AccScience Publishing / EJMO / Online First / DOI: 10.36922/EJMO025380401
ORIGINAL RESEARCH ARTICLE

Unveiling the anti-pulmonary nodule effects of Puling Yin using network analysis and computational docking

Enze Zhang1† Guting Gao1† Siyan Zhu1† Yi Liu1 Yi Chi1 Haocheng Feng1 Yang Pan1 Guangming Yang1 Po Hu1 Zhongying Sun2* Xian Zhang1*
Show Less
1 Department of Biopharmaceutical Teaching and Research Section, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
2 Nanjing Qinling Pharmaceutical Technology Co., Ltd., Nanjing, Jiangsu, China
†These authors contributed equally to this work.
Received: 16 September 2025 | Revised: 7 November 2025 | Accepted: 10 November 2025 | Published online: 8 December 2025
(This article belongs to the Special Issue Natural Products in Disease Prevention and Treatment)
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Introduction: Pulmonary nodules, which are increasingly detected through computed tomography screening, currently lack optimal management options, particularly for small or benign lesions, for which surgical resection risks overtreatment and pharmacotherapy demonstrates limited efficacy.

Objective: This study aims to validate Puling Yin (a 15:1 Taraxacum mongolicum/Ganoderma lucidum decoction) as a synergistic traditional Chinese medicine strategy for treating pulmonary nodules.

Methods: The efficacy and safety of Puling Yin were evaluated using an in vivo pulmonary nodule model induced by Lewis. The synergy between T. mongolicum and G. lucidum was confirmed in vitro through CompuSyn analysis. Mechanistic insights were investigated using network pharmacology to identify overlapping targets. In addition, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was employed to identify key signaling pathways, and molecular docking was used to assess the binding affinity of bioactive compounds to core targets.

Results: Puling Yin significantly reduced Lewis-induced pulmonary nodules by 66% (52.50 ± 21.23 vs. 153.67 ± 40.62 nodules/lung in the control) without observable toxicity. CompuSyn analysis confirmed a synergistic interaction enabling lower effective doses of T. mongolicum and G. lucidum. Moreover, network pharmacology identified 701 overlapping targets, and KEGG enrichment analysis highlighted the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway as a central pathway. Molecular docking revealed high-affinity binding of key bioactives, such as indolelactic acid, to AKT serine/threonine kinase 1 (−9.8 kcal/mol), demonstrating simultaneous interference with inflammation, immune response, and proliferation pathways.

Conclusion: Puling Yin effectively suppresses pulmonary nodules through synergistic multi-target actions that holistically modulate the nodule microenvironment, with its key bioactives contributing to therapeutic efficacy by targeting critical pathways, including the PI3K/AKT signaling pathway.

Keywords
Pulmonary nodules
Puling Yin
Phosphoinositide 3-kinase/protein kinase B signaling pathway
Network analysis
Traditional Chinese medicine
Funding
The study was supported by the Chinese Medicine First- Class Scientific Research and Cultivation Project of NJUCM (ZYXPY2024-007, ZYXYL2024-006) and the Key Education Research Project of NJUCM (NZYJY2024-Z-03).
Conflict of interest
The authors declare that they have no conflict of interest.
References
  1. Mazzone PJ, Lam L. Evaluating the patient with a pulmonary nodule: A review. JAMA. 2022;327(3):264-273. doi: 10.1001/jama.2021.24287

 

  1. Prosper AE, Kammer MN, Maldonado F, Aberle DR, Hsu W. Expanding role of advanced image analysis in CT-detected indeterminate pulmonary nodules and early lung cancer characterization. Radiology. 2023;309(1):e222904. doi: 10.1148/radiol.222904

 

  1. Li J, Chen Y, Yu K, et al. Rapid chemical characterization and pharmacological mechanism of fining granules in the treatment of chronic bronchitis based on UHPLC-Q-exactive orbitrap mass spectrometer and network pharmacology. Heliyon. 2024;10(11):e31804. doi: 10.1016/j.heliyon.2024.e31804

 

  1. Nagai R, Yamamoto K, Shiojiri D, et al. Multiple pulmonary nodules in leptospirosis. Intern Med. 2020;59(22): 2941-2944. doi: 10.2169/internalmedicine.4305-19

 

  1. Wang D, Hua L, Bai W, et al. Peripheral blood immune cell dynamics associate with growth of incidental indeterminate pulmonary nodules. Respir Med. 2025;237:107947. doi: 10.1016/j.rmed.2025.107947

 

  1. Yanagawa J, Tran LM, Salehi-Rad R, et al. Single-cell characterization of pulmonary nodules implicates suppression of immunosurveillance across early stages of lung adenocarcinoma. Cancer Res. 2023;83(19):3305-3319. doi: 10.1158/0008-5472.CAN-23-0128

 

  1. Wang Y, Zhang Q, Chen Y, et al. Antitumor effects of immunity-enhancing traditional Chinese medicine. Biomed Pharmacother. 2020;121:109570. doi: 10.1016/j.biopha.2019.109570

 

