AccScience Publishing / ITPS / Volume 6 / Issue 1 / DOI: 10.36922/itps.252
Cite this article
39
Download
847
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
REVIEW

Impact of COVID-19 Pandemic on Cancer Patients with Pulmonary Fibrosis on Chemosurveillance

Kiran R. Dudhat*
Show Less
1 Department of Pharmaceutics, School of Pharmacy, RK University, Kasturbadham, Rajkot, Gujarat, India
INNOSC Theranostics and Pharmacological Sciences 2023, 6(1), 15–21; https://doi.org/10.36922/itps.252
Submitted: 8 November 2022 | Accepted: 21 March 2023 | Published: 3 April 2023
© 2023 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC BY-NC 4.0) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

COVID-19 infection and multiplication can be regulated with the aid of vaccines, immunosurveillance, and antiviral medications, such interferon and nucleoside analogs. The main concern with COVID-19 infection is the proliferation of the virus. However, there is no medication to treat pulmonary fibrosis, a life-threatening condition, once it has manifested. To treat critically ill patients with cancer and pulmonary fibrosis, it is imperative to develop cell differentiation agent (CDA) formulations that can kill cancer stem cells. Chemosurveillance for cancer patients no longer functions as intended. As a result, people with cancer are more likely to experience severe symptoms of pulmonary fibrosis. The harm to chemosurveillance caused by cancer treatments that focus on cell death, such as cytotoxic drugs, radiation, and immunotherapy, may gravely accelerate the development of fatal pulmonary fibrosis. To prevent the development of fatal pulmonary fibrosis symptoms, cancer patients should be advised against contracting COVID-19, but, if they do, targeted therapy should be their first choice. The purpose of this study was to highlight the significance of chemosurveillance in determining when fatal pulmonary fibrosis manifests after COVID-19 infection in cancer patients and to conceptualize CDA formulations that can be used to treat both pulmonary fibrosis and cancer. COVID-19 infection causes biological and immunological reactions that are similar to those of a wound, leading to the production of prostaglandins and tumor necrosis factor, which cause respiratory illness symptoms, such as fever and cough, and cachexia symptoms, respectively. This results in the breakdown of chemosurveillance, a natural defense mechanism that ensures optimal wound healing, thus further promoting the development of cancer and pulmonary fibrosis.

Keywords
Cancer
COVID-19
Cell differentiation agent formulations
Chemosurveillance
Pulmonary fibrosis
Wound healing
Funding
None.
References
[1]

Yang, L.; Liu, S.; Liu, J.; Zhang, Z.; Wan, X.; Huang, B.; Chen, Y.; Zhang, Y. COVID-19: Immunopathogenesis and Immunotherapeutics. Signal Transduct. Target Ther., 2020, 5(1), 128. 

[2]

Ciotti, M.; Ciccozzi, M.; Terrinoni, A.; Jiang, W.C.; Wang, C.B.; Bernardini, S. The COVID-19 Pandemic. Crit. Rev. Clin. Lab. Sci., 2020, 57(6), 365–88.

[3]

Le, T.T.; Andreadakis, Z.; Kumar, A.; Román, R.G.; Tollefsen, S.; Saville, M.; Mayhew, S. The COVID-19 Vaccine Development Landscape. Nat. Rev. Drug Discov., 2020, 19(5), 305–6.

[4]

Fauci, A.S.; Lane, H.C.; Redfield, R.R. Covid-19-Navigating the Uncharted. N. Engl. J. Med., 2020, 382, 1268–9.

[5]

Daniel, S.J. Education and the COVID-19 Pandemic. Prospects (Paris), 2020, 49(1), 91–6. 

[6]

Le, T.T.; Andreadakis, Z.; Kumar, A.; Román, R.G.; Tollefsen, S.; Saville, M.; Mayhew, S. The COVID-19 Vaccine Development Landscape. Nat. Rev. Drug Discov., 2020, 19(5), 305–6.

