BDNF-AS as a promising downregulated biomarker for multiple sclerosis pathogenesis and diagnosis

Multiple sclerosis (MS) is a prevalent neurological disorder affecting the central nervous system, with a global incidence exceeding 2.5 million cases. Brain-derived neurotrophic factor-antisense (BDNF-AS), a long non-coding RNA, has been identified as a factor that negatively influences the expression of brain-derived neurotrophic factor, a neurotrophin protein that exhibits heightened expression within actively demyelinating lesions in MS. This study aims to assess the relative expression of BDNF-AS across all MS subtypes, evaluate its diagnostic accuracy, and explore correlations between BDNF-AS expression and disease parameters. Quantitative real-time polymerase chain reaction was employed to quantify the expression levels of BDNF-AS in the serum samples of 54 individuals diagnosed with various types of MS and 20 healthy controls. Statistical analyses were performed to assess the correlation and diagnostic efficacy of BDNF-AS expression levels. The expression of BDNF-AS was markedly reduced in individuals with MS compared to the control group (P < 0.01). Notably, the highest expression levels were observed in patients diagnosed with secondary progressive MS. Using a defined cutoff value of 0.31, and the findings suggest that BDNF-AS expression in serum has notable potential as a specific and sensitive diagnostic marker for MS. In conclusion, this study provides a comprehensive evaluation of BDNF-AS across all MS subtypes, highlighting its diagnostic accuracy and the association between elevated BDNF-AS expression and disease progression in secondary progressive MS. Further research is needed to validate these results.

- Oyinloye BE, Iwaloye O, Ajiboye BO. Polypharmacology of Gongronema latifolium leaf secondary metabolites against protein kinases implicated in Parkinson’s disease and Alzheimer’s disease. Sci Afr. 2021;12:e00826. doi: 10.1016/j.sciaf.2021.e00826
- Yang X, Wu Y, Zhang B, Ni B. Noncoding RNAs in multiple sclerosis. Clin Epigenetics. 2018;10(1):149. doi: 10.1186/s13148-018-0586-9
- Browne P, Chandraratna D, Angood C, et al. Atlas of multiple sclerosis 2013: A growing global problem with widespread inequity. Neurology. 2014;83(11):1022-1024. doi: 10.1212/WNL.0000000000000768
- Machcińska M, Kierasińska M, Michniowska M, et al. Reduced expression of PD-1 in circulating CD4+ and CD8+ tregs is an early feature of RRMS. Int J Mol Sci. 2022;23(6):3185. doi: 10.3390/ijms23063185
- Attfield KE, Jensen LT, Kaufmann M, Friese MA, Fugger L. The immunology of multiple sclerosis. Nat Rev Immunol. 2022;22:734-750. doi: 10.1038/s41577-022-00718-z
- Sarhan AA, El-Sharkawy KA, Mahmoudy AM, Hashim NA. Burden of multiple sclerosis: Impact on the patient, family and society. Mult Scler Relat Disord. 2022;63:103864. doi: 10.1016/j.msard.2022.103864
- Dutta R, Trapp BD. Pathogenesis of axonal and neuronal damage in multiple sclerosis. Neurology. 2007;68(22 Suppl 3):S22-S31, discussion S43-S54. doi: 10.1212/01.wnl.0000275229.13012.32
- Miller A. Handbook of Relapsing-Remitting Multiple Sclerosis. Germany: Springer; 2017. doi: 10.1007/978-3-319-40628-2
- Harris VK, Sadiq SA. Disease biomarkers in multiple sclerosis. Mol Diagn Ther. 2009;13(4):225-244. doi: 10.1007/BF03256329
- Xi J, Sun Q, Ma L, Kang J. Long non-coding RNAs in glioma progression. Cancer Lett. 2018;419:203-209. doi: 10.1016/j.canlet.2018.01.041
- Kamal A, Swellam M, Shalaby NM, Darwish MK, El-Nahrery EM. Silent players, loud impact: Unveiling the therapeutic potentials of lncRNAs. J Transl Genet Genom. 2024;8:162-185. doi: 10.20517/jtgg.2023.55
- Malik B, Feng FY. Long non-coding RNAs in prostate cancer: Overview and clinical implications. Asian J Androl. 2016;18(4):568. doi: 10.1016/j.canlet.2019.08.010
