AccScience Publishing / EJMO / Online First / DOI: 10.36922/EJMO025290309
ORIGINAL RESEARCH ARTICLE

Effect of γδT-cell infiltration on the prognosis of hepatocellular carcinoma

Shiwei Xie1,2 Erqiang Wang3 Xia Zhao1 Lihua Rong1,2 Shuai Hu1,2 Yufei Ge1,2 Gang Xu1,2 Zhi Xu1,2 Yiming Fan1,2 Yuchen Wang1,2 Yumeng Zhang1,2 Jiang Li1,2* Shijie Zhang1,2*
Show Less
1 Department of General Surgery, The First Affiliated Hospital, Shihezi University, Shihezi, Xinjiang, China
2 The Department of Hepatobiliary Surgery, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China
3 Department of Immunology, School of Basic Medicine of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
Received: 14 July 2025 | Revised: 16 September 2025 | Accepted: 4 November 2025 | Published online: 24 December 2025
(This article belongs to the Special Issue Tumor Immune Microenvironment and Intervention Strategies)
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Introduction: Hepatocellular carcinoma (HCC) is a major cause of cancer death in China, linked to hepatitis, alcohol abuse, and aflatoxin exposure. Current treatments for advanced HCC are limited, necessitating new therapies. γδT cells, a unique T-cell subset, exhibit strong antitumor activity in pre-clinical studies, making them promising for adoptive cell therapy.

Objective: This study aims to explore the role of γδT cells in the HCC microenvironment and to evaluate the antitumor efficacy of CAR-engineered γδT (CAR-γδT) cells as a novel immunotherapy. Specifically, it investigates the relationship between γδT-cell infiltration and overall survival in HCC patients.

Methods: Using the Cancer Genome Atlas data, patients were stratified into high- and low-infiltration groups based on γδT-cell gene signatures. Survival analysis and immune cell profiling were performed. Multicolor immunofluorescence was conducted on HCC tissues from 12 short-survival (<5 years) and 15 long-survival (5 years) patients to analyze γδT-cell distribution.

Results: The high-infiltration group had significantly longer overall survival (p<0.05). This group also showed higher proportions of CD8+ T cells and M1 macrophages, but lower M2 macrophages (p<0.05). In long-survival patients, γδT cells mainly infiltrated the tumor core, whereas in short-survival patients, they accumulated at the tumor margin. CD8+ T-cell abundance correlated strongly with γδT cells, and better prognosis was associated with higher natural killer group 2 member D ligand expression.

Conclusion: High γδT-cell infiltration in HCC correlates with improved prognosis, highlighting γδT cells as a potential antitumor effector subset and a promising prognostic marker.

Keywords
γδT cell
Hepatocellular carcinoma
Prognosis
Immune microenvironment
Funding
This study was supported by The First Affiliated Hospital, Shihezi University, under the project titled “Basic Research on γδ T Cell-based Chimeric Antigen Receptor T-Cell Therapy for Liver Cancer” (BS202203).
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships.
References
  1. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: From immunosurveillance to tumor escape. Nat Immunol. 2002;3(11):991-998. doi: 10.1038/ni1102-991

 

  1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-249. doi: 10.3322/caac.21660

 

  1. Garrido F, Ruiz-Cabello F, Aptsiauri N. Rejection versus escape: The tumor MHC dilemma. Cancer Immunol Immunother. 2017;66(2):259-271. doi: 10.1007/s00262-016-1947-x

 

  1. Gaud G, Lesourne R, Love PE. Regulatory mechanisms in T cell receptor signalling. Nat Rev Immunol. 2018;18(8): 485-497. doi: 10.1038/s41577-018-0020-8

 

  1. Murre C, Waldmann RA, Morton CC, et al. Human gamma-chain genes are rearranged in leukaemic T cells and map to the short arm of chromosome 7. Nature. 1985;316(6028): 549-552. doi: 10.1038/316549a0

 

  1. Silva-Santos B, Mensurado S, Coffelt SB. γδ T cells: Pleiotropic immune effectors with therapeutic potential in cancer. Nat Rev Cancer. 2019;19(7):392-404. doi: 10.1038/s41568-019-0153-5

 

  1. Lefranc MP, Forster A, Rabbitts TH. Rearrangement of two distinct T-cell gamma-chain variable-region genes in human DNA. Nature. 1986;319(6052):420-422. doi: 10.1038/319420a0

 

  1. Hata S, Clabby M, Devlin P, Spits H, De Vries JE, Krangel MS. Diversity and organization of human T cell receptor delta variable gene segments. J Exp Med. 1989;169(1):41-57. doi: 10.1084/jem.169.1.41

 

  1. Melandri D, Zlatareva I, Chaleil RA, et al. The γδTCR combines innate immunity with adaptive immunity by utilizing spatially distinct regions for agonist selection and antigen responsiveness. Nat Immunol. 2018;19(12): 1352-1365. doi: 10.1038/s41590-018-0253-5