[7]

Velavan, T.P.; Meyer, C.G. The COVID-19 Epidemic. Trop. Med. Int. Health, 2020, 25(3), 278–80. 

[8]

Yuki, K.; Fujiogi, M.; Koutsogiannaki, S.J. COVID-19 Pathophysiology: A Review. Clin. Immunol., 2020, 215, 108427. 

[9]

Iba, T.; Levy, J.H.; Connors, J.M.; Warkentin, T.E.; Thachil, J.; Levi, M. The Unique Characteristics of COVID-19 Coagulopathy. Crit. Care, 2020, 24(1), 360.

[10]

Cao, X. COVID-19: Immunopathology and its Implications for Therapy. Nat. Rev. Immunol., 2020, 20(5), 269–70. 

[11]

Zhang, L.; Zhu, F.; Xie, L.; Wang, C.; Wang, J.; Chen, R.; Jia, P.; Guan, H.Q.; Peng, L.; Chen, Y.; Peng, P.; Zhang, P.; Chu, Q.; Shen, Q.; Wang, Y.; Xu, S.Y.; Zhao, J.P.; Zhou, M. Clinical Characteristics of COVID-19-Infected Cancer Patients: A Retrospective Case Study in Three Hospitals Within Wuhan, China. Ann. Oncol., 2020, 31(7), 894–901.

[12]

Luo, J.; Rizvi, H.; Preeshagul, I.R.; Egger, J.V.; Hoyos, D.; Bandlamudi, C.; McCarthy, C.G.; Falcon, C.J.; Schoenfeld, A.J.; Arbour, K.C.; Chaft, J.E.; Daly, R.M.; Drilon, A.; Eng, J.; Iqbal, A.; Lai, W.V.; Li, B.T.; Lito, P.; Namakydoust, A.; Ng, K.; Offin, M.; Paik, P.K.; Riely, G.J.; Rudin, C.M.; Yu, H.A.; Zauderer, M.G.; Donoghue, M.T.A.; Łuksza, M.; Greenbaum, B.D.; Kris, M.G.; Hellmann, M.D. COVID-19 in Patients with Lung Cancer. Ann. Oncol., 2020, 31(10), 1386–96.

[13]

Pinato, D.J.; Patel, M.; Scotti, L.; Colomba, E.; Dolly, S.; Loizidou, A.; Chester, J.; Mukherjee, U.; Zambelli, A.; Pria, A.D.; Aguilar-Company, J.; Bower, M.; Salazar, R.; Bertuzzi, A.; Brunet, J.; Lambertini, M.; Tagliamento, M.; Pous, A.; Sita-Lumsden, A.; Srikandarajah, K.; Colomba, J.; Pommeret, F.; Seguí, E.; Generali, D.; Grisanti, S.; Pedrazzoli, P.; Rizzo, G.; Libertini, M.; Moss, C.; Evans, J.S.; Russell, B.; Harbeck, N.; Vincenzi, B.; Biello, F.; Bertulli, R.; Ottaviani, D.; Liñan, R.; Rossi, S.; Carmona-García, M.C.; Tondini, C.; Fox, L.; Baggi, A.; Fotia, V.; Parisi, A.; Porzio, G.; Queirolo, P.; Cruz, C.A.; Saoudi-Gonzalez, N.; Felip, E.; Lloveras, A.R.; Newsom-Davis, T.; Sharkey, R.; Roldán, E.; Reyes, R.; Zoratto, F.; Earnshaw, I.; Ferrante, D.; Marco-Hernández, J.; Ruiz-Camps, I.; Gaidano, G.; Patriarca, A.; Bruna, R.; Sureda, A.; Martinez-Vila, C.; de Torre, A.S.; Berardi, R.; Giusti, R.; Mazzoni, F.; Guida, A.; Rimassa, L.; Chiudinelli, L.; Franchi, M.; Krengli, M.; Santoro, A.; Prat, A.; Tabernero, J.; Van Hemelrijck, M.; Diamantis, N.; Gennari, A.; Cortellini, A. Time-Dependent COVID-19 Mortality in Patients with Cancer: An Updated Analysis of the OnCovid Registry. JAMA Oncol., 2022, 8(1), 114–22.

