced diagnostic and therapeutic strategies. Among various nanomaterials, silver nanoparticles (AgNPs) have gained attention due to their broad-spectrum antimicrobial, anti-inflammatory, and anticancer properties. This review examines the principles of nanomedicine and theranostics, AgNP synthesis methods and physicochemical characteristics, and their application in bone regeneration for infection control, scaffold design, osteoinduction, and angiogenesis. The integration of AgNPs into theranostic platforms for simultaneous therapy and imaging is critically evaluated, highlighting modalities such as micro-computed tomography, magnetic resonance imaging, and photoacoustic imaging. The preclinical and early clinical evidence is analyzed, addressing critical limitations including toxicity, biocompatibility, pharmacokinetics, manufacturing reproducibility, and regulatory hurdles. This review outlines future trends, such as green synthesis, stimuli-responsive systems, and personalized scaffolds. A comprehensive understanding of these multidimensional facets is crucial for advancing AgNP-based nanomedicine from the bench to the bedside in bone healing applications.

Graphical abstract
Keywords
Bone defects
Tissue imaging
Personalized medicine
Antimicrobial scaffolds
Photothermal therapy
Bone regeneration
Funding
The author acknowledges the financial support of the National University of the South (PGI 24/Q131), the National Scientific and Technical Research Council (CONICET; PIP 11220210100126CO), and the National Agency for the Promotion of Science and Technology (PICT-2021-I-A-00108). P.V.M. is a principal researcher of CONICET.
Conflict of interest
The author declares no conflict of interest.
References
  1. Zhu G, Zhang T, Chen M, et al. Bone physiological microenvironment and healing mechanism: Basis for future bone-tissue engineering scaffolds. Bioact. Mater. 2021;6(11):4110-4140. doi: 10.1016/j.bioactmat.2021.03.043

 

  1. Koons GL, Diba M, Mikos AG. Materials design for bone-tissue engineering. Nat Rev Mater. 2020;5(8):584-603. doi: 10.1038/s41578-020-0204-2

 

  1. Stahl A, Yang YP. Regenerative approaches for the treatment of large bone defects. Tissue Eng Part B Res. 2021;27(6):539-547. doi: 10.1089/ten.TEB.2020.0281

 

  1. Santoro A, Voto A, Fortino L, et al. Bone defect treatment in regenerative medicine: Exploring natural and synthetic bone substitutes. Int J Mol Sci. 2025;26(7):3085. doi: 10.3390/ijms26073085

 

  1. Robinson PG, Abrams GD, Sherman SL, Safran MR, Murray IR. Autologous bone grafting. Oper Tech Sports Med. 2020;28(4):150780. doi: 10.1016/j.otsm.2020.150780

 

  1. Baldwin P, Li DJ, Auston DA, Mir HS, Yoon RS, Koval KJ. Autograft, allograft, and bone graft substitutes: Clinical evidence and indications for use in the setting of orthopaedic trauma surgery. J Orthop Trauma. 2019;33(4):203-213. doi: 10.1097/BOT.0000000000001420

 

  1. Behzadi S, Luther GA, Harris MB, Farokhzad OC, Mahmoudi M. Nanomedicine for safe healing of bone trauma: Opportunities and challenges. Biomaterials. 2017;146:168-182. doi: 10.1016/j.biomaterials.2017.09.005

 

  1. Nobile S, Nobile L. Nanotechnology for biomedical applications: Recent advances in neurosciences and bone tissue engineering. Polym Eng Sci. 2017;57(7):644-650. doi: 10.1002/pen.24595

 

  1. Zhou J, Zhang Z, Joseph J, et al. In: Biomaterials and Nanomedicine for Bone Regeneration: Progress and Future Prospects, Exploration. United States: Wiley Online Library; 2021. doi: 10.1002/EXP.20210011

 

  1. Venegas KR, Gómez MA, Garre MC, Sánchez AG, Contreras-Ortega C, Hernández MAC. Pharmacogenetics of osteoporosis: Towards novel theranostics for personalized medicine? OMICS. 2012;16(12):638-651. doi: 10.1089/omi.2011.0150

 

  1. Ackun-Farmmer MA, Overby CT, Haws BE, Choe R, Benoit DS. Biomaterials for orthopedic diagnostics and theranostics. Curr Opin Biomed Eng. 2021;19:100308. doi: 10.1016/j.cobme.2021.100308

 

  1. Bilgin GB, Bilgin C, Burkett BJ, et al. Theranostics and artificial intelligence: New frontiers in personalized medicine. Theranostics. 2024;14(6):2367-2378. doi: 10.7150/thno.94788

 

  1. Gherasim O, Puiu RA, Bîrcă AC, Burdușel AC, Grumezescu AM. An updated review on silver nanoparticles in biomedicine. Nanomaterials (Basel). 2020;10(11):2318. doi: 10.3390/nano10112318

 

  1. Liu H, Li P, Tang Z, et al. Study on injectable silver-incorporated calcium phosphate composite with enhanced antibacterial and biomechanical properties for fighting bone cement-associated infections. Colloids Surf B Biointerfaces. 2023;227:113382. doi: 10.1016/j.colsurfb.2023.113382

 

  1. Damle A, Sundaresan R, Rajwade JM, Srivastava P, Naik A. A concise review on implications of silver nanoparticles in bone tissue engineering. Biomater Adv. 2022;141:213099. doi: 10.1016/j.bioadv.2022.213099

 

  1. Hadi S, Omar O. Antibacterial effect and biocompatibility of silver nanoparticle-coated bone allograft substitutes. Cell Mol Biol. 2024;70(3):67-77. doi: 10.14715/cmb/2024.70.3.10

 

  1. Pistonesi DB, Belén F, Ruso JM, et al. NIR-responsive nano-holed titanium alloy surfaces: A photothermally activated antimicrobial biointerface. J Mater Chem B. 2024;12(36):8993-9004. doi: 10.1039/D4TB01307G

 

  1. Burdușel AC, Gherasim O, Andronescu E, Grumezescu AM, Ficai A. Inorganic nanoparticles in bone healing applications. Pharmaceutics. 2022;14(4):770. doi: 10.3390/pharmaceutics14040770

 

  1. Messina P, Luciano B, Placente D. Tomorrow’s Healthcare by Nano-sized Approaches: A Bold Future for Medicine. Boca Raton: CRC Press; 2020.

 

  1. Gu N, Sheng J. Introduction to nanomedicine. In: Gu N, editor. Nanomedicine. Singapore: Springer Nature Singapore; 2020. p. 1-14.

 

  1. Rial R, Liu Z, Messina P, Ruso JM. Role of nanostructured materials in hard tissue engineering. Adv Colloid Interface Sci. 2022;304:102682. doi: 10.1016/j.cis.2022.102682

 

  1. Rivero PS, Pistonesi DB, Belén F, et al. Impact of nanosilver surface electronic distributions on serum protein interactions and hemocompatibility. Nanotechnology. 2024;35(46):465103. doi: 10.1088/1361-6528/ad6ce2

 

  1. Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: An updated review. Pharmaceutics (Basel). 2017;9(2):12. doi: 10.3390/pharmaceutics9020012

 

  1. Desai N. Nanoparticle albumin-bound paclitaxel (Abraxane®). In: Albumin in Medicine: Pathological and Clinical Applications. Berlin: Springer; 2016. p. 101-119.

