Defective viral genomes for antiviral therapeutics, vector control, spillover prevention, and vaccine development
Defective viral genomes (DVGs) are altered forms of viral genomes generated during error-prone replication, particularly in RNA viruses. This review examines the current understanding of DVG biology, its mechanisms of action, and its translational potential as an antiviral agent, in vector control strategies, zoonotic disease spillover prevention, and vaccine development. DVGs modulate virus-host interactions by interfering with the replication of full-length viruses and/or activating innate immune responses. Both naturally occurring and synthetic DVGs could suppress viral loads, reduce disease severity, and enhance the efficacy of inactivated and live attenuated vaccines. DVG-derived particles, such as defective interfering particles and therapeutic interfering particles, have shown broad-spectrum antiviral activity against numerous viruses in vitro and in vivo. By reducing viral replication in both insect and animal hosts, DVGs may block the vector transmission cycle and prevent spillover between species, thus playing a key role in controlling arthropod-borne viruses and zoonotic diseases. However, DVGs could contribute to viral persistence, which may hamper their clinical application. Additional challenges include standardizing DVGs production, understanding their effects on adaptive immunity, and ensuring their safety profile as vaccines or vaccine adjuvants.

- Poirier EZ, Vignuzzi M. Virus population dynamics during infection. Curr Opin Virol. 2017;23:82-87. doi: 10.1016/j.coviro.2017.03.013
- Huang AS, Baltimore D. Defective viral particles and viral disease processes. Nature. 1970;226(5243):325-327. doi: 10.1038/226325a0
- Rezelj VV, Carrau L, Merwaiss F, et al. Defective viral genomes as therapeutic interfering particles against flavivirus infection in mammalian and mosquito hosts. Nat Commun. 2021;12(1):2290. doi: 10.1038/s41467-021-22341-7
- Li Q, Tong Y, Xu Y, Niu J, Zhong J. Genetic analysis of serum-derived defective hepatitis C virus genomes revealed novel viral cis elements for virus replication and assembly. J Virol. 2018;92(7):e02182-17. doi: 10.1128/jvi.02182-17
- Jaworski E, Routh A. Parallel ClickSeq and nanopore sequencing elucidates the rapid evolution of defective-interfering RNAs in Flock house virus. PLoS Pathog. 2017;13(5):e1006365. doi: 10.1371/journal.ppat.1006365
- Girgis S, Xu Z, Oikonomopoulos S, et al. Evolution of naturally arising SARS-CoV-2 defective interfering particles. Commun Biol. 2022;5(1):1140. doi: 10.1038/s42003-022-04058-5
- Tapia K, Kim WK, Sun Y, et al. Defective viral genomes arising in vivo provide critical danger signals for the triggering of lung antiviral immunity. PLoS Pathog. 2013;9(10):e1003703. doi: 10.1371/journal.ppat.1003703
- Strahle L, Garcin D, Kolakofsky D. Sendai virus defective-interfering genomes and the activation of interferon-beta. Virology. 2006;351(1):101-111. doi: 10.1016/j.virol.2006.03.022
- Sanchez-Aparicio MT, Garcin D, Rice CM, Kolakofsky D, Garcia-Sastre A, Baum A. Loss of sendai virus C protein leads to accumulation of RIG-I immunostimulatory defective interfering RNA. J Gen Virol. 2017;98(6):1282-1293. doi: 10.1099/jgv.0.000815
- Killip MJ, Young DF, Gatherer D, et al. Deep sequencing analysis of defective genomes of parainfluenza virus 5 and their role in interferon induction. J Virol. 2013;87(9):4798-4807. doi: 10.1128/JVI.03383-12