  1. Kang L, Miao MS, Song YG, et al. Total flavonoids of Taraxacum mongolicum inhibit non-small cell lung cancer by regulating immune function. J Ethnopharmacol. 2021;281:114514. doi: 10.1016/j.jep.2021.114514

 

  1. Xie J, Chen R, Wang Q, Mao H. Exploration and validation of Taraxacum mongolicum anti-cancer effect. Comput Biol Med. 2022;148:105819. doi: 10.1016/j.compbiomed.2022.105819

 

  1. Cai Q, Li Y, Pei G. Polysaccharides from Ganoderma lucidum attenuate microglia-mediated neuroinflammation and modulate microglial phagocytosis and behavioural response. J Neuroinflammation. 2017;14(1):63. doi: 10.1186/s12974-017-0839-0

 

  1. Ahmad R, Riaz M, Khan A, et al. Ganoderma lucidum (Reishi) an edible mushroom; A comprehensive and critical review of its nutritional, cosmeceutical, mycochemical, pharmacological, clinical, and toxicological properties. Phytother Res. 2021;35(11):6030-6062. doi: 10.1002/ptr.7215

 

  1. Xing H, Bai X, Pei X, et al. Synergistic anti-oxidative/ anti-inflammatory treatment for acute lung injury with selenium based chlorogenic acid nanoparticles through modulating Mapk8ip1/MAPK and Itga2b/PI3k-AKT axis. J Nanobiotechnology. 2025;23(1):37. doi: 10.1186/s12951-025-03114-6

 

  1. Lu J, Zhang T, Jiang C, et al. Ganoderic acid A regulates CSF1R to reprogram tumor-associated macrophages for immune therapy of hepatocellular carcinoma. Int Immunopharmacol. 2025;161:114989. doi: 10.1016/j.intimp.2025.114989

 

  1. Wu JJ, Ai CZ, Liu Y, et al. Interactions between phytochemicals from traditional Chinese medicines and human cytochrome P450 enzymes. Curr Drug Metab. 2012;13(5):599-614. doi: 10.2174/1389200211209050599

 

  1. Zhang P, Zhang D, Zhou W, et al. Network pharmacology: Towards the artificial intelligence-based precision traditional Chinese medicine. Brief Bioinform. 2023;25(1):bbad518. doi: 10.1093/bib/bbad518

 

  1. Tian R, Liu X, Xiao Y, et al. Huang-Lian-Jie-Du decoction drug-containing serum inhibits IL-1beta secretion from D-glucose and PA induced BV2 cells via autophagy/NLRP3 signaling. J Ethnopharmacol. 2024;323:117686. doi: 10.1016/j.jep.2023.117686

 

  1. Gao Z, Xu J, Fan Y, et al. PDIA3P1 promotes temozolomide resistance in glioblastoma by inhibiting C/EBPβ degradation to facilitate proneural-to-mesenchymal transition. J Exp Clin Cancer Res. 2022;41(1):223. doi: 10.1186/s13046-022-02431-0

 

  1. Qin SH, Yan FE, Shuai E, et al. Comprehensive characterization of multiple components of Ziziphus jujuba mill using UHPLC-Q-exactive orbitrap mass spectrometers. Food Sci Nutr. 2022;10(12):4270-4295. doi: 10.1002/fsn3.3020

 

  1. Yao W, Huo J, Ji J, Liu K, Tao P. Elucidating the role of gut microbiota metabolites in diabetes by employing network pharmacology. Mol Med. 2024;30(1):263. doi: 10.1186/s10020-024-01033-0

 

  1. Chen S, Li B, Chen L, Jiang H. Uncovering the mechanism of resveratrol in the treatment of diabetic kidney disease based on network pharmacology, molecular docking, and experimental validation. J Transl Med. 2023;21(1):380. doi: 10.1186/s12967-023-04233-0

 

  1. Yan BH, Xu QX, Ge X, et al. Molecular mechanisms of Chengshi Beixie Fenqing Decoction based on network pharmacology: Pivotal roles of relaxin signaling pathway and its associated target proteins against Benign prostatic hyperplasia. J Biomol Struct Dyn. 2024;42(4):2075-2093. doi: 10.1080/07391102.2023.2203237

 

  1. Chen H, Su X, Li Y, Dang C, Luo Z. Identification of metabolic reprogramming-related genes as potential diagnostic biomarkers for diabetic nephropathy based on bioinformatics. Diabetol Metab Syndr. 2024;16(1):287. doi: 10.1186/s13098-024-01531-5

 

  1. Szklarczyk D, Kirsch R, Koutrouli M, et al. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023;51(D1):D638-D646. doi: 10.1093/nar/gkac1000

 

  1. Wang B, Fu C, Wei Y, et al. Ferroptosis-related biomarkers for Alzheimer’s disease: Identification by bioinformatic analysis in hippocampus. Front Cell Neurosci. 2022;16:1023947. doi: 10.3389/fncel.2022.1023947

 

  1. Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(Database issue):D447-D452. doi: 10.1093/nar/gku1003

 

  1. Li X, Wei S, Niu S, et al. Network pharmacology prediction and molecular docking-based strategy to explore the potential mechanism of Huanglian Jiedu Decoction against sepsis. Comput Biol Med. 2022;144:105389. doi: 10.1016/j.compbiomed.2022.105389

 

  1. Zhou X, Liu Z, Bai G, et al. Bioinformatics analysis of the potential receptor and therapeutic drugs for Alzheimer’s disease with comorbid Parkinson’s disease. Front Aging Neurosci. 2024;16:1411320. doi: 10.3389/fnagi.2024.1411320

 

  1. Zou P, Li J, Zhang Y, et al. Network pharmacology and molecular docking analysis on Shenfu Qiangxin indicate mTOR is a potential target to treat heart failure. Eur J Med Res. 2024;29(1):173. doi: 10.1186/s40001-024-01732-8

 

  1. Hosseini M, Chen W, Xiao D, Wang C. Computational molecular docking and virtual screening revealed promising SARS-CoV-2 drugs. Precis Clin Med. 2021;4(1):1-16. doi: 10.1093/pcmedi/pbab001

 

  1. Ge BJ, Zhao P, Li HT, et al. Taraxacum mongolicum protects against Staphylococcus aureus-infected mastitis by exerting anti-inflammatory role via TLR2-NF-kappaB/MAPKs pathways in mice. J Ethnopharmacol. 2021;268:113595. doi: 10.1016/j.jep.2020.113595

 

  1. Ren S, Liu H, Sang Q, et al. A review of bioactive components and pharmacological effects of Ganoderma lucidum. Food Sci Nutr. 2025;13(7):e70623. doi: 10.1002/fsn3.70623

 

  1. Yu JS, Cui W. Proliferation, survival and metabolism: The role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development. 2016;143(17):3050-3060. doi: 10.1242/dev.137075

 

  1. Roy T, Boateng ST, Uddin MB, et al. The PI3K-Akt-mTOR and associated signaling pathways as molecular drivers of immune-mediated inflammatory skin diseases: Update on therapeutic strategy using natural and synthetic compounds. Cells. 2023;12(12):1671. doi: 10.3390/cells12121671

 

  1. He X, Li Y, Deng B, et al. The PI3K/AKT signalling pathway in inflammation, cell death and glial scar formation after traumatic spinal cord injury: Mechanisms and therapeutic opportunities. Cell Prolif. 2022;55(9):e13275. doi: 10.1111/cpr.13275

 

  1. Shostak K, Chariot A. EGFR and NF-kappaB: Partners in cancer. Trends Mol Med. 2015;21(6):385-393. doi: 10.1016/j.molmed.2015.04.001

 

  1. Peng S, Wang R, Zhang X, et al. EGFR-TKI resistance promotes immune escape in lung cancer via increased PD-L1 expression. Mol Cancer. 2019;18(1):165. doi: 10.1186/s12943-019-1073-4

 

  1. Chen K, Li Y, Zhang X, et al. The role of the PI3K/AKT signalling pathway in the corneal epithelium: Recent updates. Cell Death Dis. 2022;13(5):513. doi: 10.1038/s41419-022-04963-x

 

  1. Johnson DE, O’keefe RA, Grandis JR. Targeting the IL-6/ JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 2018;15(4):234-248. doi: 10.1038/nrclinonc.2018.8

 

  1. Schopf FH, Biebl MM, Buchner J. The HSP90 chaperone machinery. Nat Rev Mol Cell Biol. 2017;18(6):345-360. doi: 10.1038/nrm.2017.20

 

  1. Szczuka I, Wierzbicki J, Serek P, Szczesniak-Siega BM, Krzystek-Korpacka M. Heat shock proteins HSPA1 and HSP90AA1 are upregulated in colorectal polyps and can be targeted in cancer cells by anti-inflammatory oxicams with arylpiperazine pharmacophore and benzoyl moiety substitutions at thiazine ring. Biomolecules. 2021;11(11):11588. doi: 10.3390/biom11111588

 

  1. Arkhypov I, Ozbay Kurt FG, Bitsch R, et al. HSP90alpha induces immunosuppressive myeloid cells in melanoma via TLR4 signaling. J Immunother Cancer. 2022;10(9):e005551. doi: 10.1136/jitc-2022-005551

 

  1. Chen H, Yang F, Zhao Q, et al. GL-V9 synergizes with oxaliplatin of colorectal cancer via Wee1 degradation mediated by HSP90 inhibition. J Pharm Pharmacol. 2024;76(8):1006-1017. doi: 10.1093/jpp/rgae060

 

  1. Peng Y, Li L, Shang J, et al. Macrophage promotes fibroblast activation and kidney fibrosis by assembling a vitronectin-enriched microenvironment. Theranostics. 2023;13(11):3897-3913. doi: 10.7150/thno.85250
Share
Back to top
Eurasian Journal of Medicine and Oncology, Electronic ISSN: 2587-196X Print ISSN: 2587-2400, Published by AccScience Publishing