Autoimmune thyroiditis and pan-cancer risk: A comprehensive Mendelian randomization study

Introduction: Autoimmune thyroiditis (AIT), clinically termed Hashimoto’s thyroiditis (HT), is a chronic autoimmune condition characterized by progressive immune-mediated degeneration of thyroid tissue. The association between AIT and cancer risk, particularly thyroid cancer, remains controversial.
Objective: This study is aimed to investigate potential causal associations between AIT/HT and thyroid cancers or extra-thyroidal cancers comprehensively.
Methods: To clarify this uncertainty, we employed Mendelian randomization (MR) analysis to evaluate causal associations between genetic predisposition to AIT and pan-cancer risk, including subtypes of thyroid cancer and extra-thyroidal malignancies. Summary statistics were pooled from comprehensive genome-wide studies, including two independent AIT/HT datasets, 10 thyroid neoplasm datasets, and 33 extra-thyroidal cancer datasets. Bidirectional two-sample MR analyses were conducted to mitigate confounding and reverse causation. Quality control was reinforced through sensitivity analyses.
Results: Contrary to previous observational studies, our study found no genetically supported causal link between AIT/HT and the development of thyroid carcinoma. However, elevated risks of non-Hodgkin lymphoma, primary lymphoid/hematopoietic malignancies, testicular cancer, and brain cancer might be associated with AIT/HT. Sensitivity analyses confirmed the robustness of these results, although some associations exhibited heterogeneity or pleiotropy.
Conclusion: These findings reveal tissue-specific effects of thyroid autoimmunity on cancer development, suggesting distinct biological pathways beyond thyroid malignancies. This study provides genetic evidence that refines cancer risk assessment in patients with AIT/HT and emphasizes the need for further mechanistic research to elucidate underlying biological processes.
- Weetman AP. An update on the pathogenesis of Hashimoto’s thyroiditis. J Endocrinol Invest. 2021;44:883-890. doi: 10.1007/s40618-020-01477-1
- Liotti F, Visciano C, Melillo RM. Inflammation in thyroid oncogenesis. Am J Cancer Res. 2012;2:286-297.
- Boucai L, Zafereo M, Cabanillas ME. Thyroid cancer: A review. JAMA. 2024;331:425-435. doi: 10.1001/jama.2023.26348
- Resende de Paiva C, Gronhoj C, Feldt-Rasmussen U, et al. Association between Hashimoto’s thyroiditis and thyroid cancer in 64,628 patients. Front Oncol. 2017;7:53. doi: 10.3389/fonc.2017.00053
- Osorio C, Ibarra S, Arrieta J, et al. Association between chronic lymphocytic thyroiditis and papillary thyroid carcinoma: A retrospective study in surgical specimens. Rev Esp Patol. 2020;53:149-157. doi: 10.1016/j.patol.2019.07.004
- Lai X, Xia Y, Zhang B, et al. A meta-analysis of Hashimoto’s thyroiditis and papillary thyroid carcinoma risk. Oncotarget. 2017;8:62414-62424. doi: 10.18632/oncotarget.18620
- Holm LE, Blomgren H, Lowhagen T. Cancer risks in patients with chronic lymphocytic thyroiditis. N Engl J Med. 1985;312:601-604. doi: 10.1056/nejm198503073121001
- Muller I, Pinchera A, Fiore E, et al. High prevalence of breast cancer in patients with benign thyroid diseases. J Endocrinol Invest. 2011;34:349-352. doi: 10.1007/BF03347458
- Yamashita N, Maruchi N, Mori W. Hashimoto’s thyroiditis: A possible risk factor for lung cancer among Japanese women. Cancer Lett. 1979;7:9-13. doi: 10.1016/s0304-3835(79)80070-1
- Chen YK, Lin CL, Cheng FT, et al. Cancer risk in patients with Hashimoto’s thyroiditis: A nationwide cohort study. Br J Cancer. 2013;109:2496-2501. doi: 10.1038/bjc.2013.597
- Hu X, Wang X, Liang Y, et al. Cancer risk in Hashimoto’s thyroiditis: A systematic review and meta-analysis. Front Endocrinol (Lausanne). 2022;13:937871. doi: 10.3389/fendo.2022.937871
- Anil C, Goksel S, Gursoy A. Hashimoto’s thyroiditis is not associated with increased risk of thyroid cancer in patients with thyroid nodules: A single-center prospective study. Thyroid. 2010;20:601-606. doi: 10.1089/thy.2009.0450
- Maruchi N, Annegers JF, Kurland LT. Hashimoto’s thyroiditis and breast cancer. Mayo Clin Proc. 1976;51:263-265.
