AccScience Publishing / ITPS / Volume 8 / Issue 1 / DOI: 10.36922/itps.4407
ORIGINAL RESEARCH ARTICLE

BDNF-AS as a promising downregulated biomarker for multiple sclerosis pathogenesis and diagnosis

Ahmed Kamal1,2* Menha Swellam3 Nevin M. Shalaby4 Marwa K. Darwish1 Eslam M. El-Nahrery1
Show Less
1 Department of Biochemistry, Faculty of Science, Suez University, PO Box 43518 Suez, Egypt
2 Biotechnology Program, Basic and Applied Science Institute-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, PO Box 21934, Egypt
3 Department of Biochemistry, Biotechnology Research Institute, High Throughput Molecular and Genetic Laboratory, Central Laboratories Network and the Centers of Excellence, National Research Centre, Dokki, Giza, Egypt
4 Department of Neurology, Faculty of Medicine, Cairo University, Giza, Egypt
INNOSC Theranostics and Pharmacological Sciences 2025, 8(1), 91–100; https://doi.org/10.36922/itps.4407
Submitted: 1 August 2024 | Revised: 6 January 2025 | Accepted: 21 January 2025 | Published: 21 February 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Multiple sclerosis (MS) is a prevalent neurological disorder affecting the central nervous system, with a global incidence exceeding 2.5 million cases. Brain-derived neurotrophic factor-antisense (BDNF-AS), a long non-coding RNA, has been identified as a factor that negatively influences the expression of brain-derived neurotrophic factor, a neurotrophin protein that exhibits heightened expression within actively demyelinating lesions in MS. This study aims to assess the relative expression of BDNF-AS across all MS subtypes, evaluate its diagnostic accuracy, and explore correlations between BDNF-AS expression and disease parameters. Quantitative real-time polymerase chain reaction was employed to quantify the expression levels of BDNF-AS in the serum samples of 54 individuals diagnosed with various types of MS and 20 healthy controls. Statistical analyses were performed to assess the correlation and diagnostic efficacy of BDNF-AS expression levels. The expression of BDNF-AS was markedly reduced in individuals with MS compared to the control group (P < 0.01). Notably, the highest expression levels were observed in patients diagnosed with secondary progressive MS. Using a defined cutoff value of 0.31, and the findings suggest that BDNF-AS expression in serum has notable potential as a specific and sensitive diagnostic marker for MS. In conclusion, this study provides a comprehensive evaluation of BDNF-AS across all MS subtypes, highlighting its diagnostic accuracy and the association between elevated BDNF-AS expression and disease progression in secondary progressive MS. Further research is needed to validate these results.

Graphical abstract
Keywords
Multiple sclerosis
Brain-derived neurotrophic factor
Brain-derived neurotrophic factor-antisense
Relapsing-remitting multiple sclerosis
Secondary progressive multiple sclerosis
Primary progressive multiple sclerosis
Gene expression
Funding
None.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Oyinloye BE, Iwaloye O, Ajiboye BO. Polypharmacology of Gongronema latifolium leaf secondary metabolites against protein kinases implicated in Parkinson’s disease and Alzheimer’s disease. Sci Afr. 2021;12:e00826. doi: 10.1016/j.sciaf.2021.e00826

 

  1. Yang X, Wu Y, Zhang B, Ni B. Noncoding RNAs in multiple sclerosis. Clin Epigenetics. 2018;10(1):149. doi: 10.1186/s13148-018-0586-9

 

  1. Browne P, Chandraratna D, Angood C, et al. Atlas of multiple sclerosis 2013: A growing global problem with widespread inequity. Neurology. 2014;83(11):1022-1024. doi: 10.1212/WNL.0000000000000768

 

  1. Machcińska M, Kierasińska M, Michniowska M, et al. Reduced expression of PD-1 in circulating CD4+ and CD8+ tregs is an early feature of RRMS. Int J Mol Sci. 2022;23(6):3185. doi: 10.3390/ijms23063185

 

  1. Attfield KE, Jensen LT, Kaufmann M, Friese MA, Fugger L. The immunology of multiple sclerosis. Nat Rev Immunol. 2022;22:734-750. doi: 10.1038/s41577-022-00718-z

 

  1. Sarhan AA, El-Sharkawy KA, Mahmoudy AM, Hashim NA. Burden of multiple sclerosis: Impact on the patient, family and society. Mult Scler Relat Disord. 2022;63:103864. doi: 10.1016/j.msard.2022.103864

 

  1. Dutta R, Trapp BD. Pathogenesis of axonal and neuronal damage in multiple sclerosis. Neurology. 2007;68(22 Suppl 3):S22-S31, discussion S43-S54. doi: 10.1212/01.wnl.0000275229.13012.32

 