- Sun Y, Kim EJ, Felt SA, et al. A specific sequence in the genome of respiratory syncytial virus regulates the generation of copy-back defective viral genomes. PLoS Pathog. 2019;15(4):e1007707. doi: 10.1371/journal.ppat.1007707
- Zhou T, Gilliam NJ, Li S, et al. Generation and functional analysis of defective viral genomes during SARS-CoV-2 infection. mBio. 2023;14(3):e0025023. doi: 10.1128/mbio.00250-23
- Saira K, Lin X, DePasse JV, et al. Sequence analysis of in vivo defective interfering-like RNA of influenza a H1N1 pandemic virus. J Virol. 2013;87(14):8064-8074. doi: 10.1128/jvi.00240-13
- Li D, Aaskov J. Sub-genomic RNA of defective interfering (D.I.) dengue viral particles is replicated in the same manner as full length genomes. Virology. 2014;468-470:248-255. doi: 10.1016/j.virol.2014.08.013
- Duhaut S, Dimmock NJ. Approximately 150 nucleotides from the 5’ end of an influenza a segment 1 defective virion RNA are needed for genome stability during passage of defective virus in infected cells. Virology. 2000;275(2):278-285. doi: 10.1006/viro.2000.0502
- Nomoto A, Jacobson A, Lee YF, Dunn J, Wimmer E. Defective interfering particles of poliovirus: Mapping of the deletion and evidence that the deletions in the genomes of DI(1), (2) and (3) are located in the same region. J Mol Biol. 1979;128(2):179-196. doi: 10.1016/0022-2836(79)90125-6
- Perrault J, Semler BL. Internal genome deletions in two distinct classes of defective interfering particles of vesicular stomatitis virus. Proc Natl Acad Sci U S A. 1979;76(12):6191-6195. doi: 10.1073/pnas.76.12.6191
- Davis AR, Hiti AL, Nayak DP. Influenza defective interfering viral RNA is formed by internal deletion of genomic RNA. Proc Natl Acad Sci U S A. 1980;77(1):215-219. doi: 10.1073/pnas.77.1.215
- Brennan JW, Sun Y. Defective viral genomes: Advances in understanding their generation, function, and impact on infection outcomes. mBio. 2024;15(5):e0069224. doi: 10.1128/mbio.00692-24
- Lazzarini RA, Keene JD, Schubert M. The origins of defective interfering particles of the negative-strand RNA viruses. Cell. 1981;26(2 Pt 2):145-154. doi: 10.1016/0092-8674(81)90298-1
- Perrault J. Origin and replication of defective interfering particles. Curr Top Microbiol Immunol. 1981;93:151-207. doi: 10.1007/978-3-642-68123-3_7
- Dimmock NJ, Easton AJ. Defective interfering influenza virus RNAs: Time to reevaluate their clinical potential as broad-spectrum antivirals? J Virol. 2014;88(10):5217-5227. doi: 10.1128/JVI.03193-13
- Schubert M, Lazzarini RA. Structure and origin of a snapback defective interfering particle RNA of vesicular stomatitis virus. J Virol. 1981;37(2):661-672. doi: 10.1128/JVI.37.2.661-672.1981
- Kupke SY, Riedel D, Frensing T, Zmora P, Reichl U. A novel type of influenza A virus-derived defective interfering particle with nucleotide substitutions in its genome. J Virol. 2019;93(4):e01786-18. doi: 10.1128/jvi.01786-18
- O’Hara PJ, Nichol ST, Horodyski FM, Holland JJ. Vesicular stomatitis virus defective interfering particles can contain extensive genomic sequence rearrangements and base substitutions. Cell. 1984;36(4):915-924. doi: 10.1016/0092-8674(84)90041-2
- Hillman BI, Carrington JC, Morris TJ. A defective interfering RNA that contains a mosaic of a plant virus genome. Cell. 1987;51(3):427-433. doi: 10.1016/0092-8674(87)90638-6
