AccScience Publishing / GTM / Volume 3 / Issue 1 / DOI: 10.36922/gtm.2228
Cite this article
39
Download
409
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
REVIEW

Comparative analysis of immune responses in humans infected with Alpha, Delta, and Omicron strains of SARS-CoV-2

Mihieka Bose1,2 Chayan Munshi1*
Show Less
1 1 Ethopilia Research Foundation, Santiniketan, India
2 Department of Zoology, Visva Bharati University, Santiniketan, India
Global Translational Medicine 2024, 3(1), 2228 https://doi.org/10.36922/gtm.2228
Submitted: 10 November 2023 | Accepted: 25 December 2023 | Published: 19 March 2024
© 2024 by the Author (s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The COVID-19 pandemic outbreak has profoundly challenged global public health over the last couple of years. Throughout this period, numerous mutant strains of SARS-CoV-2 have emerged, presenting diverse pathophysiology and immune response challenges for infected individuals. Among these, variant of concern strains, including Alpha (B.1.1.7), Delta (B.1.617.2), and Omicron (B.1.1.529), has garnered the most significant attention for their role in causing epidemiological dynamics, ultimately leading to elevated infectivity and significant mortality rates. This review aims to provide a comparative analysis of the immune-pathophysiological mechanisms associated with these aforementioned strains of SARS-CoV-2.

Keywords
SARS-CoV-2
Immune response
Pandemic
Funding
None.
References
  1. Tan CW, Chia WN, Zhu F, et al. SARS-CoV-2 Omicron variant emerged under immune selection. Nat Microbiol. 2022;7(11):1756-1761. doi: 10.1038/s41564-022-01246-1

 

  1. Hou Y, Zhao J, Martin W, et al. New insights into genetic susceptibility of COVID-19: An ACE2 and TMPRSS2 polymorphism analysis. BMC Med. 2020;18(1):216. doi: 10.1186/s12916-020-01673-z

 

  1. Bakhshandeh B, Jahanafrooz Z, Abbasi A, et al. Mutations in SARS-CoV-2; Consequences in structure, function, and pathogenicity of the virus. Microb Pathog. 2021;154:104831. doi: 10.1016/j.micpath.2021.104831

 

  1. Mouliou DS, Gourgoulianis KI. COVID-19 ‘asymptomatic’patients: An old wives’ tale. Expert Rev Respir Med. 2022;16(4):399-407. doi: 10.1080/17476348.2022.2030224

 

  1. Boyton RJ, Altmann DM. The immunology of asymptomatic SARS-CoV-2 infection: What are the key questions? Nat Rev Immunol. 2021;21(12):762-768. doi: 10.1038/s41577-021-00631-x

 

  1. Huang Y, Yang C, Xu XF, Xu W, Liu SW. Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19. Acta Pharmacol Sin. 2020;41(9):1141-1149. doi: 10.1038/s41401-020-0485-4

 

  1. Williams H, Hutchinson D, Stone H. Watching brief: The evolution and impact of COVID-19 variants B.1.1.7, B.1.351, P.1 and B.1.617. Glob Biosecur. 2021;3(1). doi: 10.31646/gbio.112

 

  1. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5

 

  1. Acharya D, Liu G, Gack MU. Dysregulation of type I interferon responses in COVID-19. Nat Rev Immunol. 2020;20(7):397-398. doi: 10.1038/s41577-020-0346-x

 

  1. Hsu JCC, Laurent-Rolle M, Pawlak JB, Wilen CB, Cresswell P. Translational shutdown and evasion of the innate immune response by SARS-CoV-2 NSP14 protein. Proc Natl Acad Sci U S A. 2021;118(24):e2101161118. doi: 10.1073/pnas.2101161118

 

  1. Schoggins JW, Rice CM. Interferon-stimulated genes and their antiviral effector functions. Curr Opin Virol. 2011;1(6):519-525. doi: 10.1016/j.coviro.2011.10.008

 

  1. Murira A, Lamarre A. Type-I interferon responses: From friend to foe in the battle against chronic viral infection. Front Immunol. 2016;7:609. doi: 10.3389/fimmu.2016.00609

 

  1. Supasa P, Zhou D, Dejnirattisai W, et al. Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by convalescent and vaccine sera. Cell. 2021;184(8):2201-2211.e7. doi: 10.1016/j.cell.2021.02.033

 

  1. Torbati E, Krause KL, Ussher JE. The immune response to SARS-CoV-2 and variants of concern. Viruses. 2021;13(10):1911. doi: 10.3390/v13101911

 

  1. Low ZY, Yip AJW, Sharma A, Lal SK. SARS coronavirus outbreaks past and present-a comparative analysis of SARS-CoV-2 and its predecessors. Virus Genes. 2021;57(4):307-317. doi: 10.1007/s11262-021-01846-9

 

  1. Kim JE, Heo JH, Kim HO, et al. Neurological complications during treatment of Middle East respiratory syndrome. J Clin Neurol. 2017;13(3):227-233. doi: 10.3988/jcn.2017.13.3.227

 

  1. Diao B, Wang C, Tan Y, et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front Immunol. 2020;11:827. doi: 10.3389/fimmu.2020.00827

 

  1. Kaneko N, Kuo HH, Boucau J, et al. Loss of Bcl-6-expressing T follicular helper cells and germinal centers in COVID-19. Cell. 2020;183(1):143-157.e13. doi: 10.1016/j.cell.2020.08.025

 

  1. Kumar S, Thambiraja TS, Karuppanan K, Subramaniam G. Omicron and Delta variant of SARS‐CoV‐2: A comparative computational study of spike protein. J Med Virol. 2022;94(4):1641-1649. doi: 10.1002/jmv.27526

 

  1. Bian L, Gao Q, Gao F, et al. Impact of the Delta variant on vaccine efficacy and response strategies. Expert Rev Vaccines. 2021;20(10):1201-1209. doi: 10.1080/14760584.2021.1976153

 

  1. Biswas B, Chattopadhyay S, Hazra S, Hansda AK, Goswami R. COVID-19 pandemic: The delta variant, T-cell responses, and the efficacy of developing vaccines. Inflamm Res. 2022;71(4):377-396. doi: 10.1007/s00011-022-01555-5

 

  1. Lee KS, Wong TY, Russ BP, et al. SARS-CoV-2 Delta variant induces enhanced pathology and inflammatory responses in K18-hACE2 mice. PLoS one. 2022;17(8):e0273430. doi: 10.1371/journal.pone.0273430

 

  1. McCallum M, De Marco A, Lempp FA, et al. N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. Cell. 2021;184(9):2332-2347.e16. doi: 10.1016/j.cell.2021.03.028

 

  1. Planas D, Veyer D, Baidaliuk A, et al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature. 2021;596(7871):276-280. doi: 10.1038/s41586-021-03777-9

 

  1. Zheng Y, Zhuang MW, Han L, et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) membrane (M) protein inhibits type I and III interferon production by targeting RIG-I/MDA-5 signaling. Signal Transduct Target Ther. 2020;5(1):299. doi: 10.1038/s41392-020-00438-7

 

  1. Blanco-Melo D, Nilsson-Payant BE, Liu WC, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020;181(5):1036-1045.e9. doi: 10.1016/j.cell.2020.04.026

 

  1. Hong MZ, Qiu R, Chen W, et al. Different clinical features of children and adults in regional outbreak of Delta COVID-19. BMC Infect Dis. 2022;22(1):728. doi: 10.1186/s12879-022-07707-6

 

  1. Zanza C, Romenskaya T, Manetti AC, et al. Cytokine storm in COVID-19: Immunopathogenesis and therapy. Medicina (Kaunas). 2022;58(2):144. doi: 10.3390/medicina58020144

 

  1. Gil-Etayo FJ, Suàrez-Fernández P, Cabrera-Marante O, et al. T-helper cell subset response is a determining factor in COVID-19 progression. Front Cell Infect Microbiol. 2021;11:624483. doi: 10.3389/fcimb.2021.624483

 

  1. Neidleman J, Luo X, Frouard J, et al. SARS-CoV-2-specific T cells exhibit phenotypic features of helper function, lack of terminal differentiation, and high proliferation potential. Cell Rep Med. 2020;1(6):100081. doi: 10.1016/j.xcrm.2020.100081

 

  1. Roncati L, Nasillo V, Lusenti B, Riva G. Signals of Th2 immune response from COVID-19 patients requiring intensive care. Ann Hematol. 2020;99(6):1419-1420. doi: 10.1007/s00277-020-04066-7

 

  1. Elbadawy HM, Khattab A, El‐Agamy DS, et al. IL‐6 at the center of cytokine storm: Circulating inflammation mediators as biomarkers in hospitalized COVID‐19 patients. J Clin Lab Anal. 2023;37(7):e24881. doi: 10.1002/jcla.24881

 

  1. Weiskopf D, Schmitz KS, Raadsen MP, et al. Phenotype and kinetics of SARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory distress syndrome. Sci Immunol. 2020;5(48):eabd2071. doi: 10.1126/sciimmunol.abd2071

 

  1. Geng J, Chen L, Yuan Y, et al. CD147 antibody specifically and effectively inhibits infection and cytokine storm of SARS-CoV-2 and its variants Delta, Alpha, Beta, and Gamma. Signal Transduct Target Ther. 2021;6(1):347. doi: 10.1038/s41392-021-00760-8

 

  1. Berke G. The CTL’s kiss of death. Cell. 1995;81(1):9-12. doi: 10.1016/0092-8674(95)90365-8

 

  1. Zhang Y, Chen Y, Li Y, et al. The ORF8 protein of SARS-CoV-2 mediates immune evasion through down-regulating MHC-Ι. Proc Natl Acad Sci U S A. 2021;118(23):e2024202118. doi: 10.1073/pnas.2024202118

 

  1. Chaudhari AM, Singh I, Joshi M, Patel A, Joshi C. Defective ORF8 dimerization in SARS-CoV-2 delta variant leads to a better adaptive immune response due to abrogation of ORF8-MHC1 interaction. Mol Divers. 2023;27(1):45-57. doi: 10.1007/s11030-022-10405-9

 

  1. Augusto DG, Hollenbach JA. HLA variation and antigen presentation in COVID-19 and SARS-CoV-2 infection. Curr Opin Immunol. 2022;76:102178. doi: 10.1016/j.coi.2022.102178

 

  1. Dhawan M, Saied AA, Emran TB, Choudhary OP. Emergence of Omicron variant’s sublineages BA.4 and BA.5: Risks assessment and possible countermeasures. New Microbes New Infect. 2022;48:100997. doi: 10.1016/j.nmni.2022.100997

 

  1. Schountz T, Baker ML, Butler J, Munster V. Immunological control of viral infections in bats and the emergence of viruses highly pathogenic to humans. Front Immunol. 2017;8:1098. doi: 10.3389/fimmu.2017.01098

 

  1. Dhawan M, Saied AA, Mitra S, Alhumaydhi FA, Emran TB, Wilairatana P. Omicron variant (B.1.1.529) and its sublineages: What do we know so far amid the emergence of recombinant variants of SARS-CoV-2? Biomed Pharmacother. 2022;154:113522. doi: 10.1016/j.biopha.2022.113522

 

  1. Wei C, Shan KJ, Wang W, Zhang S, Huan Q, Qian W. Evidence for a mouse origin of the SARS-CoV-2 Omicron variant. J Genet Genomics. 2021;48(12):1111-1121. doi: 10.1016/j.jgg.2021.12.003

 

  1. Fantini J, Yahi N, Colson P, Chahinian H, La Scola B, Raoult D. The puzzling mutational landscape of the SARS‐2‐ variant Omicron. J Med Virol. 2022;94(5):2019-2025. doi: 10.1002/jmv.27577

 

  1. Goutam Mukherjee A, Ramesh Wanjari U, Murali R, et al. Omicron variant infection and the associated immunological scenario. Immunobiology. 2022;227(3):152222. doi: 10.1016/j.imbio.2022.152222

 

  1. May DH, Rubin BE, Dalai SC, et al. Immunosequencing and epitope mapping reveal substantial preservation of the T cell immune response to Omicron generated by SARS-CoV-2 vaccines. medRxiv. 2021. doi: 10.1101/2021.12.20.21267877

 

  1. Keeton R, Tincho MB, Ngomti A, et al. T cell responses to SARS-CoV-2 spike cross-recognize Omicron. Nature. 2022;603(7901):488-492. doi: 10.1038/s41586-022-04460-3

 

  1. Grifoni A, Sidney J, Vita R, et al. SARS-CoV-2 human T cell epitopes: Adaptive immune response against COVID-19. Cell Host Microbe. 2021;29(7):1076-1092. doi: 10.1016/j.chom.2021.05.010

 

  1. Naranbhai V, Nathan A, Kaseke C, et al. T cell reactivity to the SARS-CoV-2 Omicron variant is preserved in most but not all individuals. Cell. 2022;185(6):1041-1051.e6. doi: 10.1016/j.cell.2022.01.029

 

  1. Barros-Martins J, Hammerschmidt SI, Morillas Ramos G, et al. Omicron infection-associated T-and B-cell immunity in antigen-naive and triple-COVID-19-vaccinated individuals. Front Immunol. 2023;14:1166589. doi: 10.3389/fimmu.2023.1166589

 

  1. Perugino CA, Liu H, Feldman J, et al. Preferential expansion upon boosting of cross-reactive “pre-existing” switched memory B cells that recognize the SARS-CoV-2 Omicron variant Spike protein. medRxiv. 2022. doi: 10.1101/2021.12.30.21268554

 

  1. Varea-Jiménez E, Cano EA, Vega-Piris L, et al. Comparative severity of COVID-19 cases caused by Alpha, Delta or Omicron SARS-CoV-2 variants and its association with vaccination. Enferm Infecc Microbiol Clín (Engl Ed). 2022:S2529-993X(23)00039-4. doi: 10.1016/j.eimce.2022.11.021

 

  1. Dhawan M, Sharma A, Priyanka N, Thakur N, Rajkhowa TK, Choudhary OP. Delta variant (B.1.617.2) of SARS-CoV-2: Mutations, impact, challenges and possible solutions. Hum Vaccin Immunother. 2022;18(5):2068883. doi: 10.1080/21645515.2022.2068883

 

  1. Meng B, Kemp SA, Papa G, et al. Recurrent emergence of SARS-CoV-2 spike deletion H69/V70 and its role in the Alpha variant B.1.1.7. Cell Rep. 2021;35(13):109292. doi: 10.1016/j.celrep.2021.109292

 

  1. Zhang J, Xiao T, Cai Y, et al. Membrane fusion and immune evasion by the spike protein of SARS-CoV-2 Delta variant. Science. 2021;374(6573):1353-1360. doi: 10.1126/science.abl9463

 

  1. Sanches PRS, Charlie-Silva I, Braz HLB, et al. Recent advances in SARS-CoV-2 Spike protein and RBD mutations comparison between new variants Alpha (B.1.1.7, United Kingdom), Beta (B.1.351, South Africa), Gamma (P.1, Brazil) and Delta (B.1.617.2, India). J Virus Erad. 2021;7(3):100054. doi: 10.1016/j.jve.2021.100054

 

  1. Lubinski B, Fernandes MHV, Frazier L, et al. Functional evaluation of the P681H mutation on the proteolytic activation of the SARS-CoV-2 variant B.1.1.7 (Alpha) spike. iScience. 2022;25(1):103589. doi: 10.1016/j.isci.2021.103589

 

  1. Gupta AM, Chakrabarti J, Mandal S. Non-synonymous mutations of SARS-CoV-2 leads epitope loss and segregates its variants. Microbes Infect. 2020;22(10):598-607. doi: 10.1016/j.micinf.2020.10.004

 

  1. Vitiello A, Ferrara F, Auti AM, Di Domenico M, Boccellino M. Advances in the Omicron variant development. J Intern Med. 2022;292(1):81-90. doi: 10.1111/joim.13478

 

  1. Li MY, Li L, Zhang Y, Wang XS. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect Dis Poverty. 2020;9(1):45. doi: 10.1186/s40249-020-00662-x

 

  1. Rajah MM, Hubert M, Bishop E, et al. SARS‐CoV‐2 Alpha, Beta, and Delta variants display enhanced Spike‐mediated syncytia formation. EMBO J. 2021;40(24):e108944. doi: 10.15252/embj.2021108944

 

  1. Hui KPY, Ho JCW, Cheung MC, et al. SARS-CoV-2 Omicron variant replication in human bronchus and lung ex vivo. Nature. 2022;603(7902):715-720. doi: 10.1038/s41586-022-04479-6

 

  1. Meng B, Abdullahi A, Ferreira IAT, et al. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature. 2022;603(7902):706-714. doi: 10.1038/s41586-022-04474-x

 

  1. AbdelMassih A, Sedky A, Shalaby A, et al. From HIV to COVID-19, molecular mechanisms of pathogens’ trade-off and persistence in the community, potential targets for new drug development. Bull Natl Res Cent. 2022;46(1):194. doi: 10.1186/s42269-022-00879-w

 

  1. Willett BJ, Grove J, MacLean OA, et al. SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway. Nat Microbiol. 2022;7(8):1161-1179. doi: 10.1038/s41564-022-01143-7

 

  1. Pišlar A, Mitrović A, Sabotič J, et al. The role of cysteine peptidases in coronavirus cell entry and replication: The therapeutic potential of cathepsin inhibitors. PLoS Pathog. 2020;16(11):e1009013. doi: 10.1371/journal.ppat.1009013

 

  1. Kubo Y, Hayashi H, Matsuyama T, Sato H, Yamamoto N. Retrovirus entry by endocytosis and cathepsin proteases. Adv Virol. 2012;2012:640894. doi: 10.1155/2012/640894

 

  1. Gomes CP, Fernandes DE, Casimiro F, et al. Cathepsin L in COVID-19: From pharmacological evidences to genetics. Front Cell Infect Microbiol. 2020;10:589505. doi: 10.3389/fcimb.2020.589505
Conflict of interest
The authors declare no conflicts of interest
Share
Back to top
Global Translational Medicine, Electronic ISSN: 2811-0021 Published by AccScience Publishing