- Zhan L, Li J, Wei B. Long non-coding RNAs in ovarian cancer. J Exp Clin Cancer Res. 2018;37(1):120. doi: 10.1186/s13046-018-0793-4
- Zeng T, Li L, Zhou Y, Gao L. Exploring long noncoding RNAs in glioblastoma: Regulatory mechanisms and clinical potentials. Int J Genomics. 2018;2018:2895958. doi: 10.1155/2018/2895958
- Bridges MC, Daulagala AC, Kourtidis A. LNCcation: lncRNA localization and function. J Cell Biol. 2021;220(2):e202009045. doi: 10.1083/jcb.202009045
- Lein ES, Hawrylycz MJ, Ao N, et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 2007;445(7124):168-176. doi: 10.1038/nature05453
- Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS. Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci. 2008;105(2):716-721. doi: 10.1073/pnas.0706729105
- Cuevas-Diaz Duran R, Wei H, Kim DH, Wu JQ. Invited review: Long non-coding RNAs: Important regulators in the development, function and disorders of the central nervous system. Neuropathol Appl Neurobiol. 2019;45(6):538-556. doi: 10.1111/nan.12541
- Ghafouri-Fard S, Khoshbakht T, Taheri M, Ghanbari M. A concise review on the role of BDNF-AS in human disorders. Biomed Pharmacother. 2021;142:112051. doi: 10.1016/j.biopha.2021.112051
- Shkundin A, Halaris A. Associations of BDNF/BDNF-AS SNPs with depression, schizophrenia, and bipolar disorder. J Pers Med. 2023;13(9):1395. doi: 10.3390/jpm13091395
- Zheng X, Lin C, Li Y, Ye J, Zhou J, Guo P. Long noncoding RNA BDNF-AS regulates ketamine-induced neurotoxicity in neural stem cell derived neurons. Biomed Pharmacother. 2016;82:722-728. doi: 10.1016/j.biopha.2016.05.050
- Qiao LX, Zhao RB, Wu MF, Zhu LH, Xia ZK. Silencing of long non-coding antisense RNA brain-derived neurotrophic factor attenuates hypoxia/ischemia-induced neonatal brain injury. Int J Mol Med. 2020;46(2):653-662. doi: 10.3892/ijmm.2020.4625
- Ksiazek-Winiarek DJ, Szpakowski P, Glabinski A. Neural plasticity in multiple sclerosis: The functional and molecular background. Neural Plast. 2015;2015:307175. doi: 10.1155/2015/307175
- Nociti V. What is the role of brain derived neurotrophic factor in multiple sclerosis neuroinflammation? Neuroimmunol Neuroinflamm. 2020;7(3):291-299. doi: 10.20517/2347-8659.2020.25
- Islas-Hernandez A, Aguilar-Talamantes HS, Bertado-Cortes B, et al. BDNF and Tau as biomarkers of severity in multiple sclerosis. Biomark Med. 2018;12(7):717-726. doi: 10.2217/bmm-2017-0374
- Tongiorgi E, Sartori A, Baj G, et al. Altered serum content of brain-derived neurotrophic factor isoforms in multiple sclerosis. J Neurol Sci. 2012;320(1-2):161-165. doi: 10.1016/j.jns.2012.07.016
- Naegelin Y, Saeuberli K, Schaedelin S, et al. Levels of brain-derived neurotrophic factor in patients with multiple sclerosis. Ann Clin Transl Neurol. 2020;7(11):2251-2261. doi: 10.1002/acn3.51215
- Azoulay D, Vachapova V, Shihman B, Miler A, Karni A. Lower brain-derived neurotrophic factor in serum of relapsing remitting MS: Reversal by glatiramer acetate. J Neuroimmunol. 2005;167(1-2):215-218. doi: 10.1016/j.jneuroim.2005.07.001
- Hamamcioglu K, Reder AT. Interferon-β regulates cytokines and BDNF: Greater effect in relapsing than in progressive multiple sclerosis. Mult Scler. 2007;13(4):459-470. doi: 10.1177/1352458506069672
- Karimi N, Ashourizadeh H, Akbarzadeh Pasha B, et al. Blood levels of brain-derived neurotrophic factor (BDNF) in people with multiple sclerosis (MS): A systematic review and meta-analysis. Mult Scler Relat Disord. 2022;65:103984. doi: 10.1016/j.msard.2022.103984
- Gharzi V, Ganji M, Sayad A, Mazdeh M, Arsang-Jang S, Taheri M. Expression analysis of BDNF gene and BDNF-As long noncoding RNA in whole blood samples of multiple sclerosis patients: Not always a negative correlation between them. Iran J Allergy Asthma Immunol. 2018;17(6):548-556.
- World Medical Association. World medical association declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191-2194. doi: 10.1001/jama.2013.281053
- Polman CH, Reingold SC, Banwell B, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011;69(2):292-302. doi: 10.1002/ana.22366
- Kurtzke JF. Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology. 1983;33(11):1444-1452. doi: 10.1212/wnl.33.11.1444
- Zweig MH, Campbell G. Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine. Clin Chem. 1993;39(4):561-577.
- Pisani A, Paciello F, Del Vecchio V, et al. The role of BDNF as a biomarker in cognitive and sensory neurodegeneration. J Pers Med. 2023;13(4):652. doi: 10.3390/jpm13040652
- Ikeda Y, Yahata N, Ito I, et al. Low serum levels of brain-derived neurotrophic factor and epidermal growth factor in patients with chronic schizophrenia. Schizophr Res. 2008;101(1-3):58-66. doi: 10.1016/j.schres.2008.01.017
- Ahmad R, Azman KF, Yahaya R, et al. Brain-derived neurotrophic factor (BDNF) in schizophrenia research: A quantitative review and future directions. AIMS Neurosci. 2023;10(1):5-3. doi: 10.3934/Neuroscience.2023002
- Molendijk ML, Spinhoven P, Polak M, Bus BAA, Penninx B, Elzinga BM. Serum BDNF concentrations as peripheral manifestations of depression: Evidence from a systematic review and meta-analyses on 179 associations (N= 9484). Mol Psychiatry. 2014;19(7):791-800. doi: 10.1038/mp.2013.105
- Zarza-Rebollo JA, López-Isac E, Rivera M, Gómez- Hernández L, Pérez-Gutiérrez AM, Molina E. The relationship between BDNF and physical activity on depression. Prog Neuropsychopharmacol Biol Psychiatry. 2024;134:111033. doi: 10.1016/j.pnpbp.2024.111033
- Laske C, Stransky E, Leyhe T, et al. BDNF serum and CSF concentrations in Alzheimer’s disease, normal pressure hydrocephalus and healthy controls. J Psychiatr Res. 2007;41(5):387-394. doi: 10.1016/j.jpsychires.2006.01.014
- Lee JG, Shin BS, You YS, et al. Decreased serum brain-derived neurotrophic factor levels in elderly Korean with dementia. Psychiatry Investig. 2009;6(4):299. doi: 10.4306/pi.2009.6.4.299
- Zuccato C, Marullo M, Vitali B, et al. Brain-derived neurotrophic factor in patients with Huntington’s disease. PLoS One. 2011;6(8):e22966. doi: 10.1371/journal.pone.0022966
- Ciammola A, Sassone J, Cannella M, et al. Low brain‐derived neurotrophic factor (BDNF) levels in serum of Huntington’s disease patients. Am J Med Genet Part B: Neuropsychiatr Genet. 2007;144(4):574-577. doi: 10.1002/ajmg.b.30501
- Armeanu R, Mokkonen M, Crespi B. Meta-analysis of BDNF levels in autism. Cell Mol Neurobiol. 2017;37(5):949-954. doi: 10.1007/s10571-016-0415-7
- Modarresi F, Faghihi MA, Lopez-Toledano MA, et al. Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation. Nat Biotechnol. 2012;30(5):453-459. doi: 10.1038/nbt.2158