 

  1. Lombardo D, Kiselev MA, Caccamo MT. Smart nanoparticles for drug delivery application: Development of versatile nanocarrier platforms in biotechnology and nanomedicine. J Nanomat. 2019;2019(1):3702518. doi: 10.1155/2019/3702518

 

  1. Yetisgin AA, Cetinel S, Zuvin M, Kosar A, Kutlu O. Therapeutic nanoparticles and their targeted delivery applications. Molecules. 2020;25(9):2193. doi: 10.3390/molecules25092193

 

  1. Reinsalu O, Ernits M, Linko V. Liposome-based hybrid drug delivery systems with DNA nanostructures and metallic nanoparticles. Expert Opin Drug Deliv. 2024;21(6):905-920. doi: 10.1080/17425247.2024.2375389

 

  1. Wang J, Zhao Y, Nie G. Intelligent nanomaterials for cancer therapy: Recent progresses and future possibilities. Med Rev (2021). 2023;3(4):321-342. doi: 10.1515/mr-2023-0028

 

  1. Yang Y, Jeon Y, Dong Z, et al. Nanofabrication for nanophotonics. ACS Nano. 2025;19(13):12491-12605. doi: 10.1021/acsnano.4c10964

 

  1. Seniutinas G, Balčytis A, Reklaitis I, et al. Tipping solutions: Emerging 3D nano-fabrication/-imaging technologies. Nanophotonics. 2017;6(5):923-941. doi: 10.1515/nanoph-2017-0008

 

  1. Karawdeniya BI, Damry AM, Murugappan K, et al. Surface functionalization and texturing of optical metasurfaces for sensing applications. Chem Rev. 2022;122(19):14990-15030. doi: 10.1021/acs.chemrev.1c00990

 

  1. Belén F, Gravina AN, Pistonesi MF, et al. NIR-reflective and hydrophobic bio-inspired nano-holed configurations on titanium alloy. ACS Appl Mater Interfaces. 2022; 14(4):5843-5855. doi: 10.1021/acsami.1c22557

 

  1. Vizirianakis IS. Handbook of Personalized Medicine: Advances in Nanotechnology, Drug Delivery, and Therapy. 1st ed. Boca Raton: CRC Press; 2014. p. 1560.

 

  1. Anselmo AC, Mitragotri S. Nanoparticles in the clinic. Bioeng Transl Med. 2016;1(1):10-29. doi: 10.1002/btm2.10003

 

  1. Anu Mary Ealia S, Saravanakumar MP. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf Ser Mater Sci Eng. 2017;263(3):032019. doi: 10.1088/1757-899x/263/3/032019

 

  1. Abdel-Mageed HM, AbuelEzz NZ, Radwan RA, Mohamed SA. Nanoparticles in nanomedicine: A comprehensive updated review on current status, challenges and emerging opportunities. J Microencapsul. 2021;38(6):414-436. doi: 10.1039/C2CS15260F

 

  1. Luo L, Huang W, Zhang J, Yu Y, Sun T. Metal-based nanoparticles as antimicrobial agents: A review. ACS Appl Nano Mater. 2024;7(3):2529-2545. doi: 10.1021/acsanm.3c05615

 

  1. Liu Q, Kim YJ, Im GB, et al. Inorganic nanoparticles applied as functional therapeutics. Adv Funct Mater. 2021;31(12):2008171. doi: 10.1002/adfm.202008171

 

  1. Mansoor A, Khurshid Z, Khan MT, et al. Medical and dental applications of titania nanoparticles: An overview. Nanomaterials. 2022;12(20):3670. doi: 10.3390/nano12203670

 

  1. Huang Y, Li P, Zhao R, et al. Silica nanoparticles: Biomedical applications and toxicity. Biomed Pharmacother. 2022;151:113053. doi: 10.1016/j.biopha.2022.113053

 

  1. Jeyaraman M, Jeyaraman N, Nallakumarasamy A, et al. Silver nanoparticle technology in orthopaedic infections. World J Orthop. 2023;14(9):662-668. doi: 10.5312/wjo.v14.i9.662

 

  1. Choi YS, Kim YH, An HM, Bae SK, Lee YK. Efficacy of silver nanoparticles-loaded bone cement against an MRSA induced-osteomyelitis in a rat model. Medicina (Kaunas). 2023;59(4):811. doi: 10.3390/medicina59040811

 

  1. Tang Y, Rajendran P, Veeraraghavan VP, et al. Osteogenic differentiation and mineralization potential of zinc oxide nanoparticles from Scutellaria baicalensis on human osteoblast-like MG-63 cells. Mater Sci Eng C Mater Biol Appl. 2021;119:111656. doi: 10.1016/j.msec.2020.111656

 

  1. Qiao M, Tang W, Xu Z, et al. Gold nanoparticles: Promising biomaterials for osteogenic/adipogenic regulation in bone repair. J Mater Chem B. 2023;11(11):2307-2333. doi: 10.1039/D2TB02563A

 

  1. Xiong S, Xiong G, Li Z, et al. Gold nanoparticle-based nanoprobes with enhanced tumor targeting and photothermal/photodynamic response for therapy of osteosarcoma. Nanotechnology. 2021;32(15):155102. doi: 10.1088/1361-6528/abd816

 

  1. Wang N, Dheen ST, Fuh JYH, Kumar AS. A review of multi-functional ceramic nanoparticles in 3D printed bone tissue engineering. Bioprinting. 2021;23:e00146. doi: 10.1016/j.bprint.2021.e00146

 

  1. D’Elía NL, Mathieu C, Hoemann CD, et al. Bone-repair properties of biodegradable hydroxyapatite nano-rod superstructures. Nanoscale. 2015;7(44):18751-18762. doi: 10.1039/C5NR04850H

 

  1. Andrés NC, D’Elía NL, Ruso JM, Campelo AE, Massheimer VL, Messina PV. Manipulation of Mg2+–Ca2+ switch on the development of bone mimetic hydroxyapatite. ACS Appl Mater Interfaces. 2017;9(18):15698-15710. doi: 10.1021/acsami.7b02241

 

  1. Placente D, Benedini LA, Baldini M, Laiuppa JA, Santillán GE, Messina PV. Multi-drug delivery system based on lipid membrane mimetic coated nano-hydroxyapatite formulations. Int J Pharm. 2018;548(1):559-570. doi: 10.1016/j.ijpharm.2018.07.036

 

  1. Placente D, Ruso JM, Baldini M, et al. Self-fluorescent antibiotic MoO x–hydroxyapatite: A nano-theranostic platform for bone infection therapies. Nanoscale. 2019;11(37):17277-17292. doi: 10.1039/C9NR01236B

 

  1. Sieben JM, Placente D, Baldini MD, et al. Killing bacteria by faradaic processes through nano-hydroxyapatite/MoO x platforms. ACS Appl Mater Interfaces. 2023;15(21):25884-25897. doi: 10.1021/acsami.3c05064

 

  1. Karpiński R, Szabelski J, Krakowski P, et al. Effect of various admixtures on selected mechanical properties of medium viscosity bone cements: Part 1–α/β tricalcium phosphate (TCP). Compos Struct. 2024;343:118306. doi: 10.1016/j.compstruct.2024.118308

 

  1. Karpiński R, Szabelski J, Krakowski P, et al. Effect of various admixtures on selected mechanical properties of medium viscosity bone cements: Part 2-Hydroxyapatite. Compos Struct. 2024;343:118308. doi: 10.1016/j.compstruct.2024.118308

 

  1. Karpiński R, Szabelski J, Krakowski P, et al. Effect of various admixtures on selected mechanical properties of medium viscosity bone cements: Part 3-Glassy carbon. Compos Struct. 2024;343:118307. doi: 10.1016/j.compstruct.2024.118308

 

  1. Shi D, Li Y, Tian M, Xue M, Wang J, An H. Nanomaterials-based drug delivery systems for therapeutic applications in osteoporosis. Adv Biol (Weinh). 2025;9:e2400721. doi: 10.1002/adbi.202400721

 

  1. Roy S, Mukherjee P, Das PK, et al. Local delivery systemsof morphogens/biomolecules in orthopedic surgical challenges. Mater. Today Commun. 2021;27:102424. doi: 10.1016/j.mtcomm.2021.102424

 

