AccScience Publishing / IJB / Volume 10 / Issue 1 / DOI: 10.36922/ijb.1425
Cite this article
192
Download
574
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
RESEARCH ARTICLE

PBF-LB fabrication of microgrooves for induction of osteogenic differentiation of human mesenchymal stem cells

Aira Matsugaki1* Tadaaki Matsuzaka1 Toko Mori1 Mitsuka Saito1 Kazuma Funaoku1 Riku Yamano1 Ozkan Gokcekaya1 Ryosuke Ozasa1 Takayoshi Nakano1*
Show Less
1 Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
IJB 2024, 10(1), 1425 https://doi.org/10.36922/ijb.1425
Submitted: 30 December 2022 | Accepted: 8 August 2023 | Published: 9 January 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Stem cell differentiation has important implications for biomedical device design and tissue engineering. Recently, inherent material properties, including surface chemistry, stiffness, and topography, have been found to influence stem cell fate. Among these, surface topography is a key regulator of stem cells in contact with materials. The most important aspect of ideal bone tissue engineering is to control the organization of the bone extracellular matrix with fully differentiated osteoblasts. Here, we found that laser powder bed fusion (PBF-LB)-fabricated grooved surface inspired by the microstructure of bone, which induced human mesenchymal stem cell (hMSC) differentiation into the osteogenic lineage without any differentiation supplements. The periodic grooved structure was fabricated by PBF-LB which induced cell elongation facilitated by cytoskeletal tension along the grooves. This resulted in the upregulation of osteogenesis via Runx2 expression. The aligned hMSCs successfully differentiated into osteoblasts and further organized the bone mimetic-oriented extracellular matrix microstructure. Our results indicate that metal additive manufacturing technology has a great advantage in controlling stem cell fate into the osteogenic lineage, and in the construction of bone-mimetic microstructural organization. Our findings on material-induced stem cell differentiation under standard cell culture conditions open new avenues for the development of medical devices that realize the desired tissue regeneration mediated by regulated stem cell functions.

Keywords
Additive manufacturing
Laser powder bed fusion
Mesenchymal stem cells
Osteogenic differentiation
Bone microstructure
Funding
This research was funded by JST, CREST, JPMJCR22L5, JPMJCR2194, Japan, and JSPS KAKENHI (grant numbers JP21H05197, JP20H003080, and JP18H05254).
References
  1. Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med. 2019;4(1):22. doi: 10.1038/s41536-019-0083-6
  2. Grotheer V, Skrynecki N, Oezel L, Windolf J, Grassmann J. Osteogenic differentiation of human mesenchymal stromal cells and fibroblasts differs depending on tissue origin and replicative senescence. Sci Rep. 2021;11(1):11968. doi: 10.1038/s41598-021-91501-y
  3. Mazzoni E, Mazziotta C, Iaquinta MR, et al. Enhanced osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by a hybrid hydroxylapatite/ collagen scaffold. Front Cell Dev Biol. 2021;8:610570. doi: 10.3389/fcell.2020.610570
  4. Murphy W, McDevitt T, Engler AJ. Materials as stem cell regulators. Nat Mater. 2014;13(6):547-557. doi: 10.1038/nmat3937
  5. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4): 677-689. doi: 10.1016/j.cell.2006.06.044
  6. Park JS, Chu JS, Tsou AD, et al. The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF‐β. Biomaterials. 2011;32(16):3921-3930. doi: 10.1016/j.biomaterials.2011.02.019
  7. McMurray RJ, Gadegaard N, Tsimbouri PM, et al. Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency. Nat Mater. 2011;10(8):637-644. doi: 10.1038/nmat3058
  8. Dalby MJ, Gadegaard N, Tare T, et al. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater. 2007;6(12):997-1003. doi: 10.1038/nmat2013
  9. Barradas AM, Fernandes HA, Groen N, et al. A calcium-induced signaling cascade leading to osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells. Biomaterials. 2012;33(11):3205-3215. doi: 10.1016/j.biomaterials.2012.01.020
  10. Yang F, Yong D, Tu J, Zheng Q, Cai L, Wang L. Strontium enhances osteogenic differentiation of mesenchymal stem cells and in vivo bone formation by activating Wnt/catenin signaling. Stem Cells. 2011;29(6):981-991. doi: 10.1002/stem.646