- Emdin CA, Khera AV, Kathiresan S. Mendelian randomization. JAMA. 2017;318:1925-1926. doi: 10.1001/jama.2017.17219
- Skrivankova VW, Richmond RC, Woolf BAR, et al. Strengthening the reporting of observational studies in epidemiology using mendelian randomization: The STROBE-MR statement. JAMA. 2021;326:1614-1621. doi: 10.1001/jama.2021.18236
- Kurki MI, Karjalainen J, Palta P, et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature. 2023;613:508-518. doi: 10.1038/s41586-022-05473-8
- Sakaue S, Kanai M, Tanigawa Y, et al. A cross-population atlas of genetic associations for 220 human phenotypes. Nat Genet. 2021;53:1415-1424. doi: 10.1038/s41588-021-00931-x
- Kohler A, Chen B, Gemignani F, et al. Genome-wide association study on differentiated thyroid cancer. J Clin Endocrinol Metab. 2013;98:E1674-1681. doi: 10.1210/jc.2013-1941
- Mbatchou J, Barnard L, Backman J, et al. Computationally efficient whole-genome regression for quantitative and binary traits. Nat Genet. 2021;53:1097-1103. doi: 10.1038/s41588-021-00870-7
- Sudlow C, Gallacher J, Allen N, et al. UK biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12:e1001779. doi: 10.1371/journal.pmed.1001779
- Genomes Project C, Auton A, Brooks LD, et al. A global reference for human genetic variation. Nature. 2015;526:68-74. doi: 10.1038/nature15393
- Burgess S, Thompson SG, Collaboration CCG. Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol. 2011;40:755-764. doi: 10.1093/ije/dyr036
- Huang L, Feng X, Yang W, et al. Appraising the effect of potential risk factors on thyroid cancer: A mendelian randomization study. J Clin Endocrinol Metab. 2022;107:e2783-e2791. doi: 10.1210/clinem/dgac196
- Hu X, Wang Y, Liu E, et al. Causality of Hashimoto’s thyroiditis to thyroid cancer: A 2-S mendelian randomization study. Endocr Pract. 2024;30:1158-1165. doi: 10.1016/j.eprac.2024.09.009
- Sollis E, Mosaku A, Abid A, et al. The NHGRI-EBI GWAS catalog: Knowledgebase and deposition resource. Nucleic Acids Res. 2023;51:D977-D985. doi: 10.1093/nar/gkac1010
- Burgess S, Small DS, Thompson SG. A review of instrumental variable estimators for Mendelian randomization. Stat Methods Med Res. 2017;26:2333-2355. doi: 10.1177/0962280215597579
- Burgess S, Dudbridge F, Thompson SG. Combining information on multiple instrumental variables in Mendelian randomization: Comparison of allele score and summarized data methods. Stat Med. 2016;35:1880-1906. doi: 10.1002/sim.6835
- Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol. 2017;32:377-389. doi: 10.1007/s10654-017-0255-x
- Bowden J, Davey Smith G, Haycock PC, et al. Consistent Estimation in mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40:304-314. doi: 10.1002/gepi.21965
- Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol. 2017;46:1985-1998. doi: 10.1093/ije/dyx102
- Cohen JF, Chalumeau M, Cohen R, et al. Cochran’s Q test was useful to assess heterogeneity in likelihood ratios in studies of diagnostic accuracy. J Clin Epidemiol. 2015;68:299-306. doi: 10.1016/j.jclinepi.2014.09.005
- Verbanck M, Chen CY, Neale B, et al. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. 2018;50:693-698. doi: 10.1038/s41588-018-0099-7
- Castagna MG, Belardini V, Memmo S, et al. Nodules in autoimmune thyroiditis are associated with increased risk of thyroid cancer in surgical series but not in cytological series: Evidence for selection bias. J Clin Endocrinol Metab. 2014;99:3193-3198. doi: 10.1210/jc.2014-1302
- Feldt-Rasmussen U. Hashimoto’s thyroiditis as a risk factor for thyroid cancer. Curr Opin Endocrinol Diabetes Obes. 2020;27:364-371. doi: 10.1097/med.0000000000000570
- Lun Y, Wu X, Xia Q, et al. Hashimoto’s thyroiditis as a risk factor of papillary thyroid cancer may improve cancer prognosis. Otolaryngol Head Neck Surg. 2013;148:396-402. doi: 10.1177/0194599812472426
- Song E, Oh HS, Jeon MJ, et al. The value of preoperative antithyroidperoxidase antibody as a novel predictor of recurrence in papillary thyroid carcinoma. Int J Cancer. 2019;144:1414-1420. doi: 10.1002/ijc.31944
- Lee YK, Park KH, Park SH, et al. Association between diffuse lymphocytic infiltration and papillary thyroid cancer aggressiveness according to the presence of thyroid peroxidase antibody and BRAFV600]E mutation. Head Neck. 2018;40:2271-2279. doi: 10.1002/hed.25327
- Nicolson NG, Brown TC, Korah R, et al. Immune cell infiltrate-associated dysregulation of DNA repair machinery may predispose to papillary thyroid carcinogenesis. Surgery. 2020;167:66-72.doi: 10.1016/j.surg.2019.02.024
- Cappelli C, Pirola I, Gandossi E, et al. Could serum TSH levels predict malignancy in euthyroid patients affected by thyroid nodules with indeterminate cytology? Int J Endocrinol. 2020;2020:7543930. doi: 10.1155/2020/7543930
- Mellemkjaer L, Pfeiffer RM, Engels EA, et al. Autoimmune disease in individuals and close family members and susceptibility to non-Hodgkin’s lymphoma. Arthritis Rheum. 2008;58:657-666. doi: 10.1002/art.23267
- Varoczy L, Gergely L, Zeher M, et al. Malignant lymphoma-associated autoimmune diseases--a descriptive epidemiological study. Rheumatol Int. 2002;22:233-237. doi: 10.1007/s00296-002-0229-4
- Santana V, Rose NR. Neoplastic lymphoproliferation in autoimmune disease: An updated review. Clin Immunol Immunopathol. 1992;63:205-213. doi: 10.1016/0090-1229(92)90224-c
- Graff-Baker A, Sosa JA, Roman SA. Primary thyroid lymphoma: A review of recent developments in diagnosis and histology-driven treatment. Curr Opin Oncol. 2010;22:17-22. doi: 10.1097/CCO.0b013e3283330848
- Ghafouri AM, Alzaidi S, Al-Kaabi BB, et al. Thyroid B-Cell lymphoma in the background of Hashimoto’s thyroiditis: A case report and literature review. Cureus. 2024;16:e57359. doi: 10.7759/cureus.57359
- Al-Mansour M, Maglan AF, Altayeb MK, et al. The risk of developing lymphoma among autoimmune thyroid disorder patients: A cross-section study. Dis Markers. 2022;2022:4354595. doi: 10.1155/2022/4354595
- Hyjek E, Isaacson PG. Primary B cell lymphoma of the thyroid and its relationship to Hashimoto’s thyroiditis. Hum Pathol. 1988;19:1315-1326. doi: 10.1016/s0046-8177(88)80287-9
- Conde L, Bracci PM, Halperin E, et al. A search for overlapping genetic susceptibility loci between non- Hodgkin lymphoma and autoimmune diseases. Genomics. 2011;98:9-14. doi: 10.1016/j.ygeno.2011.03.007
- Smith MJ, Rihanek M, Coleman BM, et al. Activation of thyroid antigen-reactive B cells in recent onset autoimmune thyroid disease patients. J Autoimmun. 2018;89:82-89. doi: 10.1016/j.jaut.2017.12.001