  1. Cota Quintero JL, Ramos-Payán R, Romero-Quintana JG, Ayala-Ham A, Bermúdez M, Aguilar-Medina EM. Hydrogel-based scaffolds: Advancing bone regeneration through tissue engineering. Gels. 2025;11:175. doi: 10.3390/gels11030175

 

  1. Hassan, M, Abdelnabi, H. A, Mohsin, S. Harnessing the potential of PLGA nanoparticles for enhanced bone regeneration. Pharmaceutics. 2024;16(2):273. doi: 10.3390/pharmaceutics16020273

 

  1. Tian, L, Tan, Z, Yang, Y, et al. In situ sprayed hydrogels containing resiquimod-loaded liposomes reduce chronic osteomyelitis recurrence by intracellular bacteria clearance. Acta Biomater. 2023;169:209-227. doi: 10.1016/j.actbio.2023.07.039

 

  1. Placha D, Jampilek J. Chronic inflammatory diseases, anti-inflammatory agents and their delivery nanosystems. Pharmaceutics. 2021;13(1):64. doi: 10.3390/pharmaceutics13010064

 

  1. Wang R, Wang X, Li J, Di L, Zhou J, Ding Y. Lipoprotein-biomimetic nanostructure enables tumor-targeted penetration delivery for enhanced photo-gene therapy towards glioma. Bioact Mater. 2022;13:286-299. doi: 10.1038/ncomms15144

 

  1. García-Fernández, J, Fuente Freire ML. Exosome-like systems: Nanotechnology to overcome challenges for targeted cancer therapies. Cancer Lett. 2023;561:216151. doi: 10.1016/j.canlet.2023.216151

 

  1. Ravi SP, Shamiya Y, Chakraborty A, et al. Controlling differentiation of adult stem cells via cell-derived nanoparticles: Implications in bone repair. ACS Appl Nano Mater. 2022;5(12):17468-17475. doi: 10.1021/acsanm.2c03657

 

  1. Jiang H, Zhu X, Yu J, et al. Biomimetic extracellular vesicles based on composite bioactive ions for the treatment of ischemic bone disease. ACS Nano. 2024;18(51):34924-34948. doi: 10.1021/acsnano.4c13028

 

  1. Hao L, Huang S, Huang T, et al. Bone targeting miR- 26a loaded exosome-mimetics for bone regeneration therapy by activating Wnt signaling pathway. Chem. Eng. J. 2023;471:144594. doi: 10.1016/j.cej.2023.144594

 

  1. Xiao B, Ackun-Farmmer MA, Adjei-Sowah E, Liu Y, Chandrasiri I, Benoit DSW. Advancing bone-targeted drug delivery: Leveraging biological factors and nanoparticle designs to improve therapeutic efficacy. ACS Biomater Sci Eng. 2024;10(4):2224-2234. doi: 10.1021/acsbiomaterials.3c01022

 

  1. Ren X, Chen X, Geng Z, Su J. Bone-targeted biomaterials: Strategies and applications. Chem Eng J. 2022;446:137133. doi: 10.1016/j.cej.2022.137133

 

  1. Ignjatović N, Wu V, Ajduković Z, Mihajilov-Krstev T, Uskoković V, Uskoković D. Chitosan-PLGA polymer blends as coatings for hydroxyapatite nanoparticles and their effect on antimicrobial properties, osteoconductivity and regeneration of osseous tissues. Mater Sci Eng C Mater Biol Appl. 2016;60:357-364. doi: 10.1016/j.msec.2015.11.061

 

  1. Rajesh K, Khatua C, Singh P, Roy P, Keshri AK, Lahiri D. Microsphere embedded hydroxyapatite coating on metallic implant for sustained drug release in orthopedic applications. J Drug Deliv Sci Technol. 2024;98:105840. doi: 10.1016/j.jddst.2024.105840

 

  1. Guo X, Xue M, Chen F, et al. Local delivery and controlled release of miR-34a loaded in hydroxyapatite/mesoporous organosilica nanoparticles composite-coated implant wire to accelerate bone fracture healing. Biomaterials. 2022;280:121300. doi: 10.1016/j.biomaterials.2021.121300

 

  1. Damasco JA, Yu G, Kumar A, et al. Alendronate conjugate for targeted delivery to bone-forming prostate cancer. Talanta. 2023;256:124308. doi: 10.1016/j.talanta.2023.124308

 

  1. Benedini LA, Moglie Y, Ruso JM, Nardi S, Messina PV. Hydroxyapatite nanoparticle mesogens: Morphogenesis of pH-sensitive macromolecular liquid crystals. Cryst Growth Des. 2021;21(4):2154-2166. doi: 10.1021/acs.cgd.0c01582

 

  1. Park JS, Lim YG, Park K. Novel bidentate β-glutamic acid-based bone-targeting agents for in vivo bone imaging. J Ind Eng Chem. 2022;110:471-478. doi: 10.1016/j.jiec.2022.03.021

 

  1. Quadros M, Momin M, Verma G. Design strategies and evolving role of biomaterial assisted treatment of osteosarcoma. Mater Sci Eng C. 2021;121:111875. doi: 10.1016/j.msec.2021.111875

 

  1. Zi Y, Yang K, He J, Wu Z, Liu J, Zhang W. Strategies to enhance drug delivery to solid tumors by harnessing the EPR effects and alternative targeting mechanisms. Adv Drug Deliv Rev. 2022;188:114449. doi: 10.1016/j.addr.2022.114449

 

  1. Liu F, Xue L, Xu L, et al. Preparation and characterization of bovine serum albumin nanoparticles modified by Poly-l-lysine functionalized graphene oxide for BMP-2 delivery. Mater Des. 2022;215:110479. doi: 10.1016/j.matdes.2022.110479

 

  1. Choe G, Lee M, Oh S, et al. Three-dimensional bioprinting of mesenchymal stem cells using an osteoinductive bioink containing alginate and BMP-2-loaded PLGA nanoparticles for bone tissue engineering. Biomater Adv. 2022;136:212789. doi: 10.1016/j.bioadv.2022.212789

 

  1. Rahman M. Magnetic resonance imaging and iron-oxide nanoparticles in the era of personalized medicine. Nanotheranostics. 2023;7(4):424-449. doi: 10.7150/ntno.86467

 

  1. Rizwan Younis M, He G, Gurram B, Lin J, Huang P. Recent advances in gold nanorods-based cancer theranostics. Adv NanoBiomed Res. 2021;1(12):2100029. doi: 10.1002/anbr.202100029

 

  1. Ding N, Zhou F, Li G, Shen H, Bai L, Su J. Quantum dots for bone tissue engineering. Mater Today Bio. 2024;28:101167. doi: 10.1016/j.mtbio.2024.101167

 

  1. Egea-Benavente D, Ovejero JG, Morales MP, Barber DF. Understanding MNPs behaviour in response to AMF in biological milieus and the effects at the cellular level: Implications for a rational design that drives magnetic hyperthermia therapy toward clinical implementation. Cancers (Basel). 2021;13(18):4583. doi: 10.3390/cancers13184583

 

  1. Golovin YI, Golovin DY, Vlasova KY, et al. Non-heating alternating magnetic field nanomechanical stimulation of biomolecule structures via magnetic nanoparticles as the basis for future low-toxic biomedical applications. Nanomaterials (Basel). 2021;11(9):2255. doi: 10.3390/nano11092255

 

  1. Bucharskaya AB, Khlebtsov NG, Khlebtsov BN, et al. Photothermal and photodynamic therapy of tumors with plasmonic nanoparticles: Challenges and prospects. Materials. 2022;15(4):1606. doi: 10.3390/ma15041606

 

  1. Luo H, Gao S. Recent advances in fluorescence imaging-guided photothermal therapy and photodynamic therapy for cancer: From near-infrared-I to near-infrared-II. J Controlled Release. 2023;362:425-445. doi: 10.1016/j.jconrel.2023.08.056