[14]

Robinson, A.G.; Gyawali, B.; Evans, G. COVID-19 and Cancer: Do We Really Know What We Think We Know? Nat. Rev. Clin. Oncol., 2020, 17(7), 386–8.

[15]

Jee, J.; Foote, M.B.; Lumish, M.; Stonestrom, A.J.; Wills, B.; Narendra, V.; Avutu, V.; Murciano-Goroff, Y.R.; Chan, J.E.; Derkach, A.; Philip, J.; Belenkaya, R.; Kerpelev, M.; Maloy, M.; Watson, A.; Fong, C.; Janjigian, Y.; Diaz, L.A. Jr.; Bolton, K.L.; Pessin, M.S. Chemotherapy and COVID-19 Outcomes in Patients with Cancer. J. Clin. Oncol., 2020, 38(30), 3538–46.

[16]

Al-Quteimat, O.M.; Amer, A.M. The Impact of the COVID-19 Pandemic on Cancer Patients. Am. J. Clin. Oncol., 2020, 43, 452–5.

[17]

Grivas, P.; Khaki, A.; Wise-Draper, T.; French, B.; Hennessy, C.; Hsu, C.Y.; Shyr, Y.; Li, X.; Choueiri,T.K.; Painter, C.A.; Peters, S.; Rini, B.I.; Thompson, M.A.; Mishra, S.; Rivera, D.R.; Acoba, J.D.; Abidi, M.Z.; Bakouny, Z.; Bashir, B.; Bekaii-Saab, T.; Berg, S.; Bernicker, E.H.; Bilen, M.A.; Bindal, P.; Bishnoi, R.; Bouganim, N.; Bowles, D.W.; Cabal, A.; Caimi, P.F.; Chism, D.D.; Crowell, J.; Curran, C.; Desai, A.; Dixon, B.; Doroshow, D.B.; Durbin, E.B.; Elkrief, A.; Farmakiotis, D.; Fazio, A.; Fecher, L.A.; Flora, D.B.; Friese, C.R.; Fu, J.; Gadgeel, S.M.; Galsky, M.D.; Gill, D.M.; Glover, M.J.; Goyal, S.; Grover, P.; Gulati, S.; Gupta, S.; Halabi, S.; Halfdanarson, T.R.; Halmos, B.; Hausrath, D.J.; Hawley, J.E.; Hsu, E.; Huynh-Le, M.; Hwang, C.; Jani, C.; Jayaraj, A.; Johnson, D.B.; Kasi, A.; Khan, H.; Koshkin, V.S.; Kuderer, N.M.; Kwon, D.H.; Lammers, P.E.; Li, A.; Loaiza-Bonilla, A.; Low, C.A.; Lustberg, M.B.; Lyman, G.H.; McKay, R.R.; McNair, C.; Menon, H.; Mesa, R.A.; Mico, V.; Mundt, D.; Nagaraj, G.; Nakasone, E.S.; Nakayama, J.; Nizam, A.; Nock, N.L.; Park, C.; Patel, J.M.; Patel, K.G.; Peddi, P.; Pennell, N.A.; Piper-Vallillo, A.J.; Puc, M.; Ravindranathan, D.; Reeves, M.E.; Reuben, D.Y.; Rosenstein, L.; Rosovsky, R.P.; Rubinstein, S.M.; Salazar, M.; Schmidt, A.L.; Schwartz,G.K.; Shah, M.R.; Shah, S.A.; Shah, C.; Shaya, J.A.; Singh, S.R.K.; Smits, M.; Stockerl-Goldstein, K.E.; Stover, D.G.; Streckfuss, M.; Subbiah, S.; Tachiki, L.; Tadesse, E.; Thakkar, A.; Tucker, M.D.; Verma, A.K.; Vinh, D.C.; Weiss, M.; Wu, J.T.; Wulff-Burchfield, E.; Xie, Z.; Yu, P.P.; Zhang, T.; Zhou, A.Y.; Zhu, H.; Zubiri, L.; Shah, D.P.; Warner, J.L.; Lopes, G. Association of Clinical Factors and Recent Anticancer Therapy with COVID-19 Severity Among Patients with Cancer: A Report from the COVID-19 and Cancer Consortium. Ann. Oncol., 2021, 32(6), 787–800.