- Molenkamp R, Rozier BC, Greve S, Spaan WJ, Snijder EJ. Isolation and characterization of an arterivirus defective interfering RNA genome. J Virol. 2000;74(7):3156-3165. doi: 10.1128/jvi.74.7.3156-3165.2000
- Von Magnus P. Incomplete forms of influenza virus. Adv Virus Res. 1954;2:59-79. doi: 10.1016/s0065-3527(08)60529-1
- Cole CN, Smoler D, Wimmer E, Baltimore D. Defective interfering particles of poliovirus. I. Isolation and physical properties. J Virol. 1971;7(4):478-485. doi: 10.1128/jvi.7.4.478-485.1971
- Maeda A, Suzuki Y, Matsumoto M. Isolation and characterization of defective interfering particle of newcastle disease virus. Microbiol Immunol. 1978;22(12):775-784. doi: 10.1111/j.1348-0421.1978.tb00431.x
- Pitchai FNN, Tanner EJ, Khetan N, et al. Engineered deletions of HIV replicate conditionally to reduce disease in nonhuman primates. Science. 2024;385(6709):eadn5866. doi: 10.1126/science.adn5866
- Munoz-Sanchez JC, Olmo-Uceda MJ, Oteo JA, Elena SF. Quantifying defective and wild-type viruses from high-throughput RNA sequencing. Bioinformatics. 2024;40(11):btae651. doi: 10.1093/bioinformatics/btae651
- Levi LI, Madden EA, Boussier J, et al. Chikungunya virus RNA secondary structures impact defective viral genome production. Microorganisms. 2024;12(9):1794. doi: 10.3390/microorganisms12091794
- Johnson RI, Boczkowska B, Alfson K, et al. Identification and characterization of defective viral genomes in Ebola virus-infected rhesus macaques. J Virol. 2021;95(17):e0071421. doi: 10.1128/jvi.00714-21
- Welch SR, Tilston NL, Lo MK, et al. Inhibition of Nipah virus by defective interfering particles. J Infect Dis. 2020;221(Suppl 4):S460-s470. doi: 10.1093/infdis/jiz564
- Hillung J, Olmo-Uceda MJ, Munoz-Sanchez JC, Elena SF. Accumulation dynamics of defective genomes during experimental evolution of two betacoronaviruses. Viruses. 2024;16(4):644. doi: 10.3390/v16040644
- Boussier J, Munier S, Achouri E, et al. RNA-Seq accuracy and reproducibility for the mapping and quantification of influenza defective viral genomes. RNA. 2020;26(12):1905-1918. doi: 10.1261/rna.077529.120
- Ghorbani A, Ngunjiri JM, Rendon G, Brooke CB, Kenney SP, Lee CW. Diversity and complexity of internally deleted viral genomes in influenza A virus subpopulations with enhanced interferon-inducing phenotypes. Viruses. 2023;15(10):2107. doi: 10.3390/v15102107
- Mendes M, Russell AB. Library-based analysis reveals segment and length dependent characteristics of defective influenza genomes. PLoS Pathog. 2021;17(12):e1010125.doi: 10.1371/journal.ppat.1010125
- Chaturvedi S, Vasen G, Pablo M, et al. Identification of a therapeutic interfering particle-A single-dose SARS-CoV-2 antiviral intervention with a high barrier to resistance. Cell. 2021;184(25):6022-6036.e18. doi: 10.1016/j.cell.2021.11.004
- Alnaji FG, Holmes JR, Rendon G, et al. Sequencing framework for the sensitive detection and precise mapping of defective interfering particle-associated deletions across influenza A and B viruses. J Virol. 2019;93(11):e00354-19. doi: 10.1128/JVI.00354-19
- Routh A, Johnson JE. Discovery of functional genomic motifs in viruses with ViReMa-a virus recombination mapper-for analysis of next-generation sequencing data. Nucleic Acids Res. 2014;42(2):e11. doi: 10.1093/nar/gkt916
- Beauclair G, Mura M, Combredet C, Tangy F, Jouvenet N, Komarova AV. DI-tector: Defective interfering viral genomes’ detector for next-generation sequencing data. RNA. 2018;24(10):1285-1296. doi: 10.1261/rna.066910.118
- Bosma TJ, Karagiannis K, Santana-Quintero L, et al. Identification and quantification of defective virus genomes in high throughput sequencing data using DVG-profiler, a novel post-sequence alignment processing algorithm. PLoS One. 2019;14(5):e0216944. doi: 10.1371/journal.pone.0216944
- De Jongh HH, Brasseur R, Killian JA. Orientation of the alpha-helices of apocytochrome C and derived fragments at membrane interfaces, as studied by circular dichroism. Biochemistry. 1994;33(48):14529-14535. doi: 10.1021/bi00252a020
- Olmo-Uceda MJ, Munoz-Sanchez JC, Lasso-Giraldo W, Arnau V, Diaz-Villanueva W, Elena SF. DVGfinder: A metasearch tool for identifying defective viral genomes in RNA-seq data. Viruses. 2022;14(5):1114. doi: 10.3390/v14051114
- Achouri E, Felt SA, Hackbart M, Rivera-Espinal NS, Lopez CB. VODKA2: A fast and accurate method to detect non-standard viral genomes from large RNA-seq data sets. RNA. 2023;30(1):16-25. doi: 10.1261/rna.079747.123
- Von Magnus P. Studies on Interference in Experimental Influenza. I. Biological Observations. Stockholm: Almqvist and Wiksell; 1947.
- Huang AS, Greenawalt JW, Wagner RR. Defective T particles of vesicular stomatitis virus. I. Preparation, morphology, and some biologic properties. Virology. 1966;30(2):161-172. doi: 10.1016/0042-6822(66)90092-4
- Portner A, Kingsbury DW. Homologous interference by incomplete Sendai virus particles: Changes in virus-specific ribonucleic acid synthesis. J Virol. 1971;8(4):388-394. doi: 10.1128/JVI.8.4.388-394.1971
- Kolakofsky D. Studies on the generation and amplification of Sendai virus defective-interfering genomes. Virology. 1979;93(2):589-593. doi: 10.1016/0042-6822(79)90263-0
- Re GG, Kingsbury DW. Nucleotide sequences that affect replicative and transcriptional efficiencies of Sendai virus deletion mutants. J Virol. 1986;58(2):578-582. doi: 10.1128/JVI.58.2.578-582.1986
- Duhaut SD, Dimmock NJ. Defective segment 1 RNAs that interfere with production of infectious influenza A virus require at least 150 nucleotides of 5’ sequence: Evidence from a plasmid-driven system. J Gen Virol. 2002;83(Pt 2):403-411. doi: 10.1099/0022-1317-83-2-403
- Odagiri T, Tashiro M. Segment-specific noncoding sequences of the influenza virus genome RNA are involved in the specific competition between defective interfering RNA and its progenitor RNA segment at the virion assembly step. J Virol. 1997;71(3):2138-2145. doi: 10.1128/JVI.71.3.2138-2145.1997
- Duhaut SD, McCauley JW. Defective RNAs inhibit the assembly of influenza virus genome segments in a segment-specific manner. Virology. 1996;216(2):326-337. doi: 10.1006/viro.1996.0068
- Notton T, Glazier JJ, Saykally VR, Thompson CE, Weinberger LS. Randel-seq: A high-throughput method to map viral cis- and trans-acting elements. mBio. 2021;12(1):e01724-20. doi: 10.1128/mBio.01724-20
- Rao DD, Huang AS. Interference among defective interfering particles of vesicular stomatitis virus. J Virol. 1982;41(1):210-221. doi: 10.1128/jvi.41.1.210-221.1982
- Marcus PI, Sekellick MJ. Defective interfering particles with covalently linked [+/-]RNA induce interferon. Nature. 1977;266(5605):815-819. doi: 10.1038/266815a0
- Van den Hoogen BG, Van Boheemen S, De Rijck J, et al. Excessive production and extreme editing of human metapneumovirus defective interfering RNA is associated with type I IFN induction. J Gen Virol. 2014;95(Pt 8):1625-1633. doi: 10.1099/vir.0.066100-0
- Shivakoti R, Siwek M, Hauer D, Schultz KL, Griffin DE. Induction of dendritic cell production of type I and type III interferons by wild-type and vaccine strains of measles virus: Role of defective interfering rnas. J Virol. 2013;87(14):7816-7827. doi: 10.1128/JVI.00261-13
- Sun Y, Jain D, Koziol-White CJ, et al. Immunostimulatory defective viral genomes from respiratory syncytial virus promote a strong innate antiviral response during infection in mice and humans. PLoS Pathog. 2015;11(9):e1005122. doi: 10.1371/journal.ppat.1005122
- Honda K, Sakaguchi S, Nakajima C, et al. Selective contribution of IFN-alpha/beta signaling to the maturation of dendritic cells induced by double-stranded RNA or viral infection. Proc Natl Acad Sci U S A. 2003;100(19):10872-10877. doi: 10.1073/pnas.1934678100
- Martinez-Sobrido L, Gitiban N, Fernandez-Sesma A, et al. Protection against respiratory syncytial virus by a recombinant newcastle disease virus vector. J Virol. 2006;80(3):1130-1139. doi: 10.1128/JVI.80.3.1130-1139.2006
- Yount JS, Gitlin L, Moran TM, Lopez CB. MDA5 participates in the detection of paramyxovirus infection and is essential for the early activation of dendritic cells in response to sendai virus defective interfering particles. J Immunol. 2008;180(7):4910-4918. doi: 10.4049/jimmunol.180.7.4910
- Fuller FJ, Marcus PI. Interferon induction by viruses. Iv. Sindbis virus: Early passage defective-interfering particles induce interferon. J Gen Virol. 1980;48(1):63-73. doi: 10.1099/0022-1317-48-1-63
- Metzger VT, Lloyd-Smith JO, Weinberger LS. Autonomous targeting of infectious superspreaders using engineered transmissible therapies. PLoS Comput Biol. 2011;7(3):e1002015. doi: 10.1371/journal.pcbi.1002015
- Weinberger LS, Schaffer DV, Arkin AP. Theoretical design of a gene therapy to prevent AIDS but not human immunodeficiency virus type 1 infection. J Virol. 2003;77(18):10028-10036. doi: 10.1128/jvi.77.18.10028-10036.2003
- Calain P, Monroe MC, Nichol ST. Ebola virus defective interfering particles and persistent infection. Virology. 1999;262(1):114-128. doi: 10.1006/viro.1999.9915
- Harty RN, Holden VR, O’Callaghan DJ. Transcriptional and translational analyses of the UL2 gene of equine herpesvirus 1: A homolog of UL55 of herpes simplex virus type 1 that is maintained in the genome of defective interfering particles. J Virol. 1993;67(4):2255-2265. doi: 10.1128/JVI.67.4.2255-2265.1993
- Ho YC, Shan L, Hosmane NN, et al. Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell. 2013;155(3):540-551. doi: 10.1016/j.cell.2013.09.020
- Bruner KM, Murray AJ, Pollack RA, et al. Defective proviruses rapidly accumulate during acute HIV-1 infection. Nat Med. 2016;22(9):1043-1049. doi: 10.1038/nm.4156
- Pollack RA, Jones RB, Pertea M, et al. Defective HIV-1 proviruses are expressed and can be recognized by cytotoxic T lymphocytes, which shape the proviral landscape. Cell Host Microbe. 2017;21(4):494-506.e4. doi: 10.1016/j.chom.2017.03.008
- Kuniholm J, Coote C, Henderson AJ. Defective HIV-1 genomes and their potential impact on HIV pathogenesis. Retrovirology. 2022;19(1):13. doi: 10.1186/s12977-022-00601-8
- Murdaca G, Colombo BM, Puppo F. The role of Th17 lymphocytes in the autoimmune and chronic inflammatory diseases. Intern Emerg Med. 2011;6(6):487-495. doi: 10.1007/s11739-011-0517-7
- Elhed A, Unutmaz D. Th17 cells and HIV infection. Curr Opin HIV AIDS. 2010;5(2):146-150. doi: 10.1097/coh.0b013e32833647a8
- Lian X, Gao C, Sun X, et al. Signatures of immune selection in intact and defective proviruses distinguish HIV-1 elite controllers. Sci Transl Med. 2021;13(624):eabl4097. doi: 10.1126/scitranslmed.abl4097
- Costa P, Rusconi S, Mavilio D, et al. Differential disappearance of inhibitory natural killer cell receptors during HAART and possible impairment of HIV-1-specific CD8 cytotoxic T lymphocytes. AIDS. 2001;15(8):965-974. doi: 10.1097/00002030-200105250-00004
- Smith CM, Scott PD, O’Callaghan C, Easton AJ, Dimmock NJ. A defective interfering influenza RNA inhibits infectious influenza virus replication in human respiratory tract cells: A potential new human antiviral. Viruses. 2016;8(8):237. doi: 10.3390/v8080237
- Scott PD, Meng B, Marriott AC, Easton AJ, Dimmock NJ. Defective interfering virus protects elderly mice from influenza. Virol J. 2011;8:212. doi: 10.1186/1743-422x-8-212
- Dimmock NJ, Dove BK, Scott PD, et al. Cloned defective interfering influenza virus protects ferrets from pandemic 2009 influenza A virus and allows protective immunity to be established. PLoS One. 2012;7(12):e49394.doi: 10.1371/journal.pone.0049394
- Dimmock NJ, Dove BK, Meng B, et al. Comparison of the protection of ferrets against pandemic 2009 influenza A virus (H1N1) by 244 DI influenza virus and oseltamivir. Antiviral Res. 2012;96(3):376-385. doi: 10.1016/j.antiviral.2012.09.017
- Easton AJ, Scott PD, Edworthy NL, Meng B, Marriott AC, Dimmock NJ. A novel broad-spectrum treatment for respiratory virus infections: Influenza-based defective interfering virus provides protection against pneumovirus infection in vivo. Vaccine. 2011;29(15):2777-2784. doi: 10.1016/j.vaccine.2011.01.102
- Scott PD, Meng B, Marriott AC, Easton AJ, Dimmock NJ. Defective interfering influenza A virus protects in vivo against disease caused by a heterologous influenza B virus. J Gen Virol. 2011;92(Pt 9):2122-2132. doi: 10.1099/vir.0.034132-0
- Xiao Y, Lidsky PV, Shirogane Y, et al. A defective viral genome strategy elicits broad protective immunity against respiratory viruses. Cell. 2021;184(25):6037-6051.e14. doi: 10.1016/j.cell.2021.11.023
- Holland JJ, Villarreal LP. Purification of defective interfering T particles of vesicular stomatitis and rabies viruses generated in vivo in brains of newborn mice. Virology. 1975;67(2):438-449. doi: 10.1016/0042-6822(75)90445-6
- Levi LI, Rezelj VV, Henrion-Lacritick A, et al. Defective viral genomes from chikungunya virus are broad-spectrum antivirals and prevent virus dissemination in mosquitoes. PLoS Pathog. 2021;17(2):e1009110. doi: 10.1371/journal.ppat.1009110
- Li D, Lin MH, Rawle DJ, et al. Dengue virus-free defective interfering particles have potent and broad anti-dengue virus activity. Commun Biol. 2021;4(1):557. doi: 10.1038/s42003-021-02064-7
- Lin MH, Maniam P, Li D, et al. Harnessing defective interfering particles and lipid nanoparticles for effective delivery of an anti-dengue virus RNA therapy. Mol Ther Nucleic Acids. 2025;36(1):102424. doi: 10.1016/j.omtn.2024.102424
- Wang S, Chan KWK, Naripogu KB, Swarbrick CMD, Aaskov J, Vasudevan SG. Subgenomic RNA from dengue virus type 2 suppresses replication of dengue virus genomes and interacts with virus-encoded NS3 and NS5 proteins. ACS Infect Dis. 2020;6(3):436-446. doi: 10.1021/acsinfecdis.9b00384
- Pesko KN, Fitzpatrick KA, Ryan EM, et al. Internally deleted WNV genomes isolated from exotic birds in new mexico: Function in cells, mosquitoes, and mice. Virology. 2012;427(1):10-17. doi: 10.1016/j.virol.2012.01.028
- Brinton MA. Analysis of extracellular west nile virus particles produced by cell cultures from genetically resistant and susceptible mice indicates enhanced amplification of defective interfering particles by resistant cultures. J Virol. 1983;46(3):860-870. doi: 10.1128/jvi.46.3.860-870.1983
- Tilston-Lunel NL, Welch SR, Nambulli S, et al. Sustained replication of synthetic canine distemper virus defective genomes in vitro and in vivo. mSphere. 2021;6(5):e0053721. doi: 10.1128/mSphere.00537-21
- Welsh RM, Oldstone MB. Inhibition of immunologic injury of cultured cells infected with lymphocytic choriomeningitis virus: Role of defective interfering virus in regulating viral antigenic expression. J Exp Med. 1977;145(6):1449-1468. doi: 10.1084/jem.145.6.1449
- Kascsak RJ, Lyons MJ. Bunyamwera virus. II. The generation and nature of defective interfering particles. Virology. 1978;89(2):539-546. doi: 10.1016/0042-6822(78)90195-2
- Patel AH, Elliott RM. Characterization of Bunyamwera virus defective interfering particles. J Gen Virol. 1992;73(Pt 2):389-396. doi: 10.1099/0022-1317-73-2-389
- Kosmidou A, Buttner M, Meyers G. Isolation and characterization of cytopathogenic classical swine fever virus (CSFV). Arch Virol. 1998;143(7):1295-1309. doi: 10.1007/s007050050376
- Aoki H, Ishikawa K, Sakoda Y, et al. Characterization of classical swine fever virus associated with defective interfering particles containing a cytopathogenic subgenomic RNA isolated from wild boar. J Vet Med Sci. 2001;63(7):751-758. doi: 10.1292/jvms.63.751
- Meyers G, Thiel HJ. Cytopathogenicity of classical swine fever virus caused by defective interfering particles. J Virol. 1995;69(6):3683-3689. doi: 10.1128/jvi.69.6.3683-3689.1995
- Aoki H, Ishikawa K, Sekiguchi H, Suzuki S, Fukusho A. Pathogenicity and kinetics of virus propagation in swine infected with the cytopathogenic classical swine fever virus containing defective interfering particles. Arch Virol. 2003;148(2):297-310. doi: 10.1007/s00705-002-0907-2
- McLaren LC, Holland JJ. Defective interfering particles from poliovirus vaccine and vaccine reference strains. Virology. 1974;60(2):579-583. doi: 10.1016/0042-6822(74)90352-3
- Bellocq C, Mottet G, Roux L. Wide occurrence of measles virus subgenomic RNAs in attenuated live-virus vaccines. Biologicals. 1990;18(4):337-343. doi: 10.1016/1045-1056(90)90039-3
- Gould PS, Easton AJ, Dimmock NJ. Live attenuated influenza vaccine contains substantial and unexpected amounts of defective viral genomic RNA. Viruses. 2017;9(10):269. doi: 10.3390/v9100269
- Martinez-Gil L, Goff PH, Hai R, Garcia-Sastre A, Shaw ML, Palese P. A Sendai virus-derived RNA agonist of RIG-I as a virus vaccine adjuvant. J Virol. 2013;87(3):1290-1300. doi: 10.1128/JVI.02338-12
- Fisher DG, Coppock GM, Lopez CB. Virus-derived immunostimulatory RNA induces type I IFN-dependent antibodies and T-cell responses during vaccination. Vaccine. 2018;36(28):4039-4045. doi: 10.1016/j.vaccine.2018.05.100