 

  1. Nguyen VK, Tsai SW, Cho IC, et al. Gold nanoparticle-enhanced production of reactive oxygen species for radiotherapy and phototherapy. Nanomaterials. 2025;15(4):317. doi: 10.3390/nano15040317

 

  1. Sedlack AJH, Meyer C, Mench A, et al. Essentials of theranostics: A guide for physicians and medical physicists. Radiographics. 2024;44(1):e230097. doi: 10.1148/rg.230097

 

  1. Anitha K, Chenchula S, Surendran V, et al. Advancing cancer theranostics through biomimetics: A comprehensive review. Heliyon. 2024;10(6):e27692. doi: 10.1016/j.heliyon.2024.e27692

 

  1. Panda S, Hajra S, Kaushik A, Rubahn HG, Mishra YK, Kim HJ. Smart nanomaterials as the foundation of a combination approach for efficient cancer theranostics. Mater Today Chem. 2022;26:101182. doi: 10.1016/j.mtchem.2022.101182

 

  1. Olăreț E, Stancu IC, Iovu H, Serafim A. Computed tomography as a characterization tool for engineered scaffolds with biomedical applications. Materials. 2021;14(22):6763. doi: 10.3390/ma14226763

 

  1. Agorhom EA, Skinner W, Zanin M. Upgrading of low-grade gold ore samples for improved particle characterisation using Micro-CT and SEM/EDX. Adv Powder Technol. 2012;23(4):498-508. doi: 10.1016/j.apt.2012.04.011

 

  1. Mishra SK, Kannan S. Doxorubicin-conjugated bimetallic silver-gadolinium nanoalloy for multimodal MRI-CT-optical imaging and pH-responsive drug release. ACS Biomater Sci Eng. 2017;3(12):3607-3619. doi: 10.1021/acsbiomaterials.7b00498

 

  1. Singh P, Pandit S, Balusamy SR, et al. Advanced nanomaterials for cancer therapy: Gold, silver, and iron oxide nanoparticles in oncological applications. Adv Healthcare Mater. 2025;14(4):2403059. doi: 10.1002/adhm.202403059

 

  1. Lee WJ, Park EY, Choi D, et al. Colloidal porous Au Ag alloyed nanoparticles for enhanced photoacoustic imaging. ACS Appl Mater Interfaces. 2020;12(29):32270-32277. doi: 10.1021/acsami.0c05650

 

  1. Kotha R, Fernandes G, Nikam AN, et al. Surface engineered bimetallic nanoparticles based therapeutic and imaging platform: Recent advancements and future perspective. Mater Sci Technol. 2020;36(16):1729-1748. doi: 10.1080/02670836.2020.1832323

 

  1. Kim T, Zhang Q, Li J, Zhang L, Jokerst JV. A gold/silver hybrid nanoparticle for treatment and photoacoustic imaging of bacterial infection. ACS Nano. 2018;12(6):5615-5625. doi: 10.1021/acsnano.8b01362

 

  1. Truong TT, Mondal S, Doan VHM, et al. Precision-engineered metal and metal-oxide nanoparticles for biomedical imaging and healthcare applications. Adv Colloid Interface Sci. 2024;332:103263. doi: 10.1016/j.cis.2024.103263

 

  1. Yang Y, Jiang Q, Zhang F. Nanocrystals for deep-tissue in vivo luminescence imaging in the near-infrared region. Chem Rev. 2023;124(2):554-628. doi: 10.1021/acs.chemrev.3c00506

 

  1. Shen Y, Lifante J, Ximendes E, et al. Perspectives for Ag 2 S NIR-II nanoparticles in biomedicine: From imaging to multifunctionality. Nanoscale. 2019;11(41):19251-19264. doi: 10.1039/C9NR05733A

 

  1. Seaberg J, Montazerian H, Hossen MN, Bhattacharya R, Khademhosseini A, Mukherjee P. Hybrid nanosystems for biomedical applications. ACS Nano. 2021;15(2):2099-2142. doi: 10.1021/acsnano.0c09382

 

  1. Zhou K, Zhang Z, Xue J, et al. Hybrid Ag nanoparticles/ polyoxometalate-polydopamine nano-flowers loaded chitosan/gelatin hydrogel scaffolds with synergistic photothermal/chemodynamic/Ag+ anti-bacterial action for accelerated wound healing. Int J Mol Sci. 2022;221:135-148. doi: 10.1016/j.ijbiomac.2022.08.151

 

  1. Zhou W, Jia Z, Xiong P, et al. Bioinspired and biomimetic AgNPs/gentamicin-embedded silk fibroin coatings for robust antibacterial and osteogenetic applications. ACS Appl Mater Interfaces. 2017;9(31):25830-25846. doi: 10.1021/acsami.7b06757

 

  1. Zhou W, Bai T, Wang L, et al. Biomimetic AgNPs@ antimicrobial peptide/silk fibroin coating for infection-trigger antibacterial capability and enhanced osseointegration. Bioact Mater. 2023;20:64-80. doi: 10.1016/j.bioactmat.2022.05.015

 

  1. Aqib R, Kiani S, Bano S, Wadood A, Ur Rehman MA. Ag-Sr doped mesoporous bioactive glass nanoparticles loaded chitosan/gelatin coating for orthopedic implants. Int J Appl Ceram Technol. 2021;18(3):544-562. doi: 10.1111/ijac.13702

 

  1. Schwartzman JD, McCall M, Ghattas Y, et al. Multifunctional scaffolds for bone repair following age-related biological decline: Promising prospects for smart biomaterial-driven technologies. Biomaterials. 2024;311:122683. doi: 10.1016/j.biomaterials.2024.122683

 

  1. Roffi A, Krishnakumar GS, Gostynska N, Kon E, Candrian C, Filardo G. The role of three-dimensional scaffolds in treating long bone defects: Evidence from preclinical and clinical literature-a systematic review. Biomed Res Int. 2017;2017(1):8074178. doi: 10.1155/2017/8074178

 

  1. Zhang B, Skelly JD, Maalouf JR, Ayers DC, Song J. Multifunctional scaffolds for facile implantation, spontaneous fixation, and accelerated long bone regeneration in rodents. Sci Trans Med. 2019;11(502):7411. doi: 10.1126/scitranslmed.aau7411

 

  1. Stengelin E, Thiele J, Seiffert S. Multiparametric material functionality of microtissue‐based in vitro models as alternatives to animal testing. Adv Sci. 2022;9(10):2105319. doi: 10.1002/advs.202105319

 

  1. Sati A, Ranade TN, Mali SN, Ahmad Yasin HK, Pratap A. Silver nanoparticles (AgNPs): Comprehensive insights into bio/synthesis, key influencing factors, multifaceted applications, and toxicity-a 2024 update. ACS Omega. 2025;10(8):7549-7582. doi: 10.1021/acsomega.4c11045

 

  1. Nguyen NPU, Dang NT, Doan L, Nguyen TTH. Synthesis of silver nanoparticles: From conventional to ‘modern’ methods-a review. Processes. 2023;11(9):2617. doi: 10.3390/pr11092617

 

  1. Ganash EA. Synthesis of silver nanoparticles using pulsed laser ablation in liquid: A review. Laser Phys Lett. 2022;20(1):013001. doi: 10.1088/1612-202X/acab57

 

  1. Yaqoob AA, Umar K, Ibrahim MNM. Silver nanoparticles: Various methods of synthesis, size affecting factors and their potential applications-a review. Appl Nanosci. 2020;10(5):1369-1378. doi: 10.1007/s13204-020-01318-w

 

  1. El-Seedi HR, El-Shabasy RM, Khalifa SA, et al. Metal nanoparticles fabricated by green chemistry using natural extracts: Biosynthesis, mechanisms, and applications. RSC Adv. 2019;9(42):24539-24559. doi: 10.1039/C9RA02225B