  1. Miller A. Handbook of Relapsing-Remitting Multiple Sclerosis. Germany: Springer; 2017. doi: 10.1007/978-3-319-40628-2

 

  1. Harris VK, Sadiq SA. Disease biomarkers in multiple sclerosis. Mol Diagn Ther. 2009;13(4):225-244. doi: 10.1007/BF03256329

 

  1. Xi J, Sun Q, Ma L, Kang J. Long non-coding RNAs in glioma progression. Cancer Lett. 2018;419:203-209. doi: 10.1016/j.canlet.2018.01.041

 

  1. Kamal A, Swellam M, Shalaby NM, Darwish MK, El-Nahrery EM. Silent players, loud impact: Unveiling the therapeutic potentials of lncRNAs. J Transl Genet Genom. 2024;8:162-185. doi: 10.20517/jtgg.2023.55

 

  1. Malik B, Feng FY. Long non-coding RNAs in prostate cancer: Overview and clinical implications. Asian J Androl. 2016;18(4):568. doi: 10.1016/j.canlet.2019.08.010

 

  1. Zhan L, Li J, Wei B. Long non-coding RNAs in ovarian cancer. J Exp Clin Cancer Res. 2018;37(1):120. doi: 10.1186/s13046-018-0793-4

 

  1. Zeng T, Li L, Zhou Y, Gao L. Exploring long noncoding RNAs in glioblastoma: Regulatory mechanisms and clinical potentials. Int J Genomics. 2018;2018:2895958. doi: 10.1155/2018/2895958

 

  1. Bridges MC, Daulagala AC, Kourtidis A. LNCcation: lncRNA localization and function. J Cell Biol. 2021;220(2):e202009045. doi: 10.1083/jcb.202009045

 

  1. Lein ES, Hawrylycz MJ, Ao N, et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 2007;445(7124):168-176. doi: 10.1038/nature05453

 

  1. Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS. Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci. 2008;105(2):716-721. doi: 10.1073/pnas.0706729105

 

  1. Cuevas-Diaz Duran R, Wei H, Kim DH, Wu JQ. Invited review: Long non-coding RNAs: Important regulators in the development, function and disorders of the central nervous system. Neuropathol Appl Neurobiol. 2019;45(6):538-556. doi: 10.1111/nan.12541

 

  1. Ghafouri-Fard S, Khoshbakht T, Taheri M, Ghanbari M. A concise review on the role of BDNF-AS in human disorders. Biomed Pharmacother. 2021;142:112051. doi: 10.1016/j.biopha.2021.112051

 

  1. Shkundin A, Halaris A. Associations of BDNF/BDNF-AS SNPs with depression, schizophrenia, and bipolar disorder. J Pers Med. 2023;13(9):1395. doi: 10.3390/jpm13091395

 

  1. Zheng X, Lin C, Li Y, Ye J, Zhou J, Guo P. Long noncoding RNA BDNF-AS regulates ketamine-induced neurotoxicity in neural stem cell derived neurons. Biomed Pharmacother. 2016;82:722-728. doi: 10.1016/j.biopha.2016.05.050

 

  1. Qiao LX, Zhao RB, Wu MF, Zhu LH, Xia ZK. Silencing of long non-coding antisense RNA brain-derived neurotrophic factor attenuates hypoxia/ischemia-induced neonatal brain injury. Int J Mol Med. 2020;46(2):653-662. doi: 10.3892/ijmm.2020.4625

 

  1. Ksiazek-Winiarek DJ, Szpakowski P, Glabinski A. Neural plasticity in multiple sclerosis: The functional and molecular background. Neural Plast. 2015;2015:307175. doi: 10.1155/2015/307175

 

  1. Nociti V. What is the role of brain derived neurotrophic factor in multiple sclerosis neuroinflammation? Neuroimmunol Neuroinflamm. 2020;7(3):291-299. doi: 10.20517/2347-8659.2020.25

 

  1. Islas-Hernandez A, Aguilar-Talamantes HS, Bertado-Cortes B, et al. BDNF and Tau as biomarkers of severity in multiple sclerosis. Biomark Med. 2018;12(7):717-726. doi: 10.2217/bmm-2017-0374

 

  1. Tongiorgi E, Sartori A, Baj G, et al. Altered serum content of brain-derived neurotrophic factor isoforms in multiple sclerosis. J Neurol Sci. 2012;320(1-2):161-165. doi: 10.1016/j.jns.2012.07.016

 

  1. Naegelin Y, Saeuberli K, Schaedelin S, et al. Levels of brain-derived neurotrophic factor in patients with multiple sclerosis. Ann Clin Transl Neurol. 2020;7(11):2251-2261. doi: 10.1002/acn3.51215

 