 

  1. Gooden MJ, De Bock GH, Leffers N, Daemen T, Nijman HW. The prognostic influence of tumour-infiltrating lymphocytes in cancer: A systematic review with meta-analysis. Br J Cancer. 2011;105(1):93-103. doi: 10.1038/bjc.2011.189

 

  1. Galon J, Costes A, Sanchez-Cabo F, et al. Type, Density, and location of immunecells within human colorectal tumorspredict clinical outcome. Science. 2006;313: 1960-1964. doi: 10.1126/science.1129139

 

  1. Itoh S, Yoshizumi T, Yugawa K, et al. Impact of immune response on outcomes in hepatocellular carcinoma: Association with vascular formation. Hepatology. 2020;72(6):1987-1999. doi: 10.1002/hep.31206

 

  1. Paul S, Lal G. Regulatory and effector functions of gamma-delta (γδ) T cells and their therapeutic potential in adoptive cellular therapy for cancer. Int J Cancer. 2016;139(5):976-985. doi: 10.1002/ijc.30109

 

  1. Wu P, Wu D, Ni C, et al. gammadeltaT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer. Immunity. 2014;40(5): 785-800. doi: 10.1126/science.aba0893

 

  1. Cai XY, Wang JX, Yi Y, et al. Low counts of γδ T cells in peritumoral liver tissue are related to more frequent recurrence in patients with hepatocellular carcinoma after curative resection. Asian Pac J Cancer Prev. 2014;15(2): 775-780. doi: 10.7314/apjcp.2014.15.2.775

 

  1. Zhao N, Dang H, Ma L, et al. Intratumoral gammadelta T-cell infiltrates, chemokine (C-C Motif) ligand 4/chemokine (C-C Motif) ligand 5 protein expression and survival in patients with hepatocellular carcinoma. Hepatology. 2021;73(3):1045-1060. doi: 10.1002/hep.31412

 

  1. Halama N, Michel S, Kloor M, et al. Localization and density of immune cells in the invasive margin of human colorectal cancer liver metastases are prognostic for response to chemotherapy. Cancer Res. 2011;71(17):5670-5677. doi: 10.1158/0008-5472.can-11-0268

 

  1. Lu H, Dai W, Guo J, et al. High abundance of intratumoral γδ T cells favors a better prognosis in head and neck squamous cell carcinoma: A bioinformatic analysis. Front Immunol. 2020;11:573920. doi: 10.1002/anie.202103557

 

  1. Simoni Y, Becht E, Fehlings M, et al. Bystander CD8(+) T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature. 2018;557(7706):575-579. doi: 10.1038/s41586-018-0130-2

 

  1. De Palma M, Biziato D, Petrova TV. Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer. 2017;17(8):457-474. doi: 10.1038/nrc.2017.51

 

  1. Maman S, Witz IP. A history of exploring cancer in context. Nat Rev Cancer. 2018;18(6):359-376. doi: 10.1038/s41568-018-0006-7

 

  1. Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 2013;14(10):1014-1022. doi: 10.1038/ni.2703

 

  1. Hiraoka N. Tumor-infiltrating lymphocytes and hepatocellular carcinoma: Pathology and clinical management. Int J Clin Oncol. 2010;15(6):544-551. doi: 10.1007/s10147-010-0130-1

 

  1. Ishigami S, Natsugoe S, Tokuda K, et al. Prognostic value of intratumoral natural killer cells in gastric carcinoma. Cancer. 2000;88(3):577-583.

 

  1. Villegas FR, Coca S, Villarrubia VG, et al. Prognostic significance of tumor infiltrating natural killer cells subset CD57 in patients with squamous cell lung cancer. Lung Cancer. 2002;35(1):23-28. doi: 10.1016/s0169-5002(01)00292-6

 

  1. Donskov F, Von der Maase H. Impact of immune parameters on long-term survival in metastatic renal cell carcinoma. J Clin Oncol. 2006;24(13):1997-2005. doi: 10.1200/JCO.2005.03.9594

 

  1. Zhu LY, Zhou J, Liu YZ, Pan WD. Prognostic significance of natural killer cell infiltration in hepatocellular carcinoma. Ai Zheng. 2009;28(11):1198-1202. doi: 10.5732/cjc.009.10284

 

  1. Mantovani A, Marchesi F, Jaillon S, Garlanda C, Allavena P. Tumor-associated myeloid cells: Diversity and therapeutic targeting. Cell Mol Immunol. 2021;18(3):566-578. doi: 10.1038/s41423-020-00613-4

 

  1. Girardi M, Oppenheim DE, Steele CR, et al. Pillars article: Regulation of cutaneous malignancy by γδ T cells. Science. 2001. 294: 605-609. J Immunol. 2018;200(9):3031-3035. doi: 10.1126/science.1063916