 

  1. Pistonesi DB, Belén F, Centurión ME, Sica MG, Ruso JM, Messina PV. {111} - faceted silver nanoplates: An automated and customized design for functionality. ChemNanoMat. 2023;9:e202300354. doi: 10.1002/cnma.202300354

 

  1. Hung HS, Chang KB, Tang CM, et al. Anti-inflammatory fibronectin-AgNP for regulation of biological performance and endothelial differentiation ability of mesenchymal stem cells. Int J Mol Sci. 2021;22(17):9262. doi: 10.3390/ijms22179262

 

  1. Xu Z, Shi L, Yang M, Zhu L. Preparation and biomedical applications of silk fibroin-nanoparticles composites with enhanced properties-a review. Mater Sci Eng C Mater Biol Appl. 2019;95:302-311. doi: 10.1016/j.msec.2018.11.010

 

  1. Di Pietro P, Zaccaro L, Comegna D, et al. Silver nanoparticles functionalized with a fluorescent cyclic RGD peptide: A versatile integrin targeting platform for cells and bacteria. RSC Adv. 2016;6(113):112381-112392. doi: 10.1039/D3TB00199G

 

  1. Shang L, Nienhaus K, Nienhaus GU. Engineered nanoparticles interacting with cells: Size matters. J Nanobiotechnol. 2014;12:1-11. doi: 10.1186/1477-3155-12-5

 

  1. Kumar L, Bisen M, Harjai K, et al. Advances in nanotechnology for biofilm inhibition. ACS Omega. 2023;8(24):21391-21409. doi: 10.1021/acsomega.3c02239

 

  1. Barua N, Buragohain AK. Therapeutic potential of silver nanoparticles (AgNPs) as an antimycobacterial agent: A comprehensive review. Antibiotics (Basel). 2024;13(11):1106. doi: 10.3390/antibiotics13111106

 

  1. Goyal D, Kaur G, Tewari R, Kumar R. Correlation of edge truncation with antibacterial activity of plate-like anisotropic silver nanoparticles. Environ Sci Pollut Res. 2017;24:20429-20437. doi: 10.1007/s11356-017-9630-0

 

  1. El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM. Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol. 2011;45(1):283-287. doi: 10.1021/es1034188

 

  1. Barbalinardo M, Chiarini F, Teti G, et al. Surface charge overrides protein corona formation in determining the cytotoxicity, cellular uptake, and biodistribution of silver nanoparticles. ACS Appl Bio Mater. 2025;8(6):5032-5043. doi: 10.1021/acsabm.5c00392

 

  1. Gholami A, Ghezelbash K, Asheghi B, Abbaszadegan A, Amini A. An in vitro study on the antibacterial effects of chlorhexidine-loaded positively charged silver nanoparticles on Enterococcus faecalis. J Nanomater. 2022;2022(1):6405772. doi: 10.1155/2022/6405772

 

  1. Silva MRP, Matos RS, Monteiro MDS, et al. Exploiting the physicochemical and antimicrobial properties of PHB/PEG and PHB/PEG/ALG-e blends loaded with Ag nanoparticles. Materials. 2022;15(21):7544. doi: 10.3390/ma15217544

 

  1. Pedroso-Santana S, Fleitas-Salazar N. The use of capping agents in the stabilization and functionalization of metallic nanoparticles for biomedical applications. Part Syst Charact. 2023;40(2):2200146. doi: 10.1002/ppsc.202200146

 

  1. Nie, P, Zhao, Y, Xu, H. Synthesis, applications, toxicity and toxicity mechanisms of silver nanoparticles: A review. Ecotoxicol Environ Saf. 2023;253:114636. doi: 10.1016/j.ecoenv.2023.114636

 

  1. Luceri A, Francese R, Lembo D, Ferraris M, Balagna C. Silver nanoparticles: Review of antiviral properties, mechanism of action and applications. Microorganisms. 2023;11(3):629. doi: 10.3390/microorganisms11030629

 

  1. Khina AG, Krutyakov YA. Similarities and differences in the mechanism of antibacterial action of silver ions and nanoparticles. Appl Biochem Microbiol. 2021;57(6):683-693. doi: 10.1134/S0003683821060053

 

  1. Tripathi N, Goshisht MK. Recent advances and mechanistic insights into antibacterial activity, antibiofilm activity, and cytotoxicity of silver nanoparticles. ACS Appl Bio Mater. 2022;5(4):1391-1463. doi: 10.1021/acsabm.2c00014

 

  1. Lava MB, Muddapur UM, Basavegowda N, More SS, More VS. Characterization, anticancer, antibacterial, anti-diabetic and anti-inflammatory activities of green synthesized silver nanoparticles using Justica wynaadensis leaves extract. Mater Today Proc. 2021;46:5942-5947. doi: 10.1016/j.matpr.2020.10.048

 

  1. Huang Y, Guo X, Wu Y, et al. Nanotechnology’s frontier in combatting infectious and inflammatory diseases: Prevention and treatment. Signal Transduct Target Ther. 2024;9(1):34. doi: 10.1038/s41392-024-01745-z

 

  1. Sathyendra V, Darowish M. Basic science of bone healing. Hand Clin. 2013;29(4):473-481. doi: 10.1016/j.hcl.2013.08.002

 

  1. Maruyama M, Rhee C, Utsunomiya T, et al. Modulation of the inflammatory response and bone healing. Front Endocrinol. 2020;11:386. doi: 10.3389/fendo.2020.00386

 

  1. Adamecz DI, Éva V, Csaba P, et al. Gold and silver nanoparticles efficiently modulate the crosstalk between macrophages and cancer cells. Int J Nanomed. 2025;20:4777-4802. doi: 10.2147/ijn.s508171

 

  1. Miao X, Leng X, Zhang Q. The current state of nanoparticle-induced macrophage polarization and reprogramming research. Int J Mol Sci. 2017;18(2):336. doi: 10.3390/ijms18020336

 

  1. Nazari M, Taremi S, Elahi R, Mostanadi P, Esmeilzadeh A. Therapeutic properties of M2 macrophages in chronic wounds: An innovative area of biomaterial-assisted M2 macrophage targeted therapy. Stem Cell Rev Rep. 2025;21(2):390-422. doi: 10.1007/s12015-024-10806-3

 

  1. Abdelmoneim D, Coates D, Porter G, et al. In vitro and in vivo investigation of antibacterial silver nanoparticles functionalized bone grafting substitutes. J Biomed Mater Res A. 2024;112(12):2042-2054. doi: 10.1002/jbm.a.37757

 

  1. Dantas LR, Witt MA, Carneiro E, Tuon FF. Nanoarchitectonics for advancing bone graft technology: Integration of silver nanoparticles against bacteria and fungi. Microorganisms. 2024;12:2616. doi: 10.3390/microorganisms12122616

 

  1. Kheirmand-Parizi M, Doll-Nikutta K, Gaikwad A, Denis H, Stiesch M. Effectiveness of strontium/silver-based titanium surface coatings in improving antibacterial and osteogenic implant characteristics: A systematic review of in-vitro studies. Front Bioeng Biotechnol. 2024;12:1346426. doi: 10.3389/fbioe.2024.1346426

 

  1. Huang L, Guo Z, Yang X, et al. Advancements in GelMA bioactive hydrogels: Strategies for infection control and bone tissue regeneration. Theranostics. 2025;15(2):460-493. doi: 10.7150/thno.103725

 

  1. Abram SL, Fromm KM. Handling (nano) silver as antimicrobial agent: Therapeutic window, dissolution dynamics, detection methods and molecular interactions. Chem Eur J. 2020;26(48):10948-10971. doi: 10.1002/chem.202002143

 

  1. Sadasivuni KK, Rattan S, Waseem S, et al. Silver nanoparticles and its polymer nanocomposites-synthesis, optimization, biomedical usage, and its various applications. In: Sadasivuni KK, Ponnamma D, Rajan M, Ahmed B, Al-Maadeed MASA, editors. Polymer Nanocomposites in Biomedical Engineering. Cham: Springer International Publishing; 2019. p. 331-373.

