AccScience Publishing / IJB / Volume 10 / Issue 1 / DOI: 10.36922/ijb.1102
RESEARCH ARTICLE

Controlled preparation of droplets for cell encapsulation by air-focused microfluidic bioprinting 

Chenjing Yang1,2,3† Wei Wu1† Yang 1†Gao Shuxing Lao4 Shikai Zhang4 Jianghui Tang1 Xingqun Pu1 Xingyu Lu5 Fangfu Ye3,6* Peng Zhao1* Dong Chen1,2,4*
Show Less
1 Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
2 Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
3 Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang Province, China
4 College of Energy Engineering and State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
5 Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Instrumentation and Service Center for Molecular Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
6 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
IJB 2024, 10(1), 1102 https://doi.org/10.36922/ijb.1102
Submitted: 19 June 2023 | Accepted: 9 August 2023 | Published: 8 January 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Microfluidics is a facile platform that manipulates fluids for the production of droplets, particles, and microcapsules. However, the application of microfluidics is limited to the manipulation of the droplet position and the presence of a continuous oil phase, which needs to be removed for biomedical applications. Here, we used air as the continuous phase and developed a facile method for droplet generation and patterning by air-focused microfluidic three-dimensional (3D) droplet printing (AFMDP). By tuning the viscous drag of a focused air flow, monodisperse droplets with tunable size were generated in a microfluidic device, and droplet patterns were designed by combining the control system of the 3D printer. When using droplets as templates, hydrogel particles were prepared by AFMDP and crosslinked in a CaCl2 bath. These hydrogel particles were proven to be good carriers for the cell culture, controlled release, and immune therapy using chimeric antigen receptor (CAR) T cells. Cell viability and activity results confirmed that encapsulation of CAR-T cells in hydrogel particles did not compromise their cell activity and functionality but facilitated their manipulation and cell culture. Therefore, the AFMDP system provided a versatile platform for the design of droplets, particles, and microcapsules for biomedical applications.