 

  1. Fridlender ZG, Albelda SM. Tumor-associated neutrophils: Friend or foe? Carcinogenesis. 2012;33(5):949-955. doi: 10.1093/carcin/bgs123

 

  1. Gentles AJ, Newman AM, Liu CL, et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med. 2015;21(8):938-945. doi: 10.1038/nm.3909

 

  1. Paul S, Singh AK, Shilpi, Lal G. Phenotypic and functional plasticity of gamma-delta (γδ) T cells in inflammation and tolerance. Int Rev Immunol. 2014;33(6):537-558. doi: 10.3109/08830185.2013.863306

 

  1. Moser B, Eberl M. γδ T-APCs: A novel tool for immunotherapy? Cell Mol Life Sci. 2011;68(14):2443-2452. doi: 10.1007/s00018-011-0706-6

 

  1. Nielsen MM, Witherden DA, Havran WL. γδ T cells in homeostasis and host defence of epithelial barrier tissues. Nat Rev Immunol. 2017;17(12):733-745. doi: 10.1038/nri.2017.101

 

  1. Yi Y, He HW, Wang JX, et al. The functional impairment of HCC-infiltrating gammadelta T cells, partially mediated by regulatory T cells in a TGFbeta- and IL-10-dependent manner. J Hepatol. 2013;58(5):977-983. doi: 10.1016/j.jhep.2012.12.015

 

  1. Hammerich L, Tacke F. Role of gamma-delta T cells in liver inflammation and fibrosis. World J Gastrointest Pathophysiol. 2014;5(2):107-113. doi: 10.4291/wjgp.v5.i2.107

 

  1. Chitadze G, Oberg HH, Wesch D, Kabelitz D. The ambiguous role of γδ T lymphocytes in Antitumor Immunity. Trends Immunol. 2017;38(9):668-678. doi: 10.1016/j.it.2017.06.004

 

  1. Miyagawa F, Tanaka Y, Yamashita S, Minato N. Essential requirement of antigen presentation by monocyte lineage cells for the activation of primary human gamma delta T cells by aminobisphosphonate antigen. J Immunol. 2001;166(9):5508-5514. doi: 10.4049/jimmunol.166.9.5508

 

  1. Rincon-Orozco B, Kunzmann V, Wrobel P, Kabelitz D, Steinle A, Herrmann T. Activation of V gamma 9V delta 2 T cells by NKG2D. J Immunol. 2005;175(4):2144-21451. doi: 10.4049/jimmunol.175.4.2144

 

  1. Lanca T, Correia DV, Moita CF, et al. The MHC class Ib protein ULBP1 is a nonredundant determinant of leukemia/ lymphoma susceptibility to gammadelta T-cell cytotoxicity. Blood. 2010;115(12):2407-2411. doi: 10.1182/blood-2009-08-237123

 

  1. Fisher JP, Yan M, Heuijerjans J, et al. Neuroblastoma killing properties of Vδ2 and Vδ2-negative gammadeltaT cells following expansion by artificial antigen-presenting cells. Clin Cancer Res. 2014;20(22):5720-5732. doi: 10.1158/1078-0432.CCR-13-3464

 

  1. Lo Presti E, Dieli F, Meraviglia S. Tumor-infiltrating γδ T lymphocytes: Pathogenic role, clinical significance, and differential programing in the tumor microenvironment. Front Immunol. 2014;5:607. doi: 10.3389/fimmu.2014.00607

 

  1. Schoenberg MB, Hao J, Bucher JN, et al. Perivascular tumor-infiltrating leukocyte scoring for prognosis of resected hepatocellular carcinoma patients. Cancers (Basel). 2018;10(10):389. doi: 10.3390/cancers10100389

 

  1. Xu X, Tan Y, Qian Y, et al. Clinicopathologic and prognostic significance of tumor-infiltrating CD8+ T cells in patients with hepatocellular carcinoma: A meta-analysis. Medicine (Baltimore). 2019;98(2):e13923. doi: 10.1097/MD.0000000000013923

 

  1. Ding W, Xu X, Qian Y, et al. Prognostic value of tumor-infiltrating lymphocytes in hepatocellular carcinoma: A meta-analysis. Medicine (Baltimore). 2018;97(50): e13301. doi: 10.1097/md.0000000000013301

 

  1. Dong N, Shi X, Wang S, et al. M2 macrophages mediate sorafenib resistance by secreting HGF in a feed-forward manner in hepatocellular carcinoma. Br J Cancer. 2019;121(1):22-33. doi: 10.1038/s41416-019-0482-x
Share
Back to top
Eurasian Journal of Medicine and Oncology, Electronic ISSN: 2587-196X Print ISSN: 2587-2400, Published by AccScience Publishing