 

  1. Zhang M, Xu F, Cao J, et al. Research advances of nanomaterials for the acceleration of fracture healing. Bioact Mater. 2024;31:368-394. doi: 10.1039/C9BM00423H

 

  1. Fadilah NIM, Isa ILM, Zaman WSWK, Tabata Y, Fauzi MB. The effect of nanoparticle-incorporated natural-based biomaterials towards cells on activated pathways: A systematic review. Polymers (Basel). 2022;14(3):476. doi: 10.3390/polym14030476

 

  1. Zhang G, Zhen C, Yang J, et al. Recent advances of nanoparticles on bone tissue engineering and bone cells. Nanoscale Adv. 2024;6(8):1957-1973. doi: 10.1039/D3NA00851G

 

  1. Li X, Yue W, Denghao H, et al. Nanomaterials modulating the fate of dental-derived mesenchymal stem cells involved in oral tissue reconstruction: A systematic review. Int J Nanomed. 2023;18:5377-5406. doi: 10.2147/IJN.S418675

 

  1. Algazlan AS, Almuraikhi N, Muthurangan M, Balto H, Alsalleeh F. Silver nanoparticles alone or in combination with calcium hydroxide modulate the viability, attachment, migration, and osteogenic differentiation of human mesenchymal stem cells. Int J Mol Sci. 2023;24:702. doi: 10.3390/ijms24010702

 

  1. Ghosh S, Webster TJ. Metallic nanoscaffolds as osteogenic promoters: Advances, challenges and scope. Metals. 2021;11(9):1356. doi: 10.3390/met11091356

 

  1. Akobundu UU, Ifijen IH, Duru P, et al. Exploring the role of strontium-based nanoparticles in modulating bone regeneration and antimicrobial resistance: A public health perspective. RSC Adv. 2025;15(14):10902-10957. doi: 10.1039/D5RA00308C

 

  1. Zhang Y, Chen X, Li Y, et al. Biomimetic inorganic nanoparticle-loaded silk fibroin-based coating with enhanced antibacterial and osteogenic abilities. ACS Omega. 2021;6(44):30027-30039. doi: 10.1021/acsomega.1c04734

 

  1. Qin H, Zhu C, An Z, et al. Silver nanoparticles promote osteogenic differentiation of human urine-derived stem cells at noncytotoxic concentrations. Int J Nanomed. 2014;9:2469-2478. doi: 10.2147/IJN.S59753

 

  1. Nguyen A, Patel R, Noble J, et al. Effects of subcytotoxic exposure of silver nanoparticles on osteogenic differentiation of human bone marrow stem cells. Appl In Vitro Toxicol. 219;5(3):123-133. doi: 10.1089/aivt.2019.0001

 

  1. Tian Y, Cui Y, Ren G, et al. Dual-functional thermosensitive hydrogel for reducing infection and enhancing bone regeneration in infected bone defects. Mater Today Bio. 2024;25:100972. doi: 10.1016/j.mtbio.2024.100972

 

  1. Cui Y, Liu H, Tian Y, et al. Dual-functional composite scaffolds for inhibiting infection and promoting bone regeneration. Mater Today Bio. 2022;16:100409. doi: 10.1016/j.mtbio.2022.100409

 

  1. Pang Y, Zhao M, Xie Y, et al. Multifunctional Ac@ ZIF-8/ AgNPs nanoplatform with pH-responsive and ROS scavenging antibacterial properties promotes infected wound healing. Chem Eng J. 2024;489:151485. doi: 10.1016/j.cej.2024.151485

 

  1. Ashique S, Faiyazuddin M, Afzal O, et al. Advanced nanoparticles, the hallmark of targeted drug delivery for osteosarcoma-an updated review. J Drug Deliv Sci Technol. 2023;87:104753. doi: 10.1016/j.jddst.2023.104753

 

  1. Łapaj Ł, Woźniak W, Markuszewski J. Osseointegration of hydroxyapatite coatings doped with silver nanoparticles: Scanning electron microscopy studies on a rabbit model. Folia Morphol. 2019;78(1):107-113. doi: 10.5603/FM.a2018.0055

 

  1. Sun CY, Che YJ, Lu SJ. Preparation and application of collagen scaffold-encapsulated silver nanoparticles and bone morphogenetic protein 2 for enhancing the repair of infected bone. Biotechnol Lett. 2015;37(2):467-473. doi: 10.1007/s10529-014-1698-8

 

  1. Chen P, Wu Z, Leung A, et al. Fabrication of a silver nanoparticle-coated collagen membrane with anti-bacterial and anti-inflammatory activities for guided bone regeneration. Biomed Mater. 2018;13(6):065014. doi: 10.1088/1748-605X/aae15b

 

  1. Jiang S, Liu X, Liu Y, Liu J, He W, Dong Y. Synthesis of silver @hydroxyapatite nanoparticles based biocomposite and their assessment for viability of Osseointegration for rabbit knee joint anterior cruciate ligament rehabilitation. J. Photochem Photobiol B. 2020;202:111677. doi: 10.1016/j.jphotobiol.2019.111677

 

  1. Mariano LC, Fernandes MH, Gomes PS. Antimicrobial biomaterials for the healing of infected bone tissue: A systematic review of microtomographic data on experimental animal models. J Funct Biomat. 2022;13:193. doi: 10.3390/jfb13040193

 

  1. Kim SK, Murugan SS, Dalavi PA, et al. Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration. Beilstein J Nanotechnol. 2022;13:1051-1067. doi: 10.3762/bjnano.13.92

 

  1. Jiang S, Wang M, He J. A review of biomimetic scaffolds for bone regeneration: Toward a cell-free strategy. Bioeng Transl Med. 2021;6(2):e10206. doi: 10.1002/btm2.10206

 

  1. Agrawal A, Veronica A, Thangaraj GTS, Basalingappa KM, Gobianand K. Impact of metallic nanoparticles for tissue engineering and regenerative medicine. In: Sundram S, Malviya R, Rao GSNK, editors. Metals in Medicine Volume 2: Metallic Nanoparticles for Biomedical Applications. Boca Raton, FL: Apple Academic Press/Taylor & Francis; 2024. p. 237-289.

 

  1. Fajdek-Bieda A, Pawlińska J, Wróblewska A, Żwierełło W, Łuś A, Klimowicz A. Antibacterial and preservative potential of eugenol and isoeugenol in cosmetics: A natural solution for product stability. Appl Sci. 2025;15:2129. doi: 10.3390/app15042129

 

  1. Harun-Ur-Rashid M, Foyez T, Krishna SBN, Poda S, Imran AB. Recent advances of silver nanoparticle-based polymer nanocomposites for biomedical applications. RSC Adv. 2025;15(11):8480-8505. doi: 10.1039/D4RA08220F

 

  1. Naganthran A, Verasoundarapandian G, Khalid FE, et al. Synthesis, characterization and biomedical application of silver nanoparticles. Materials. 2022;15:427. doi: 10.3390/ma15020427

 

  1. Bucur SM, Vaida LL, Olteanu CD, Checchi V. A brief review on micro-implants and their use in orthodontics and dentofacial orthopaedics. Appl Sci. 2021;11:10719. doi: 10.3390/app112210719

 

  1. Jiang S, Liu X, Liu Y, Liu J, He W, Dong Y. Synthesis of silver @hydroxyapatite nanoparticles based biocomposite and their assessment for viability of Osseointegration for rabbit knee joint anterior cruciate ligament rehabilitation. J Photochem Photobiol B. 2019;202:111677. doi: 10.1016/j.jphotobiol.2019.111677