  1. Azoulay D, Vachapova V, Shihman B, Miler A, Karni A. Lower brain-derived neurotrophic factor in serum of relapsing remitting MS: Reversal by glatiramer acetate. J Neuroimmunol. 2005;167(1-2):215-218. doi: 10.1016/j.jneuroim.2005.07.001

 

  1. Hamamcioglu K, Reder AT. Interferon-β regulates cytokines and BDNF: Greater effect in relapsing than in progressive multiple sclerosis. Mult Scler. 2007;13(4):459-470. doi: 10.1177/1352458506069672

 

  1. Karimi N, Ashourizadeh H, Akbarzadeh Pasha B, et al. Blood levels of brain-derived neurotrophic factor (BDNF) in people with multiple sclerosis (MS): A systematic review and meta-analysis. Mult Scler Relat Disord. 2022;65:103984. doi: 10.1016/j.msard.2022.103984

 

  1. Gharzi V, Ganji M, Sayad A, Mazdeh M, Arsang-Jang S, Taheri M. Expression analysis of BDNF gene and BDNF-As long noncoding RNA in whole blood samples of multiple sclerosis patients: Not always a negative correlation between them. Iran J Allergy Asthma Immunol. 2018;17(6):548-556.

 

  1. World Medical Association. World medical association declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191-2194. doi: 10.1001/jama.2013.281053

 

  1. Polman CH, Reingold SC, Banwell B, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011;69(2):292-302. doi: 10.1002/ana.22366

 

  1. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology. 1983;33(11):1444-1452. doi: 10.1212/wnl.33.11.1444

 

  1. Zweig MH, Campbell G. Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine. Clin Chem. 1993;39(4):561-577.

 

  1. Pisani A, Paciello F, Del Vecchio V, et al. The role of BDNF as a biomarker in cognitive and sensory neurodegeneration. J Pers Med. 2023;13(4):652. doi: 10.3390/jpm13040652

 

  1. Ikeda Y, Yahata N, Ito I, et al. Low serum levels of brain-derived neurotrophic factor and epidermal growth factor in patients with chronic schizophrenia. Schizophr Res. 2008;101(1-3):58-66. doi: 10.1016/j.schres.2008.01.017

 

  1. Ahmad R, Azman KF, Yahaya R, et al. Brain-derived neurotrophic factor (BDNF) in schizophrenia research: A quantitative review and future directions. AIMS Neurosci. 2023;10(1):5-3. doi: 10.3934/Neuroscience.2023002

 

  1. Molendijk ML, Spinhoven P, Polak M, Bus BAA, Penninx B, Elzinga BM. Serum BDNF concentrations as peripheral manifestations of depression: Evidence from a systematic review and meta-analyses on 179 associations (N= 9484). Mol Psychiatry. 2014;19(7):791-800. doi: 10.1038/mp.2013.105

 

  1. Zarza-Rebollo JA, López-Isac E, Rivera M, Gómez- Hernández L, Pérez-Gutiérrez AM, Molina E. The relationship between BDNF and physical activity on depression. Prog Neuropsychopharmacol Biol Psychiatry. 2024;134:111033. doi: 10.1016/j.pnpbp.2024.111033

 

  1. Laske C, Stransky E, Leyhe T, et al. BDNF serum and CSF concentrations in Alzheimer’s disease, normal pressure hydrocephalus and healthy controls. J Psychiatr Res. 2007;41(5):387-394. doi: 10.1016/j.jpsychires.2006.01.014

 

  1. Lee JG, Shin BS, You YS, et al. Decreased serum brain-derived neurotrophic factor levels in elderly Korean with dementia. Psychiatry Investig. 2009;6(4):299. doi: 10.4306/pi.2009.6.4.299

 

  1. Zuccato C, Marullo M, Vitali B, et al. Brain-derived neurotrophic factor in patients with Huntington’s disease. PLoS One. 2011;6(8):e22966. doi: 10.1371/journal.pone.0022966

 

  1. Ciammola A, Sassone J, Cannella M, et al. Low brain‐derived neurotrophic factor (BDNF) levels in serum of Huntington’s disease patients. Am J Med Genet Part B: Neuropsychiatr Genet. 2007;144(4):574-577. doi: 10.1002/ajmg.b.30501

 

  1. Armeanu R, Mokkonen M, Crespi B. Meta-analysis of BDNF levels in autism. Cell Mol Neurobiol. 2017;37(5):949-954. doi: 10.1007/s10571-016-0415-7

 

  1. Modarresi F, Faghihi MA, Lopez-Toledano MA, et al. Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation. Nat Biotechnol. 2012;30(5):453-459. doi: 10.1038/nbt.2158

 

Share
Back to top
INNOSC Theranostics and Pharmacological Sciences, Electronic ISSN: 2705-0823 Print ISSN: 2705-0734, Published by AccScience Publishing