  11. Jayasree A, Raveendran NT, Guo T, Ivanovski S, Gulati K. Electrochemically nano-engineered titanium: Influence of dual micro-nanotopography of anisotropic nanopores on bioactivity and antimicrobial activity. Mater Today Adv. 2022;15:100256. doi: 10.1016/j.mtadv.2022.100256
  12. Luo J, Walker M, Xiao Y, Donnelly H, Dalby MJ, Salmeron- Sanchez M. The influence of nanotopography on cell behaviour through interactions with the extracellular matrix – A review. Bioact Mater. 2022. 15:145-159. doi: 10.1016/j.bioactmat.2021.11.024
  13. Matsugaki A, Aramoto G, Ninomiya T, et al. Abnormal arrangement of a collagen/apatite extracellular matrix orthogonal to osteoblast alignment is constructed by a nanoscale periodic surface structure. Biomaterials. 2015. 37:134-143. doi: 10.1016/j.biomaterials.2014.10.025
  14. Frazier WE. Metal additive manufacturing: A review. J Mater Eng Perform. 2014;23(6):1917-1928. doi: 10.1007/s11665-014-0958-z
  15. Hagihara K, Nakano T. Control of anisotropic crystallographic texture in powder bed fusion additive manufacturing of metals and ceramics - A review. J Metals. 2022.74(4):1760-1773. doi: 10.1007/s11837-021-04966-7
  16. Matsugaki A, Aramoto G, Nakano T. The alignment of MC3T3-E1 osteoblasts on steps of slip traces introduced by dislocation motion. Biomaterials. 2012;33(30):7327-7335. doi: 10.1016/j.biomaterials.2012.06.022
  17. Matsugaki A, Isobe Y, Saku T, Nakano T. Quantitative regulation of bone-mimetic, oriented collagen/apatite matrix structure depends on the degree of osteoblast alignment on oriented collagen substrates. J Biomed Mater Res A. 2015;103(2):489-499. doi: 10.1002/jbm.a.35189
  18. Matsugaki A, Fujiwara N, Nakano T. Continuous cyclic stretch induces osteoblast alignment and formation of anisotropic collagen fiber matrix. Acta Biomater. 2013;9(7):7227-7235. doi: 10.1016/j.actbio.2013.03.015
  19. Ozasa R, Matsugaki A, Matsuzaka T, Ishimoto T, Yun H-S, Nakano T. Superior alignment of human iPSC-osteoblasts associated with focal adhesion formation stimulated by oriented collagen scaffold. Int J Mol Sci. 2021;22(12):1-11. doi: 10.3390/ijms22126232
  20. Nakano T, Kaibara K, Ishimoto T, Tabata Y, Umakoshi Y. Biological apatite (BAp) crystallographic orientation and texture as a new index for assessing the microstructure and function of bone regenerated by tissue engineering. Bone. 2012;51(4):741-747. doi: 10.1016/j.bone.2012.07.003
  21. Nakano T, Kaibara K, Tabata Y, et al. Unique alignment and texture of biological apatite crystallites in typical calcified tissues analyzed by microbeam X-ray diffractometer system. Bone. 2002;31(4):479-487. doi: 10.1016/s8756-3282(02)00850-5
  22. Ishimoto T, Nakano T, Umakoshi Y, Yamamoto M, Tabata Y. Degree of biological apatite c-axis orientation rather than bone mineral density controls mechanical function in bone regenerated using recombinant bone morphogenetic protein-2. J Bone Miner Res. 2013;28(5):1170-1179. doi: 10.1002/jbmr.1825
  23. Nakanishi Y, Matsugaki A, Kawahara K, Ninomiya T, Sawada H, Nakano T. Unique arrangement of bone matrix orthogonal to osteoblast alignment controlled by Tspan11-mediated focal adhesion assembly. Biomaterials. 2019;209:103-110. doi: 10.1016/j.biomaterials.2019.04.016
  24. Ishimoto T, Kobayashi Y, Takahata M, et al. Outstanding in vivo mechanical integrity of additively manufactured spinal cages with a novel “honeycomb tree structure” design via guiding bone matrix orientation. Spine J. 2022;22(10):1742-1757. doi: 10.1016/j.spinee.2022.05.006
  25. Matsugaki A, Ito M, Kobayashi Y, et al. Innovative design of bone quality-targeted intervertebral spacer: Accelerated functional fusion guiding oriented collagen/apatite microstructure without autologous bone graft. Spine J. 2022;23(4):609-620. doi: 10.1016/j.spinee.2022.12.011
  26. Kimura Y, Matsugaki A, Sekita A, Nakano T. Alteration of osteoblast arrangement via direct attack by cancer cells: New insights into bone metastasis. Sci Rep. 2017;7(1):1-11. doi: 10.1038/srep44824
  27. Leclech C, Villard C. Cellular and subcellular contact guidance on microfabricated substrates. Front Bioeng Biotechnol. 2020;8:551505. doi: 10.3389/fbioe.2020.551505
  28. Ramirez-San Juan GR, Gardel PW, Oakes ML. Contact guidance requires spatial control of leading-edge protrusion. Mol Biol Cell. 2017;28(8):1043-1053.