 

  1. Casillas-Santana MA, Slavin YN, Zhang P, Niño-Martínez N, Bach H, Martínez-Castañón GA. Osteoregeneration of critical-size defects using hydroxyapatite-chitosan and silver-chitosan nanocomposites. Nanomaterials. 2023;13:321. doi: 10.3390/nano13020321

 

  1. Zhang R, Lee P, Lui V, et al. Silver nanoparticles promote osteogenesis of mesenchymal stem cells and improve bone fracture healing in osteogenesis mechanism mouse model. Nanomedicine. 2015;11(8):1949-1959. doi: 10.1016/j.nano.2015.07.016

 

  1. Li K, Tang Z, Song K, et al. Multifunctional nanocoating for enhanced titanium implant osseointegration. Colloids Surf B Biointerfaces. 2023;232:113604. doi: 10.1016/j.colsurfb.2023.113604

 

  1. Haugen HJ, Makhtari S, Ahmadi S, Hussain B. The antibacterial and cytotoxic effects of silver nanoparticles coated titanium implants: A narrative review. Materials. 2022;15:5025. doi: 10.3390/ma15145025

 

  1. Yang X, Li Y, Liu X, He W, Huang Q, Feng Q. Nanoparticles and their effects on differentiation of mesenchymal stem cells. Biomater Trans. 2020;1(1):58-68. doi: 10.3877/cma.j.issn.2096-112X.2020.01.006

 

  1. He J, Ma Y, Niu X, et al. Silver nanoparticles induce endothelial cytotoxicity through ROS-mediated mitochondria-lysosome damage and autophagy perturbation: The protective role of N-acetylcysteine. Toxicology. 2024;502:153734. doi: 10.1016/j.tox.2024.153734

 

  1. Piao MJ, Kang KA, Lee IK, et al. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett. 2011;201(1):92-100. doi: 10.1016/j.toxlet.2010.12.010

 

  1. Sati A, Ranade TN, Mali SN, et al. Silver nanoparticles (AgNPs) as potential antiviral agents: Synthesis, biophysical properties, safety, challenges and future directions- update review. Molecules. 2025;30(9):2004. doi: 10.3390/molecules30092004

 

  1. Veronica A, Agrawal A, Gopenath T, Basalingappa KM, Gobianand K. Impact of metallic nanoparticles for tissue engineering and regenerative medicine. In: Metals in Medicine. Florida: Apple Academic Press; 2025. p. 237-289.

 

  1. Correia TR, Figueira DR, de Sá KD, et al. 3D Printed scaffolds with bactericidal activity aimed for bone tissue regeneration. Int J Biol Macromol. 2016;93:1432-1445. doi: 10.1016/j.ijbiomac.2016.06.004

 

  1. Weng W, Li X, Nie W, et al. One-step preparation of an AgNP-nHA@ RGO three-dimensional porous scaffold and its application in infected bone defect treatment. Int J Nanomed. 2020;15:5027-5042. doi: 10.2147/IJN.S241859

 

  1. Liao C, Li Y, Tjong SC. Bactericidal and cytotoxic properties of silver nanoparticles. Int J Mol Sci. 2019;20(2):449. doi: 10.3390/ijms20020449

 

  1. Ferdous Z, Nemmar A. Health impact of silver nanoparticles: A review of the biodistribution and toxicity following various routes of exposure. Int J Mol Sci. 2020;21(7):2375. doi: 10.3390/ijms21072375

 

  1. Zheng Z, Yin W, Zara JN, et al. The use of BMP-2 coupled - Nanosilver-PLGA composite grafts to induce bone repair in grossly infected segmental defects. Biomaterials. 2010;31(35):9293-9300. doi: 10.1016/j.biomaterials.2010.08.041

 

  1. Noga M, Milan J, Frydrych A, Jurowski K. Toxicological aspects, safety assessment, and green toxicology of silver nanoparticles (AgNPs)-critical review: State of the art. Int J Mol Sci. 2023;24(6):5133. doi: 10.3390/ijms24065133

 

  1. Bamal D, Singh A, Chaudhary G, et al. Silver nanoparticles biosynthesis, characterization, antimicrobial activities, applications, cytotoxicity and safety issues: An updated review. Nanomaterials. 2021;11(8):2086. doi: 10.3390/nano11082086

 

  1. Ninan N, Goswami N, Vasilev K. The impact of engineered silver nanomaterials on the immune system. Nanomaterials. 2020;10(5):967. doi: 10.3390/nano10050967

 

  1. Muhammad Q, Jang Y, Kang SH, Moon J, Kim WJ, Park H. Modulation of immune responses with nanoparticles and reduction of their immunotoxicity. Biomater Sci. 2020;8(6):1490-1501. doi: 10.1039/C9BM01643K

 

  1. Suliman S, Mieszkowska A, Folkert J, et al. Immune-instructive copolymer scaffolds using plant-derived nanoparticles to promote bone regeneration. Inflamm Regen. 2022;42(1):12. doi: 10.1186/s41232-022-00196-9

 

  1. Li Y, Yang C, Yin X, et al. Inflammatory responses to micro/ nano-structured titanium surfaces with silver nanoparticles in vitro. J Mater Chem B. 2019;7(22):3546-3559. doi: 10.1039/C8TB03245A

 

  1. Rodrigues AS, Batista JGS, Rodrigues MÁV, et al. Advances in silver nanoparticles: A comprehensive review on their potential as antimicrobial agents and their mechanisms of action elucidated by proteomics. Front Microbiol. 2024;15:1440065. doi: 10.3389/fmicb.2024.1440065

 

  1. Yang H, Niu S, Guo M, Xue Y. Molecular mechanisms of silver nanoparticle-induced neurotoxic injury and new perspectives for its neurotoxicity studies: A critical review. Environ Pollut. 2024;362:124934. doi: 10.1016/j.envpol.2024.124934

 

  1. Sousa A, Azevedo R, Costa VM, et al. Biodistribution and intestinal inflammatory response following voluntary oral intake of silver nanoparticles by C57BL/6J mice. Arch Toxicol. 2023;97(10):2643-2657. doi: 10.1007/s00204-023-03558-5

 

  1. Piao MJ, Kang KA, Fernando PDSM, Herath HMUL, Hyun JW. Silver nanoparticle-induced cell damage via impaired mtROS-JNK/MnSOD signaling pathway. Toxicol Mech Methods. 2024;34(7):803-812. doi: 10.1080/15376516.2024.2350595

 

  1. Tareq M, Khadrawy YA, Rageh MM, Mohammed HS. Dose-dependent biological toxicity of green synthesized silver nanoparticles in rat’s brain. Sci Rep. 2022;12(1):22642. doi: 10.1038/s41598-022-27171-1

 

  1. Shah DD, Chorawala MR, Mansuri MKA, Parekh PS, Singh S, Prajapati BG. Biogenic metallic nanoparticles: From green synthesis to clinical translation. Naunyn- Schmiedebergs Arch Pharmacol. 2024;397(11):8603-8631. doi: 10.1007/s00210-024-03236-y

 

  1. Patel D, Chaturwedi AK, Kashyap NK, Roymahapatra G, Hait M. Quality control and standardization of nanomaterials. In: Thakur A, Kumar A, editors. Sustainability, Safety, and Applications of Nanomaterials-Based Corrosion Inhibitors. Hershey, PA, USA: IGI Global Scientific Publishing; 2024. p. 297-325.

