AccScience Publishing / EJMO / Online First / DOI: 10.36922/EJMO025220219
ORIGINAL RESEARCH ARTICLE

Deciphering the co-mutation landscape and clinical implications in SMARCA4-mutant lung adenocarcinoma

Yufeng Li1 Zhipeng Wei2†* Yifan Xu3†*
Show Less
1 Department of Oncology, Clinical Medical College, Qingdao University, Qingdao, Shandong, China
2 Department of Ophthalmology, Clinical Medical College, Qingdao University, Qingdao, Shandong, China
3 Department of Rehabilitation Medicine, Clinical Medical College, Qingdao University, Qingdao, Shandong, China
†These authors contributed equally to this work.
Received: 27 May 2025 | Revised: 21 July 2025 | Accepted: 6 August 2025 | Published online: 7 November 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Introduction: Lung adenocarcinoma (LUAD) exhibits significant genomic heterogeneity, with SMARCA4 mutations often co-occurring with other mutated genes that may shape disease progression and patient outcomes.

Objective: The objective of the study is to investigate the impact of co-mutated genes on the prognosis and immunotherapeutic response in SMARCA4-mutant LUAD.

Methods: Genomic and clinical data from SMARCA4-mutant LUAD patients were extracted from the Memorial Sloan Kettering cohort through cBioPortal, with overall survival (OS) as the primary endpoint. We systematically assessed the most frequent coexisting genomic alterations.

Results: Within a cohort of 5,957 LUAD patients, we identified 8% (n = 477) harboring SMARCA4 mutations. The most frequent co-mutations included TP53 (49%), STK11 (48%), KEAP1 (46%), KRAS (39%), and CDKN2A (33%). TP53 co-mutations exhibited significant mutual exclusivity with STK11, KEAP1, KRAS, and CDKN2A. Multivariable analysis revealed that KRAS, STK11, and KEAP1 co-mutations independently predicted shortened survival, whereas CDKN2A and TP53 co-mutation status showed no significant prognostic impact. Notably, TP53 co-mutations were associated with elevated tumor mutational burden and higher programmed death-ligand 1 expression. In Stage IV SMARCA4-mutant LUAD patients, an improved prognosis associated with co-mutation of TP53 and KRAS was observed with immune checkpoint inhibitor therapy.

Conclusion: In SMARCA4-mutant LUAD patients, TP53, STK11, KEAP1, KRAS, and CDKN2A were the most frequent co-occurring genomic alterations. Multivariable analysis identified KRAS, STK11, and KEAP1 co-mutations as independent adverse prognostic factors. Notably, tumors harboring STK11/KEAP1 double mutations or KRAS/STK11/KEAP1 triple mutations exhibited extremely poor OS, whereas TP53 co-mutations correlated with favorable outcomes and significant immunotherapy benefit. Intriguingly, TP53 mutations demonstrated mutual exclusivity with KRAS, STK11, and KEAP1 alterations, suggesting divergent oncogenic trajectories.

Keywords
SMARCA4
Lung adenocarcinoma
Co-mutation
Immunotherapy
Prognosis
Exclusivity
Funding
None.
Conflict of interest
The authors declare that they have no competing financial interests or personal relationships.
References
  1. Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229-263. doi: 10.3322/caac.21834

 

  1. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511(7511):543-550. doi: 10.1038/nature13385

 

  1. Lindeman NI, Cagle PT, Aisner DL et al. Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors: Guideline from the college of American pathologists, the international association for the study of lung cancer, and the association for molecular pathology. Arch Pathol Lab Med. 2018;142(3):321-346. doi: 10.5858/arpa.2017-0388-CP

 

  1. Tan AC, Tan DS. Targeted therapies for lung cancer patients with oncogenic driver molecular alterations. J Clin Oncol. 2022;40(6):611-625. doi: 10.1200/jco.21.01626

 

  1. Liu WJ, Du Y, Wen R, Yang M, Xu J. Drug resistance to targeted therapeutic strategies in non-small cell lung cancer. Pharmacol Ther. 2020l;206:107438. doi: 10.1016/j.pharmthera.2019.107438

 

  1. Skoulidis F, Goldberg ME, Greenawalt DM, et al. STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma. Cancer Discov. 2018;8(7):822-835. doi: 10.1158/2159-8290.Cd-18-0099

 

  1. Dagogo-Jack I, Schrock AB, Kem M, et al. Clinicopathologic characteristics of BRG1-deficient NSCLC. J Thorac Oncol. 2020;15(5):766-776. doi: 10.1016/j.jtho.2020.01.002

 

  1. Xue Y, Meehan B, Fu Z, et al. SMARCA4 loss is synthetic lethal with CDK4/6 inhibition in non-small cell lung cancer. Nat Commun. 2019;10(1):557. doi: 10.1038/s41467-019-08380-1

 

  1. Mashtalir N, D’Avino AR, Michel BC, et al. Modular organization and assembly of SWI/SNF family chromatin remodeling complexes. Cell. 2018;175(5):1272-1288.e1220. doi: 10.1016/j.cell.2018.09.032

 

  1. Hodges HC, Stanton BZ, Cermakova K, et al. Dominant-negative SMARCA4 mutants alter the accessibility landscape of tissue-unrestricted enhancers. Nat Struct Mol Biol. 2018;25(1):61-72. doi: 10.1038/s41594-017-0007-3

 

  1. Clapier CR, Iwasa J, Cairns BR, Peterson CL. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat Rev Mol Cell Biol. 2017;18(7):407-422. doi: 10.1038/nrm.2017.26

 

  1. Fulton-Ward T, Middleton G. The impact of genomic context on outcomes of solid cancer patients treated with genotype-matched targeted therapies: A comprehensive review. Ann Oncol. 2023;34(12):1113-1130. doi: 10.1016/j.annonc.2023.10.124

 

  1. Skoulidis F, Byers LA, Diao L, et al. Co-occurring genomic alterations define major subsets of KRAS-mutant lung adenocarcinoma with distinct biology, immune profiles, and therapeutic vulnerabilities. Cancer Discov. 2015;5(8):860-877. doi: 10.1158/2159-8290.Cd-14-1236

 

  1. Pang LL, Zhou HQ, Zhang YX, et al. SWI/SNF family mutations in advanced NSCLC: Genetic characteristics and immune checkpoint inhibitors’ therapeutic implication. ESMO Open. 2024;9(6):103472. doi: 10.1016/j.esmoop.2024.103472

 

  1. Naito T, Umemura S, Nakamura H, et al. Successful treatment with nivolumab for SMARCA4-deficient non-small cell lung carcinoma with a high tumor mutation burden: A case report. Thorac Cancer. 2019;10(5):1285-1288. doi: 10.1111/1759-7714.13070

 

  1. Henon C, Blay JY, Massard C, et al. Long lasting major response to pembrolizumab in a thoracic malignant rhabdoid-like SMARCA4-deficient tumor. Ann Oncol. 2019;30(8):1401-1403. doi: 10.1093/annonc/mdz160

 

  1. Gandhi MM, Elkrief A, Moore CG, et al. Gene copy deletion of STK11, KEAP1, and SMARCA4: Clinicopathologic features and association with the outcomes of immunotherapy with or without chemotherapy in nonsquamous NSCLC. J Thorac Oncol. 2025;20:725-738. doi: 10.1016/j.jtho.2025.01.016

 

  1. Alessi JV, Ricciuti B, Spurr LF et al. SMARCA4 and other SWItch/sucrose nonfermentable family genomic alterations in NSCLC: Clinicopathologic characteristics and outcomes to immune checkpoint inhibition. J Thorac Oncol. 2021;16(7):1176-1187. doi: 10.1016/j.jtho.2021.03.024

 

  1. Zhou H, Shen J, Liu J, Fang W, Zhang L. Efficacy of immune checkpoint inhibitors in SMARCA4-mutant NSCLC. J Thorac Oncol. 2020;15(8):e133-e136. doi: 10.1016/j.jtho.2020.03.030

 

  1. Jee J, Fong C, Pichotta K, et al. Automated real-world data integration improves cancer outcome prediction. Nature. 2024;636(8043):728-736. doi: 10.1038/s41586-024-08167-5

 

  1. Cheng DT, Mitchell TN, Zehir A, et al. Memorial sloan kettering-integrated mutation profiling of actionable cancer targets (MSK-IMPACT): A hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology. J Mol Diagn. 2015;17(3):251-264. doi: 10.1016/j.jmoldx.2014.12.006

 

  1. Wang D, Wang J, Zhou D, et al. SWI/SNF Complex genomic alterations as a predictive biomarker for response to immune checkpoint inhibitors in multiple cancers. Cancer Immunol Res. 2023;11(5):646-656. doi: 10.1158/2326-6066.Cir-22-0813

 

  1. Takada K, Sugita S, Murase K, et al. Exceptionally rapid response to pembrolizumab in a SMARCA4-deficient thoracic sarcoma overexpressing PD-L1: A case report. Thorac Cancer. 2019;10(12):2312-2315. doi: 10.1111/1759-7714.13215

 

  1. Wang Y, Meraz IM, Qudratullah M, et al. Mutation of SMARCA4 induces cancer cell-intrinsic defects in the enhancer landscape and resistance to immunotherapy. Cancer Res. 2025;10.1158/0008-5472. doi: 10.1158/0008-5472.Can-24-2054

 

  1. Xu H, Chen HC, Yang L, et al. Mutational landscape of SWI/SNF complex genes reveal correlation to predictive biomarkers for immunotherapy sensitivity in lung adenocarcinoma patients. ESMO Open. 2023;8(3):101585. doi: 10.1016/j.esmoop.2023.101585

 

  1. Deben C, Deschoolmeester V, Lardon F, Rolfo C, Pauwels P. TP53 and MDM2 genetic alterations in non-small cell lung cancer: Evaluating their prognostic and predictive value. Crit Rev Oncol Hematol. 2016;99:63-73. doi: 10.1016/j.critrevonc.2015.11.019

 

  1. Molina-Vila MA, Bertran-Alamillo J, Gascó A, et al. Nondisruptive p53 mutations are associated with shorter survival in patients with advanced non-small cell lung cancer. Clin Cancer Res. 2014;20(17):4647-4659. doi: 10.1158/1078-0432.Ccr-13-2391

 

  1. Martin P, Leighl NB, Tsao MS, Shepherd FA. KRAS mutations as prognostic and predictive markers in non-small cell lung cancer. J Thorac Oncol. 2013;8(5):530-542. doi: 10.1097/JTO.0b013e318283d958

 

  1. Eberhard DA, Johnson BE, Amler LC, et al. Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J Clin Oncol. 2005;23(25):5900-5909. doi: 10.1200/jco.2005.02.857

 

  1. Liu C, Zheng S, Jin R, et al. The superior efficacy of anti-PD-1/PD-L1 immunotherapy in KRAS-mutant non-small cell lung cancer that correlates with an inflammatory phenotype and increased immunogenicity. Cancer Lett. 2020;470:95-105. doi: 10.1016/j.canlet.2019.10.027

 

  1. Dong ZY, Zhong WZ, Zhang XC, et al. Potential predictive value of TP53 and KRAS mutation status for response to PD-1 blockade immunotherapy in lung adenocarcinoma. Clin Cancer Res. 2017;23(12):3012-3024. doi: 10.1158/1078-0432.Ccr-16-2554

 

  1. Kawachi H, Kunimasa K, Kukita Y, et al. Atezolizumab with bevacizumab, paclitaxel and carboplatin was effective for patients with SMARCA4-deficient thoracic sarcoma. Immunotherapy. 2021;13(10):799-806. doi: 10.2217/imt-2020-0311

 

  1. Negrini S, Gorgoulis VG, Halazonetis TD. Genomic instability--an evolving hallmark of cancer. Nat Rev Mol Cell Biol. 2010;11(3):220-228. doi: 10.1038/nrm2858

 

  1. Mouw KW, Goldberg MS, Konstantinopoulos PA, D’Andrea AD. DNA damage and repair biomarkers of immunotherapy response. Cancer Discov. 2017;7(7):675-693. doi: 10.1158/2159-8290.Cd-17-0226

 

  1. Gandara DR, Paul SM, Kowanetz M, et al. Blood-based tumor mutational burden as a predictor of clinical benefit in non-small-cell lung cancer patients treated with atezolizumab. Nat Med. 2018;24(9):1441-1448. doi: 10.1038/s41591-018-0134-3

 

  1. Di Federico A, De Giglio A, Parisi C, Gelsomino F. STK11/ LKB1 and KEAP1 mutations in non-small cell lung cancer: Prognostic rather than predictive? Eur J Cancer. 2021;157:108-113. doi: 10.1016/j.ejca.2021.08.011

 

  1. Papillon-Cavanagh S, Doshi P, Dobrin R, Szustakowski J, Walsh AM. STK11 and KEAP1 mutations as prognostic biomarkers in an observational real-world lung adenocarcinoma cohort. ESMO Open. 2020;5:e000706. doi: 10.1136/esmoopen-2020-000706

 

  1. Kitajima S, Ivanova E, Guo S, et al. Suppression of STING associated with LKB1 loss in KRAS-driven lung cancer. Cancer Discov. 2019;9(1):34-45. doi: 10.1158/2159-8290.Cd-18-0689

 

  1. Arbour KC, Jordan E, Kim HR, et al. Effects of co-occurring genomic alterations on outcomes in patients with KRAS-mutant non-small cell lung cancer. Clin Cancer Res. 2018;24(2):334-340. doi: 10.1158/1078-0432.Ccr-17-1841

 

  1. Chen H, Zhang T, Zhang Y, et al. Deciphering the tumor microenvironment cell-infiltrating landscape reveals microenvironment subtypes and therapeutic potentials for nonsquamous NSCLC. JCI Insight. 2022;7(12):e152815. doi: 10.1172/jci.insight.152815

 

  1. Marinelli D, Mazzotta M, Scalera S, et al. KEAP1-driven co-mutations in lung adenocarcinoma unresponsive to immunotherapy despite high tumor mutational burden. Ann Oncol. 2020;31(12):1746-1754. doi: 10.1016/j.annonc.2020.08.2105

 

  1. Stockhammer P, Grant M, Wurtz A, et al. Co-occurring alterations in multiple tumor suppressor genes are associated with worse outcomes in patients with EGFR-mutant lung cancer. J Thorac Oncol. 2024;19(2):240-251. doi: 10.1016/j.jtho.2023.10.001

 

  1. Elst L, Philips G, Vandermaesen K, et al. Single-cell atlas of penile cancer reveals TP53 mutations as a driver of an aggressive phenotype, irrespective of human papillomavirus status, and provides clues for treatment personalization. Eur Urol. 2024;86(2):114-127. doi: 10.1016/j.eururo.2024.03.038

 

  1. Hoyos D, Zappasodi R, Schulze I, et al. Fundamental immune-oncogenicity trade-offs define driver mutation fitness. Nature. 2022;606(7912):172-179. doi: 10.1038/s41586-022-04696-z

 

  1. Deneka AY, Baca Y, Serebriiskii IG, et al. Association of TP53 and CDKN2A mutation profile with tumor mutation burden in head and neck cancer. Clin Cancer Res. 2022;28(9):1925-1937. doi: 10.1158/1078-0432.Ccr-21-4316

 

  1. Sun H, Liu SY, Zhou JY, et al. Specific TP53 subtype as biomarker for immune checkpoint inhibitors in lung adenocarcinoma. EBioMedicine. 2020;60:102990. doi: 10.1016/j.ebiom.2020.102990

 

  1. Wei XW, Lu C, Zhang YC, et al. Redox(high) phenotype mediated by KEAP1/STK11/SMARCA4/NRF2 mutations diminishes tissue-resident memory CD8+ T cells and attenuates the efficacy of immunotherapy in lung adenocarcinoma. Oncoimmunology. 2024;13(1):2340154. doi: 10.1080/2162402x.2024.2340154

 

  1. Koyama S, Akbay EA, Li YY, et al. STK11/LKB1 deficiency promotes neutrophil recruitment and proinflammatory cytokine production to suppress T-cell activity in the lung tumor microenvironment. Cancer Res. 2016;76(5):999-1008. doi: 10.1158/0008-5472.Can-15-1439

 

  1. Pillai R, Hayashi M, Zavitsanou AM, Papagiannakopoulos T. NRF2: KEAPing tumors protected. Cancer Discov. 2022;12(3):625-643. doi: 10.1158/2159-8290.Cd-21-0922

 

  1. Fernando TM, Piskol R, Bainer R, et al. Functional characterization of SMARCA4 variants identified by targeted exome-sequencing of 131,668 cancer patients. Nat Commun. 2020;11(1):5551. doi: 10.1038/s41467-020-19402-8

 

  1. Sallman DA, McLemore AF, Aldrich AL, et al. TP53 mutations in myelodysplastic syndromes and secondary AML confer an immunosuppressive phenotype. Blood. 2020;136(24):2812-2823. doi: 10.1182/blood.2020006158

 

  1. Skoulidis F, Araujo HA, Do MT, et al. CTLA4 blockade abrogates KEAP1/STK11-related resistance to PD-(L)1 inhibitors. Nature. 2024;635(8038):462-471. doi: 10.1038/s41586-024-07943-7

 

  1. Sitthideatphaiboon P, Galan-Cobo A, Negrao MV, et al. STK11/ LKB1 mutations in NSCLC are associated with KEAP1/NRF2- dependent radiotherapy resistance targetable by glutaminase inhibition. Clin Cancer Res. 2021;27(6):1720-1733. doi: 10.1158/1078-0432.Ccr-20-2859

 

  1. Byun JK, Park M, Lee S, et al. Inhibition of glutamine utilization synergizes with immune checkpoint inhibitor to promote antitumor immunity. Mol Cell. 2020;80(4):592-606.e598. doi: 10.1016/j.molcel.2020.10.015

 

  1. Galan-Cobo A, Sitthideatphaiboon P, Qu X, et al. LKB1 and KEAP1/NRF2 pathways cooperatively promote metabolic reprogramming with enhanced glutamine dependence in KRAS-mutant lung adenocarcinoma. Cancer Res. 2019;79(13):3251-3267. doi: 10.1158/0008-5472.Can-18-3527

 

  1. Marzio A, Kurz E, Sahni JM, et al. EMSY inhibits homologous recombination repair and the interferon response, promoting lung cancer immune evasion. Cell. 2022;185(1):169-183.e119. doi: 10.1016/j.cell.2021.12.005
Share
Back to top
Eurasian Journal of Medicine and Oncology, Electronic ISSN: 2587-196X Print ISSN: 2587-2400, Published by AccScience Publishing