[18]

Tammemagi, C.M.; Neslund-Dudas, C.; Simoff, M.; Kvale, P. Impact of Comorbidity on Lung Cancer Survival. Int. J. Cancer, 2003, 103(6), 792–802.

[19]

Kirkland, J.; Tchkonia, T. Senolytic Drugs: From Discovery to Translation. J. Intern. Med., 2020, 288(5), 518–36.

[20]

Liau, M.C.; Baker, L.L. Cell Differentiation Agent Formulations to Win the War on Cancer. Cancer Sci. Res., 2022, 5(2), 1–4. 

[21]

Liau, M.C.; Kim, J.H.; Fruehauf, J.P. Arachidonic Acid and its Metabolites as Surveillance Differentiation Inducers to Protect Healthy People from Becoming Cancer Patients. Clin. Pharmacol. Toxicol. Res., 2021, 4(1), 7–10.

[22]

Stipanuk, M.H. Sulfur Amino Acid Metabolism: Pathways for Production and Removal of Homocysteine and Cysteine. Annu. Rev. Nutr., 2004, 24, 539–77.

[23]

Ajani, J.A.; Song, S.; Hochster, H.S.; Steinberg, I.B. Cancer Stem Cells: The Promise and the Potential. Semin. Oncol., 2015, 42 Suppl 1, S3–17.

[24]

Boregowda, S.V.; Booker, C.N.; Phinney, D.G. Mesenchymal Stem Cells: The Moniker Fits the Science. Stem Cells, 2018, 36(1), 7–10.

[25]

Zheng, H.; Ying, H.; Yan, H.; Kimmelman, A.C.; Hiller, D.J.; Chen, A.J.; Perry, S.R.; Tonon, G.; Chu, G.C.; Ding, Z.; Stommel, J.M.; Dunn, K.L.; Wiedemeyer, R.; You, M.J.; Brennan, C.; Wang, Y.A.; Ligon, K.L.; Wong, W.H.; Chin, L.; DePinho, R.A. p53 and Pten Control Neural and Glioma Stem/Progenitor Cell Renewal and Differentiation. Natrue, 2008, 455(7216), 1129–33.

[26]

Zheng, H.; Ying, H.; Yan, H.; Kimmelman, A.C.; Hiller, D.J.; Chen, A.J.; Perry, S.R.; Tonon, G.; Chu, G.C.; Ding, Z.; Stommel, J.M.; Dunn, K.L.; Wiedemeyer, R.; You, M.J.; Brennan, C.; Wang, Y.A.; Ligon, K.L.; Wong, W.H.; Chin, L.; dePinho, R.A. Pten and p53 Converge on c-Myc to Control Differentiation, Self-Renewal, and Transformation of Normal and Neoplastic Stem Cells in Glioblastoma. Cold Spring Harb. Symp. Quant. Biol., 2008, 73, 427–37.

[27]

De Oliveira Gonzalez, A.C.; Costa, T.F.; de Araújo Andrade, Z.; Medrado, A.R.A. Wound Healing-A Literature Review. An. Bras. Dermatol., 2016, 91, 614–20.

[28]

Demidova-Rice, T.N.; Hamblin, M.R.; Herman, I.M. Acute and Impaired Wound Healing: Pathophysiology and Current Methods for Drug Delivery, Part 1: Normal and Chronic Wounds: Biology, Causes, and Approaches to Care. Adv. Skin Wound Care, 2012, 25(7), 304–14.

[29]

Suleman, S.; Shukla, S.K.; Malhotra, N.; Bukkitgar, S.D.; Shetti, N.P.; Pilloton, R.; Narang, J.; Tan, Y.N.; Aminabhavi, T.M. Point of Care Detection of COVID-19: Advancement in Biosensing and Diagnostic Methods. Chem. Eng. J., 2021, 414, 128759.

[30]

Darby, I.A.; Laverdet, B.; Bonté, F.; Desmoulière, A. Fibroblasts and Myofibroblasts in Wound Healing. Clin. Cosmet. Investig. Dermatol., 2014, 7, 301–11.

[31]

Chattopadhyay, S.; Raines, R.T. Review Collagen-Based Biomaterials for Wound Healing. Biopolymers, 2014, 101(8), 821–33. 

[32]

Witte, M.B.; Barbul, A. Role of Nitric Oxide in Wound Repair. Am. J. Surg., 2002, 183(4), 406–12.

[33]

Tsamakis, K.; Gavriatopoulou, M.; Schizas, D.; Stravodimou, A.; Mougkou, A.; Tsiptsios, D.; Sioulas, GV.; Spartalis, E.; Sioulas, A.D.; Tsamakis, C.; Charalampakis, N.; Mueller, C.; Arya, D.; Zarogoulidis, P.; Spandidos, D.A.; Dimopoulos, M.A.; Papageorgiou, C.; Rizos, E. Oncology During the COVID-19 Pandemic: Challenges, Dilemmas and the Psychosocial Impact on Cancer Patients. Oncol. Lett., 2020, 20(1), 441–7.

[34]

Lou, E.; Teoh, D.; Brown, K.; Blaes, A.; Holtan, S.G.; Jewett, P.; Parsons, H.; Mburu, E.W.; Thomaier, L.; Hui, J.Y.C.; Nelson, H.H.; Vogel, R.I. Perspectives of Cancer Patients and Their Health During the COVID-19 Pandemic. PLoS One, 2020, 15(10), e0241741.

[35]

Richards, M.; Anderson, M.; Carter, P.; Ebert, B.L.; Mossialos, E. The Impact of the COVID-19 Pandemic on Cancer Care. Nat Cancer, 2020, 1(6), 565–7.

[36]

Jones, D.; Neal, R.D.; Duffy, S.R.G.; Scott, S.E.; Whitaker, K.L.; Brain, K. Impact of the COVID-19 Pandemic on the Symptomatic Diagnosis of Cancer: The View from Primary Care. Lancet Oncol., 2020, 21(6), 748–50.

[37]

Ventura, H.O. Profiles in cardiology. Rudolph Virchow and Cellular Pathology. Clin. Cardiol., 2000, 23(7):550–2.

[38]

Liau, M.C.; Baker, L.L. Study about Wound Healing, Evolution of Cancer and War on Cancer. Recent Dev. Med. Med. Res., 2021, 8, 116–24. 

[39]

Liau, M.C.; Craig, C.L. On the Mechanism of Wound Healing and the Impact of Wound on Cancer Evolution and Cancer Therapy. Int. Res. J. Oncol., 2021, 5, 25–31.

[40]

Dinmohamed, A.G.; Visser, O.; Verhoeven, R.H.A.; Louwman, M.W.J.; van Nederveen, F.H.; Willems, S.M.; Merkx, M.A.W.; Lemmens, V.E.P.; Nagtegaal, I.D.; Siesling, S. Fewer Cancer Diagnoses During the COVID-19 Epidemic in the Netherlands. Lancet Oncol., 2020, 21(6), 750–1.

[41]

Raymond, E.; Thieblemont, C.; Alran, S.; Faivre, S. Impact of the COVID-19 Outbreak on the Management of Patients with Cancer. Target Oncol., 2020, 15(3), 249–59. 

[42]

Nekhlyudov, L.; Duijts, S.; Hudson, S.V.; Jones, J.M.; Keogh, J.; Love, B.; Lustberg, M.; Smith, K.C.; Tevaarwerk, A.; Yu, X.; Feuerstein, M. Addressing the Needs of Cancer Survivors During the COVID-19 Pandemic. J. Cancer Surviv., 2020, 14, 601–6. 

[43]

Jeppesen, S.S.; Bentsen, K.K.; Jørgensen, T.L.; Holm, H.S.; Holst- Christensen, L.; Tarpgaard, L.S.; Dahlrot, R.H.; Eckhoff, L. Quality of Life in Patients with Cancer During the COVID-19 Pandemic-a Danish Cross-Sectional Study (COPICADS). Acta Oncol., 2021, 60(1), 4–12.

[44]

Rustad, M.L.; Koenig, T.H. Creating a Public Health Disinformation Exception to CDA Section 230. Syracuse L. Rev., 2021, 71, 1251.

[45]

Lin, L.A.; Zhang, L.; Kim, H.M.; Frost, M.C. Impact of COVID-19 Telehealth Policy Changes on Buprenorphine Treatment for Opioid Use Disorder. Am. J. Psychiatry, 2022, 179(10), 740–7.

[46]

Borga, L.G.; Clark, A.E.; D’Ambrosio, C.; Lepinteur, A. Characteristics Associated with COVID-19 Vaccine Hesitancy. Sci. Rep., 2022, 12(1), 12435.

[47]

Han, M.; Liew, C.T.; Zhang, H.W.; Chao, S.; Zheng, R.; Yip, K.T.; Song, Z.Y.; Li, H.M.; Geng, X.P.; Zhu, L.X.; Lin, J.J.; Marshall, K.W.; Liew, C.C. Novel Blood-Based, Five-Gene Biomarker Set for the Detection of Colorectal Cancer. Clin. Cancer Res., 2008, 14(2), 455–60.

[48]

Park, C. Immunoengineering Approaches for the Treatment of Cancer and Prevention of Infectious Diseases. University of Michigan, United States, 2021.

[49]

Fu, J.; Kanne, D.B.; Leong, M.; Glickman, L.H.; McWhirter, S.M.; Lemmens, E.; Mechette, K.; Leong, J.J.; Lauer, P.; Liu, W.; Sivick, K.E.; Zeng, Q.; Soares, K.C.; Zheng, L.; Portnoy, D.A.; Woodward, J.J.; Pardoll, D.M.; Dubensky, T.W. Jr.; Kim, Y. STING Agonist Formulated Cancer Vaccines can Cure Established Tumors Resistant to PD-1 Blockade. Sci. Transl. Med., 2015, 7(283), 283ra52.

[50]

Osterman, T.J.; Terry, M.; Miller, R.S. Improving Cancer Data Interoperability: The Promise of the Minimal Common Oncology Data Elements (mCODE) Initiative. JCO Clin. Cancer Inform., 2020, 4, 993–1001.

[51]

Amdal, C.D.; Falk, R.S.; Singer, S.; Pe, M.; Piccinin, C.; Bottomley, A.; Appiah, L.T.; Arraras, J.I.; Bayer, O.; Buanes, E.A.; Darlington, A.S.; Arbanas, G.D.; Hofsø, K.; Holzner, B.; Sahlstrand-Johnson, P.; Kuliś, D.; Parmar, G.; Abu Rmeileh, N.M.E.; Schranz, M.; Sodergren, S.; Bjordal, K. A Multicenter International Prospective Study of the Validity and Reliability of a COVID-19- Specific Health-Related Quality of Life Questionnaire. Qual. Life Res., 2022, 32, 447–59.

[52]

Zhang, L.; Ye, Y.L.; Li, X.H.; Sun, Y.M. On the potential of all-boron fullerene B40 as a carrier for anti-cancer drug nitrosourea. J. Mol. Liquids, 2021, 342, 117533.

Conflict of interest
The author declares no conflicts of interests.
Share
Back to top
INNOSC Theranostics and Pharmacological Sciences, Electronic ISSN: 2705-0823 Published by AccScience Publishing