  29. Bade ND, Kamien RD, Assoian RK, et al. Curvature and Rho activation differentially control the alignment of cells and stress fibers. Sci Adv. 2017;3(9):e1700150. doi: 10.1126/sciadv.1700150
  30. Reynolds MJ, Hachicho C, Carl AG, Gong R, Alushin GM. Bending forces and nucleotide state jointly regulate F-actin structure. Nature. 2022;611(7935):380-386. doi: 10.1038/s41586-022-05366-w
  31. Steward AJ, Kelly DJ. Mechanical regulation of mesenchymal stem cell differentiation. J Anat. 2015;227(6):717-731. doi: 10.1111/joa.12243
  32. McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell. 2004;6(4):483-495. doi: 10.1016/s1534-5807(04)00075-9
  33. Pajerowski JD, Dahl KN, Zhong FL, et al. Physical plasticity of the nucleus in stem cell differentiation. Proc Natl Acad Sci USA. 2007;104(40):15619-15624. doi: 10.1073/pnas.0702576104
  34. Swift J, Ivanovska IL, Buxboim A, et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science. 2013;341(6149):1240104. doi: 10.1126/science.1240104
  35. Gokcekaya O, Ishimoto T, Nishikawa Y, et al. Novel single crystalline-like non-equiatomic TiZrHfNbTaMo bio-high entropy alloy (BioHEA) developed by laser powder bed fusion. Mater Res Lett. 2023;11(4):274-280. doi: 10.1080/21663831.2022.2147406
  36. Warnke PH, Douglas T, Wollny P, et al. Rapid prototyping: Porous titanium alloy scaffolds produced by selective laser melting for bone tissue engineering. Tissue Eng C. 2009;15(2):115-124. doi: 10.1089/ten.tec.2008.0288
  37. Hrabe NW, Heinl P, Bordia RK, Körner Carolin, Fernandes RJ. Maintenance of a bone collagen phenotype by osteoblast-like cells in 3D periodic porous titanium (Ti-6Al-4 V) structures fabricated by selective electron beam melting. Connect Tissue Res. 2013;54(6):351-360. doi: 10.3109/03008207.2013.822864
  38. Wysocki B, Idaszek J, Zdunek J, et al. The influence of selective laser melting (SLM) process parameters on in-vitro cell response. Int J Mol Sci. 2018;19(6):1619. doi: 10.3390/ijms19061619
  39. Weißmann V, Drescher P, Seitz H, et al. Effects of build orientation on surface morphology and bone cell activity of additively manufactured Ti6Al4V specimens. Materials. 2018;11(6):915. doi: 10.3390/ma11060915
  40. Papaefstathiou S, Larochette N, Liste RMV, et al. Three-dimensional printing of biomimetic titanium mimicking trabecular bone induces human mesenchymal stem cell proliferation: An in-vitro analysis. Spine. 2022;47(14):1027. doi: 10.1097/brs.0000000000004317
  41. Shen H, Liao C, Zhou J, Zhao K. Two-step laser based surface treatments of laser metal deposition manufactured Ti6Al4V components. J Manuf Process. 2021;64: 239-252. doi: 10.1016/j.jmapro.2021.01.028
  42. Wang C, Hu H, Li Z, et al. Enhanced osseointegration of titanium alloy implants with laser microgrooved surfaces and graphene oxide coating. ACS Appl Mater Interfaces. 2019;11(43):39470-39483. doi: 10.1021/acsami.9b12733
  43. Ninomiya JT, Struve JA, Krolikowski J, Hawkins Michael, Weihrauch D. Porous ongrowth surfaces alter osteoblast maturation and mineralization. J Biomed Mater Res A. 2015;103(1):276-281. doi: 10.1002/jbm.a.35140
Conflict of interest
The authors declare no conflicts of interest.
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing