AccScience Publishing / EJMO / Online First / DOI: 10.36922/EJMO025320342
ORIGINAL RESEARCH ARTICLE

Exploring the therapeutic potential of gamma-glutamyl carboxylase in prostate cancer through integrated multi-omics analysis

Yuangao Xu1† Jieyu Xiong2† Yuanbo Xu3 YiKun Wu4 Yuanlin Wang5 Hua Shi5* Shuxiong Xu5*
Show Less
1 Department of Organ Transplantation, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
2 Department of Biomedical Research, Faculty of Medicine, University of Bern, Bern, Switzerland
3 Department of Clinical Medicine, School of Medicine, Southern Medical University, Guangzhou, Guangdong, China
4 Department of Clinical Medicine, School of Medicine, Guizhou University, Guiyang, Guizhou, China
5 Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
†These authors contributed equally to this work.
Received: 4 August 2025 | Revised: 1 December 2025 | Accepted: 10 December 2025 | Published online: 22 January 2026
© 2026 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Introduction: Prostate cancer (PCa) treatment is often limited by heterogeneous therapeutic responses and the emergence of drug resistance, underscoring the urgent need to identify novel therapeutic targets.

Objective: This study aims to identify novel susceptibility genes associated with PCa risk by integrating genomic, transcriptomic, and proteomic data.

Methods: We performed a genome-wide summary-data-based Mendelian randomization (SMR) analysis leveraging cis-expression quantitative trait loci from multiple tissues and PCa phenotypes. We then applied Bayesian colocalization to confirm that the observed SMR signals reflected shared causal variants. To characterize gamma-glutamyl carboxylase (GGCX) expression in normal and malignant prostate tissues, we integrated bulk transcriptomic and proteomic data from The Cancer Genome Atlas, Gene Expression Omnibus, the International Cancer Genome Consortium, and the Human Protein Atlas. We further investigated the spatial distribution of GGCX within the tumor microenvironment using spatial transcriptomics and Spearman correlation analyses with key stromal and immune cell markers. Finally, we constructed a GGCX-centered gene set by combining weighted gene co-expression network analysis with a random forest model and performed GO and KEGG enrichment analyses to infer its potential biological functions and pathways.

Results: SMR identified 53 candidate genes associated with PCa phenotypes, including GGCX (p<0.001), and confirmed the association of GGCX using Bayesian colocalization (PP.H4 > 0.95). GGCX expression was higher in PCa tissues than in normal prostate tissues (p<0.001), and it was positively correlated with tumor cell abundance but inversely correlated with fibroblast content in PCa. We further found that a GGCX-associated gene set was enriched in the ubiquinone and terpenoid-quinone biosynthesis pathway, particularly the vitamin K cycle.

Conclusion: Our multi-omics data highlight the GGCX–vitamin K axis as a genetically supported and druggable pathway in PCa.

Keywords
Susceptibility gene
Gamma-glutamyl carboxylase
Prostate cancer
Multi-omics study
Funding
This study was funded by the National Natural Science Foundation of China under grant numbers 82160145 and 82460154, as well as the 2021 National Natural Science Foundation Post Subsidy Individual Fund of China, reference GPPH-NSFC-2021-10. Furthermore, it received support from the Science and Technology Fund of the Guizhou Health Commission, grant number gzwkj2021-212.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin. 2024;74(1):12-49. doi: 10.3322/caac.21820

 

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. doi: 10.3322/caac.21492

 

  1. Wilt TJ, Ullman KE, Linskens EJ, et al. Therapies for clinically localized prostate cancer: A comparative effectiveness review. J Urol. 2021;205(4):967-976. doi: 10.1097/ju.0000000000001578

 

  1. Cornford P, Van Den Bergh RCN, Briers E, et al. EAU-EANM-ESTRO-ESUR-ISUP-SIOG guidelines on prostate cancer-2024 update. Part I: Screening, diagnosis, and local treatment with curative intent. Eur Urol. 2024;86(2):148-163. doi: 10.1016/j.eururo.2024.03.027

 

  1. Henriquez I, Spratt D, Gómez-Iturriaga A, Abuchaibe O, Couñago F. Nonmetastatic castration-resistant prostate cancer: Novel agents to treat a lethal disease. World J Clin Oncol. 2021;12(1):6-12. doi: 10.5306/wjco.v12.i1.6

 

  1. Mizuno K, Ku SY, Venkadakrishnan VB, et al. Intraindividual epigenetic heterogeneity underlying phenotypic subtypes of advanced prostate cancer. Nat Commun. 2025;16(1):5543. doi: 10.1038/s41467-025-60654-z

 

  1. Ahmad F, Cherukuri MK, Choyke PL. Metabolic reprogramming in prostate cancer. Br J Cancer. 2021;125(9):1185-1196. doi: 10.1038/s41416-021-01435-5

 

  1. Rawat C, Heemers HV. Alternative splicing in prostate cancer progression and therapeutic resistance. Oncogene. 2024;43(22):1655-1668. doi: 10.1038/s41388-024-03036-x

 

  1. Loizzo D, Pandolfo SD, Rogers D, et al. Novel insights into autophagy and prostate cancer: A comprehensive review. Int J Mol Sci. 2022;23(7):3826. doi: 10.3390/ijms23073826

 

  1. Van Dessel LF, Van Riet J, Smits M, et al. The genomic landscape of metastatic castration-resistant prostate cancers reveals multiple distinct genotypes with potential clinical impact. Nat Commun. 2019;10(1):5251. doi: 10.1038/s41467-019-13084-7

 

  1. Zheng K, Hai Y, Xi Y, et al. Integrative multi-omics analysis unveils stemness-associated molecular subtypes in prostate cancer and pan-cancer: Prognostic and therapeutic significance. J Transl Med. 2023;21(1):789. doi: 10.1186/s12967-023-04683-6

 

  1. GTEx Consortium. The GTEx consortium atlas of genetic regulatory effects across human tissues. Science. 2020;369(6509):1318-1330. doi: 10.1126/science.aaz1776

 

  1. Võsa U, Claringbould A, Westra HJ, et al. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat Genet. 2021;53(9):1300-1310. doi: 10.1038/s41588-021-00913-z

 

  1. Kurki MI, Karjalainen J, Palta P, et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature. 2023;613(7944):508-518. doi: 10.1038/s41586-022-05473-8

 

  1. Wang A, Shen J, Rodriguez AA, et al. Characterizing prostate cancer risk through multi-ancestry genome-wide discovery of 187 novel risk variants. Nat Genet. 2023;55(12):2065-2074. doi: 10.1038/s41588-023-01534-4

 

  1. Zhu Z, Zhang F, Hu H, et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet. 2016;48(5):481-487. doi: 10.1038/ng.3538

 

  1. Wu Y, Zeng J, Zhang F, et al. Integrative analysis of omics summary data reveals putative mechanisms underlying complex traits. Nat Commun. 2018;9(1):918. doi: 10.1038/s41467-018-03371-0

 

  1. Giambartolomei C, Vukcevic D, Schadt EE, et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 2014;10(5):e1004383. doi: 10.1371/journal.pgen.1004383

 

  1. Battle A, Brown CD, Engelhardt BE, et al. Genetic effects on gene expression across human tissues. Nature. 2017;550(7675):204-213. doi: 10.1038/nature24277

 

  1. Ding R, Zou X, Qin Y, et al. xQTLbiolinks: A comprehensive and scalable tool for integrative analysis of molecular QTLs. Brief Bioinform. 2023;25(1):bbad440. doi: 10.1093/bib/bbad440

 

  1. Goldman MJ, Craft B, Hastie M, et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol. 2020;38(6):675-678. doi: 10.1038/s41587-020-0546-8

 

  1. Shi J, Wei X, Xun Z, et al. The web-based portal spatialTME integrates histological images with single-cell and spatial transcriptomics to explore the tumor microenvironment. Cancer Res. 2024;84(8):1210-1220. doi: 10.1158/0008-5472.Can-23-2650

 

  1. Pujana-Vaquerizo M, Bozal-Basterra L, Carracedo A. Metabolic adaptations in prostate cancer. Br J Cancer. 2024;131(8):1250-1262. doi: 10.1038/s41416-024-02762-z

 

  1. Xun Z, Ding X, Zhang Y, et al. Reconstruction of the tumor spatial microenvironment along the malignant-boundary-nonmalignant axis. Nat Commun. 2023;14(1):933. doi: 10.1038/s41467-023-36560-7

 

  1. Crowell PD, Giafaglione JM, Jones AE, et al. MYC is a regulator of androgen receptor inhibition-induced metabolic requirements in prostate cancer. Cell Rep. 2023;42(10):113221. doi: 10.1016/j.celrep.2023.113221

 

  1. Han Y, Wang Y, Dong X, et al. TISCH2: Expanded datasets and new tools for single-cell transcriptome analyses of the tumor microenvironment. Nucleic Acids Res. 2023;51(D1):D1425-D1431. doi: 10.1093/nar/gkac959

 

  1. Langfelder P, Horvath S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559. doi: 10.1186/1471-2105-9-559

 

  1. The Gene Ontology Consortium. The gene ontology resource: 20 years and still GOing strong. Nucleic Acids Res. 2019;47(D1):D330-D338. doi: 10.1093/nar/gky1055

 

  1. Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27-30. doi: 10.1093/nar/28.1.27

 

  1. Xu S, Hu E, Cai Y, et al. Using clusterProfiler to characterize multiomics data. Nat Protoc. 2024;19(11):3292-3320. doi: 10.1038/s41596-024-01020-z

 

  1. Luo W, Brouwer C. Pathview: An R/bioconductor package for pathway-based data integration and visualization. Bioinformatics. 2013;29(14):1830-1831. doi: 10.1093/bioinformatics/btt285

 

  1. Zhang J, Bajari R, Andric D, et al. The international cancer genome consortium data portal. Nat Biotechnol. 2019;37(4):367-369. doi: 10.1038/s41587-019-0055-9

 

  1. Wu L, Wang J, Cai Q, et al. Identification of novel susceptibility loci and genes for prostate cancer risk: A transcriptome-wide association study in over 140,000 European descendants. Cancer Res. 2019;79(13):3192-3204. doi: 10.1158/0008-5472.Can-18-3536

 

  1. Sabit H, Arneth B, Abdel-Ghany S, et al. Beyond cancer cells: How the tumor microenvironment drives cancer progression. Cells. 2024;13(19):1666. doi: 10.3390/cells13191666

 

  1. Zhang R, Qi F, Shao S, Li G, Feng Y. Human colorectal cancer-derived carcinoma associated fibroblasts promote CD44-mediated adhesion of colorectal cancer cells to endothelial cells by secretion of HGF. Cancer Cell Int. 2019;19:192. doi: 10.1186/s12935-019-0914-y

 

  1. Monteran L, Erez N. The dark side of fibroblasts: Cancer-associated fibroblasts as mediators of immunosuppression in the tumor microenvironment. Front Immunol. 2019;10:1835. doi: 10.3389/fimmu.2019.01835

 

  1. Pengo V, Noventa F, Denas G, et al. Long-term use of vitamin K antagonists and incidence of cancer: A population-based study. Blood. 2011;117(5):1707-1709. doi: 10.1182/blood-2010-08-304758

 

  1. Dasari S, Ali SM, Zheng G, et al. Vitamin K and its analogs: Potential avenues for prostate cancer management. Oncotarget. 2017;8(34):57782-57799. doi: 10.18632/oncotarget.17997

 

  1. Kristensen KB, Jensen PH, Skriver C, Friis S, Pottegård A. Use of vitamin K antagonists and risk of prostate cancer: Meta-analysis and nationwide case-control study. Int J Cancer. 2019;144(7):1522-1529. doi: 10.1002/ijc.31886

 

  1. King CR, Deych E, Milligan P, et al. Gamma-glutamyl carboxylase and its influence on warfarin dose. Thromb Haemost. 2010;104(4):750-754. doi: 10.1160/th09-11-0763

 

  1. Shearer MJ, Okano T. Key pathways and regulators of vitamin K function and intermediary metabolism. Ann Rev Nutr. 2018;38(1):127-151. doi: 10.1146/annurev-nutr-082117-051741

 

  1. Hao Z, Jin DY, Chen X, Schurgers LJ, Stafford DW, Tie JK. γ-Glutamyl carboxylase mutations differentially affect the biological function of vitamin K-dependent proteins. Blood. 2021;137(4):533-543. doi: 10.1182/blood.2020006329

 

  1. Berkner KL, Runge KW. Vitamin K-dependent protein activation: Normal gamma-glutamyl carboxylation and disruption in disease. Int J Mol Sci. 2022;23(10):5759. doi: 10.3390/ijms23105759

 

  1. Tie JK, Stafford DW. Structural and functional insights into enzymes of the vitamin K cycle. J Thromb Haemost. 2016;14(2):236-247. doi: 10.1111/jth.13217

 

  1. Li T, Chang CY, Jin DY, Lin PJ, Khvorova A, Stafford DW. Identification of the gene for vitamin K epoxide reductase. Nature. 2004;427(6974):541-544. doi: 10.1038/nature02254

 

  1. Chen A, Li J, Shen N, Huang H, Hang Q. Vitamin K: New insights related to senescence and cancer metastasis. Biochim Biophys Acta Rev Cancer. 2024;1879(2):189057. doi: 10.1016/j.bbcan.2023.189057

 

  1. Ivanova D, Zhelev Z, Getsov P, et al. Vitamin K: Redox-modulation, prevention of mitochondrial dysfunction and anticancer effect. Redox Biol. 2018;16:352-358. doi: 10.1016/j.redox.2018.03.013

 

  1. Mishima E, Ito J, Wu Z, et al. A non-canonical vitamin K cycle is a potent ferroptosis suppressor. Nature. 2022;608(7924):778-783. doi: 10.1038/s41586-022-05022-3

 

  1. Vinjamuri S, Dontaraju VS, Munirathinam G. Prostate cancer and applications of vitamin K. In: Patel VB, editor. Molecular Nutrition. Ch. 29. United States: Academic Press; 2020. p. 613-629. doi: 10.1016/B978-0-12-811907-5.00027-0

 

  1. Markozannes G, Kanellopoulou A, Dimopoulou O, et al. Systematic review of Mendelian randomization studies on risk of cancer. BMC Med. 2022;20(1):41. doi: 10.1186/s12916-022-02246-y

 

  1. Lim YW, Chen-Harris H, Mayba O, et al. Germline genetic polymorphisms influence tumor gene expression and immune cell infiltration. Proc Natl Acad Sci. 2018;115(50):E11701-E11710. doi: 10.1073/pnas.1804506115

 

  1. Liu Y, Gusev A, Kraft P. Germline cancer gene expression quantitative trait loci are associated with local and global tumor mutations. Cancer Res. 2023;83(8):1191-1202. doi: 10.1158/0008-5472.Can-22-2624
Share
Back to top
Eurasian Journal of Medicine and Oncology, Electronic ISSN: 2587-196X Print ISSN: 2587-2400, Published by AccScience Publishing