 

  1. Pofali P, Shirolikar S, Borde L, Pattani A, Dandekar P, Jain R. Synthesis and antibacterial activity of water-dispersible silver nanoparticles via micellar nanoreactors. Mater Res Express. 2018;5(4):045004. doi: 10.1088/2053-1591/aab62a

 

  1. Babu PJ, Tirkey A, Paul AA, et al. Advances in nano silver-based biomaterials and their biomedical applications. Eng Regener. 2024;5:326-341. doi: 10.1016/j.engreg.2024.07.001

 

  1. ISO. Biological Evaluation of Medical Devices-Part 5: Tests for in Vitro Cytotoxicity. Switzerland: ISO; 2009.

 

  1. Schuh JC, Funk KA. Compilation of international standards and regulatory guidance documents for evaluation of biomaterials, medical devices, and 3-D printed and regenerative medicine products. Toxicol Pathol. 2019;47(3):344-357. doi: 10.1177/0192623318804121

 

  1. Gruber S, Nickel A. Toxic or not toxic? The specifications of the standard ISO 10993-5 are not explicit enough to yield comparable results in the cytotoxicity assessment of an identical medical device. Front Med Technol. 2023;5:1195529. doi: 10.3389/fmedt.2023.1195529

 

  1. Salas-Orozco M, Niño-Martínez N, Martínez-Castañón GA, Méndez FT, Jasso MEC, Ruiz F. Mechanisms of resistance to silver nanoparticles in endodontic bacteria: A literature review. J Nanomat. 2019;2019(1):7630316. doi: 10.1155/2019/7630316

 

  1. Zhao H, Wang M, Cui Y, Zhang C. Can we arrest the evolution of antibiotic resistance? The differences between the effects of silver nanoparticles and silver ions. Environ Sci Technol. 2022;56(8):5090-5101. doi: 10.1021/acs.est.2c00116

 

  1. Raza S, Matuła K, Karoń S, Paczesny J. Resistance and adaptation of bacteria to non-antibiotic antibacterial agents: Physical stressors, nanoparticles, and bacteriophages. Antibiotics. 2021;10(4):435. doi: 10.3390/antibiotics10040435

 

  1. Sun R, Cui Y, Wu Y, et al. Overcoming nanosilver resistance: Resensitizing bacteria and targeting evolutionary mechanisms. ACS Nano. 2024;19(1):1702-1712. doi: 10.1021/acsnano.4c15607

 

  1. Ying D, Zhang T, Qi M, Han B, Dong B. Artificial bone materials for infected bone defects: Advances in antimicrobial functions. ACS Biomater Sci Eng. 2025;11(4):2008-2036. doi: 10.1021/acsbiomaterials.4c01940

 

  1. Chakraborty D, Yurdusen A, Mouchaham G, Nouar F, Serre C. Large-scale production of metal-organic frameworks. Adv Funct Mater. 2024;34(43):2309089. doi: 10.1002/adfm.202309089

 

  1. Nowrouzi A, Meghrazi K, Golmohammadi T, et al. Cytotoxicity of subtoxic AgNP in human hepatoma cell line (HepG2) after long-term exposure. Iran Biomed J. 2010;14(1-2):23.

 

  1. Grün AL, Straskraba S, Schulz S, Schloter M, Emmerling C. Long-term effects of environmentally relevant concentrations of silver nanoparticles on microbial biomass, enzyme activity, and functional genes involved in the nitrogen cycle of loamy soil. J Environ Sci. 2018;69:12-22. doi: 10.1016/j.jes.2018.04.013

 

  1. Karpiński R, Szabelski J, Maksymiuk J. Effect of physiological fluids contamination on selected mechanical properties of acrylate bone cement. Materials (Basel). 2019;12(23):3963. doi: 10.3390/ma12233963.

 

  1. Karpiński R, Szabelski J. Mechanical properties and functional assessment of PMMA bone cements modified with glassy carbon. J Funct Biomater. 2025;16(7):254. doi: 10.3390/jfb16070254

 

  1. Karpiński R, Szabelski J, Krakowski P, Jojczuk M, Jonak J, Nogalski A. Evaluation of the effect of selected physiological fluid contaminants on the mechanical properties of selected medium-viscosity PMMA bone cements. Materials (Basel). 2022;15(6):2197. doi: 10.3390/ma15062197

 

  1. Borthakur PP, Das A, Sahariah JJ, Pramanik P, Baruah E, Pathak K. Revolutionizing patient care: 3D printing for customized medical devices and therapeutics. Biomed Mater Devices. 2025:1-28. doi: 10.1007/s44174-025-00324-2

 

  1. Ongaro AE, Ndlovu Z, Sollier E, et al. Engineering a sustainable future for point-of-care diagnostics and single-use microfluidic devices. Lab Chip. 2022;22(17):3122-3137. doi: 10.1039/D2LC00380E

 

  1. Plebani M, Nichols JH, Luppa PB, et al. Point-of-care testing: State-of-the art and perspectives. Clin Chem Lab Med. 2025;63(1):35-51. doi: 10.1515/cclm-2024-0675

 

  1. Feng H, Dunn ZD, Kargupta R, et al. Pioneering just-in-time (JIT) strategy for accelerating Raman method development and implementation for biologic continuous manufacturing. Anal Chem. 2024;96(7):3168-3176. doi: 10.1021/acs.analchem.3c05628

 

  1. Hang Y, Wang A, Wu N. Plasmonic silver and gold nanoparticles: Shape-and structure-modulated plasmonic functionality for point-of-caring sensing, bio-imaging and medical therapy. Chem Soc Rev. 2024;53(6):2932-2971. doi: 10.1039/D3CS00793F

 

  1. Pasparakis G. Recent developments in the use of gold and silver nanoparticles in biomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022;14(5):e1817. doi: 10.1002/wnan.1817

 

  1. Alzoubi F, BaniHani W, BaniHani R, Al-Khateeb H, Al-Qadi M, Bataineh QA. Synthesis and characterization of silver nanoparticles (Ag), magnetite nanoparticles (Fe3O4), and magnetite/silver core-shell (Fe3O4/Ag) nanoparticles, and their application against drug-resistant bacteria. J Cluster Sci. 2024;35(8):2979-2989. doi: 10.1007/s10876-024-02708-8

 

  1. Mira M, Wibowo A, Tajalla GUN, Cooper G, Bartolo PJDS, Barlian A. Osteogenic potential of a 3D printed silver nanoparticle-based electroactive scaffold for bone tissue engineering using human Wharton’s jelly mesenchymal stem cells. Mater Adv. 2023;4(23):6407-6418. doi: 10.1039/D3MA00332A

 

  1. Ferrara V, Perfili C, Artemi G, et al. Advanced approaches in skin wound healing-a review on the multifunctional properties of MXenes in therapy and sensing. Nanoscale. 2024;16:18684-18714. doi: 10.1039/D4NR02843K

 

  1. Daoud GE, Pezzutti DL, Dolatowski CJ, et al. Establishing a point-of-care additive manufacturing workflow for clinical use. J Mater Res. 2021;36(19):3761-3780. doi: 10.1557/s43578-021-00270-x

 

  1. Singh S, Nyberg EL, O’Sullivan AN, et al. Point-of-care treatment of geometrically complex midfacial critical-sized bone defects with 3D-Printed scaffolds and autologous stromal vascular fraction. Biomaterials. 2022;282:121392. doi: 10.1016/j.biomaterials.2022.121392

 

  1. Teo AQA, Ng DQK, O’Neill GK. Point-of-care 3D printing: A feasibility study of using 3D printing for orthopaedic trauma. Injury. 2021;52(11):3286-3292. doi: 10.1016/j.injury.2021.02.041

 

  1. Thieringer FM, Honigmann P, Sharma N. Medical additive manufacturing in surgery: Translating innovation to the point of care. In: The Future Circle of Healthcare: AI, 3D Printing, Longevity, Ethics, and Uncertainty Mitigation. Berlin: Springer; 2022. p. 359-376.
Share
Back to top
INNOSC Theranostics and Pharmacological Sciences, Electronic ISSN: 2705-0823 Print ISSN: 2705-0734, Published by AccScience Publishing