Keywords
Microfluidics
Droplet
3D printing
Particle
Funding
This work is supported by the National Key Research and Development Program of China (2021YFC3001101), the National Natural Science Foundation of China (Grant No. 22278352), and a project supported by the Scientific Research Fund of Zhejiang University (Grant No. XY2022048).
References
  1. Kong L, Chen R, Wang X, et al. Controlled co-precipitation of biocompatible colorant-loaded nanoparticles by microfluidics for natural color drinks. Lab Chip. 2019;19(12):2089-2095. doi: 10.1039/C9LC00240E
  2. Matsuura-Sawada Y, Maeki M, Nishioka T, et al. Microfluidic device-enabled mass production of lipid-based nanoparticles for applications in nanomedicine and cosmetics. ACS Appl Nano Mater. 2022;5(6):7867-7876. doi: 10.1021/acsanm.2c00886
  3. Tomeh MA, Zhao X. Recent advances in microfluidics for the preparation of drug and gene delivery systems. Mol Pharm. 2020;17(12):4421-4434. doi: 10.1021/acs.molpharmaceut.0c00913
  4. Sun J, Chen J, Liu K, Zeng H. Mechanically strong proteinaceous fibers: Engineered fabrication by microfluidics. Engineering. 2021;7(5):615-623. doi: 10.1016/j.eng.2021.02.005
  5. Chen L, Yang C, Xiao Y, et al. Millifluidics, microfluidics, and nanofluidics: Manipulating fluids at varying length scales. Mater Today Nano. 2021;16:100136. doi: 10.1016/j.mtnano.2021.100136
  6. Utada AS, Lorenceau E, Link DR, P D Kaplan, Stone HA, Weitz DA. Monodisperse double emulsions generated from a microcapillary device. Science. 2005;308(5721):537-541. doi: 10.1126/science.1109164
  7. Shang L, Cheng Yand ZY. Emerging droplet microfluidics. Chem Rev. 2017;117(12):7964-8040. doi: 10.1021/acs.chemrev.6b00848
  8. Xingzheng W, Zeyong S, Dong C. Preparation of droplet suspension by microfluidic technology. Modern Chemical Industry. 2020;40(9):70-74. doi: 10.16606/j.cnki.issn0253-4320.2020.09.015
  9. Gu Z, Xie M, Lv S, et al. Perfusable vessel-on-a-chip for antiangiogenic drug screening with coaxial bioprinting. Int J Bioprint. 2022;8(4):619. doi: 10.18063/ijb.v8i4.619
  10. Wu L, Guo Z, Liu W. Surface behaviors of droplet manipulation in microfluidics devices. Adv Colloid Interface Sci. 2022;308:102770. doi: 10.1016/j.cis.2022.102770
  11. Sun X, Wu Q, Li W, et al. Facile fabrication of drug-loaded PEGDA microcapsules for drug evaluation using droplet-based microchip. Chin Chem Lett. 2022;33(5):2697-2700. doi: 10.1016/j.cclet.2021.08.122
  12. Kim JH, Jeon TY, Choi TM, Shim TS, Kim S-H, Yang S-M. Droplet microfluidics for producing functional microparticles. Langmuir. 2014;30(6):1473-1488. doi: 10.1021/la403220p
  13. Liu W-Y, Ju X-J, Pu X-Q, et al. Functional capsules encapsulating molecular-recognizable nanogels for facile removal of organic micro-pollutants from water. Engineering. 2021;7(5):636-646. doi: 10.1016/j.eng.2021.02.007
  14. Shang L, Cheng Y, Wang J, et al. Double emulsions from a capillary array injection microfluidic device. Lab Chip. 2014;14(18):3489-3493. doi: 10.1039/C4LC00698D
  15. Zhai X, Pan M, Shi P, Zhao P, Chen D. One-step high-throughput controlled preparation of biocompatible water/ water microcapsules with triggered release. Chem J Chin Univ. 2022;43(12):10. doi: 10.7503/cjcu20220460
  16. Trantidou T, Elani Y, Parsons E, Ces O. Hydrophilic surface modification of PDMS for droplet microfluidics using a simple, quick, and robust method via PVA deposition. Microsyst Nanoeng. 2017;3(1):16091. doi: 10.1038/micronano.2016.91
  17. Chen D, Amstad E, Zhao C-X, et al. Biocompatible amphiphilic hydrogel–solid dimer particles as colloidal surfactants. ACS Nano. 2017;11(12):11978-11985. doi: 10.1021/acsnano.7b03110
  18. Choi C-H, Lee H, Weitz DA. Rapid patterning of PDMS microfluidic device wettability using syringe-vacuum-induced segmented flow in nonplanar geometry. ACS Appl Mater Interfaces. 2018;10(4):3170-3174. doi: 10.1021/acsami.7b17132
  19. Shah RK, Shum HC, Rowat AC, et al. Designer emulsions using microfluidics. Mater Today. 2008;11(4):18-27. doi: 10.1016/S1369-7021(08)70053-1
  20. Chen L, Xiao Y, Zhang Z, et al. Porous ultrathin-shell microcapsules designed by microfluidics for selective permeation and stimuli-triggered release. Front Chem Sci Eng. 2022;16(11):1643-1650. doi: 10.1007/s11705-022-2201-z
  21. Su Z, Hu W, Ye L, Gao Dan, Lin J-M. An integrated microfluidic chip-mass spectrometry system for rapid antimicrobial resistance analysis of bacteria producing β-lactamases. Chin Chem Lett. 2023;34(5):107790. doi: 10.1016/j.cclet.2022.107790
  22. Nam J, Lim H, Kim D, Jung H, Shin S. Continuous separation of microparticles in a microfluidic channel via the elasto-inertial effect of non-Newtonian fluid. Lab Chip. 2012;12(7):1347-1354. doi: 10.1039/C2LC21304D
  23. Sun Z, Yang C, Wang F, et al. Biocompatible and pH-responsive colloidal surfactants with tunable shape for controlled interfacial curvature. Angew Chem Int Ed. 2020;59(24):9365-9369. doi: 10.1002/anie.202001588
  24. Zhu J, Cai L-H. All-aqueous printing of viscoelastic droplets in yield-stress fluids. Acta Biomater. 2022;165(15):60-71. doi: 10.1016/j.actbio.2022.09.031
  25. Zhang M, Wangjin Y, Zhou H, et al. Fly ash and zero-valent iron-based in situ advanced anaerobic digestion with emphasis on the removal of antibiotics and antibiotic resistance genes from sewage sludge. Waste Dispos Sustain Energy. 2022;4:17-28. doi: 10.1007/s42768-021-00089-6
  26. Zhang H, Liu D, Shahbazi M-A, et al. Fabrication of a multifunctional nano-in-micro drug delivery platform by microfluidic templated encapsulation of porous silicon in polymer matrix. Adv Mater. 2014;26(26):4497-4503. doi: 10.1002/adma.201400953
  27. Liu Y, Yang G, Baby T, et al. Stable polymer nanoparticles with exceptionally high drug loading by sequential nanoprecipitation. Angew Chem Int Ed. 2020;59(12):4720-4728. doi: 10.1002/anie.201913539
  28. Chen Q, Utech S, Chen D, Prodanovic R, Lin J-M, Weitz DA. Controlled assembly of heterotypic cells in a core–shell scaffold: organ in a droplet. Lab Chip. 2016;16(8):1346-1349. doi: 10.1039/C6LC00231E
  29. Zhu J, He Y, Kong L, et al. Digital assembly of spherical viscoelastic bio-ink particles. Adv Funct Mater. 2022;32(6):2109004. doi: 10.1002/adfm.202109004
  30. Chae S, Ha D-H, Lee H. 3D bioprinting strategy for engineering vascularized tissue models. Int J Bioprint. 2023;9(5):15-33. doi: 10.18063/ijb.748
  31. Foresti D, Kroll KT, Amissah R, et al. Acoustophoretic printing. Sci Adv. 2018;4(8):eaat1659. doi: 10.1126/sciadv.aat1659
  32. Minemawari H, Yamada T, Matsui H, et al. Inkjet printing of single-crystal films. Nature. 2011;475(7356):364-367. doi: 10.1038/nature10313
  33. Reiser A, Lindén M, Rohner P, et al. Multi-metal electrohydrodynamic redox 3D printing at the submicron scale. Nat Commun. 2019;10(1):1853. doi: 10.1038/s41467-019-09827-1
Conflict of interest
The authors declare no conflicts of interest.
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing