AccScience Publishing / EJMO / Online First / DOI: 10.36922/EJMO025170148
ORIGINAL RESEARCH ARTICLE

Therapeutic potential of Aronia melanocarpa in the prevention of bleomycin-induced lung fibrosis in rats

Metin Bağcı1 Taha Ulutan Kars1* Hasan İbrahim Kozan2 Seda Yılmaz1 Sümeyye Uçar3 Aslı Okan Oflamaz4 Seher Yılmaz5 Züleyha Doğanyiğit4 Abdulkadir Baştürk1
Show Less
1 Hematology Clinic, Konya City Hospital, Health Science University, Konya, Türkiye
2 Department of Food Processing, Meram Vocational School, Necmettin Erbakan University, Konya, Türkiye
3 Department of Anatomy, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
4 Department of Histology and Embryology, Faculty of Medicine, Bozok University, Yozgat, Türkiye
5 Department of Anatomy, Faculty of Medicine, Bozok University, Yozgat, Türkiye
Received: 26 April 2025 | Revised: 3 August 2025 | Accepted: 11 August 2025 | Published online: 22 September 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Introduction: Pulmonary fibrosis is a progressive and life-threatening condition frequently associated with chemotherapeutic agents, such as bleomycin (BLE). Aronia melanocarpa extract (AME), a potent antioxidant derived from black chokeberry, has shown promising anti-inflammatory and anti-fibrotic effects in various pre-clinical models.

Objective: This study aims to evaluate the protective and therapeutic effects of AME in a rat model of BLE-induced pulmonary fibrosis.

Methods: A total of 60 rats were divided into six groups: control, fibrosis (BLE only), positive control (BLE + methylprednisolone), AME-only, AME + BLE (AME administered concurrently with BLE), and BLE + AME (AME administered after fibrosis induction). Lung tissues were analyzed histologically and biochemically for inflammation, fibrosis, and oxidative stress markers.

Results: AME administration significantly reduced alveolar wall thickening, hemorrhage, cellular infiltration, and collagen deposition. These effects were more pronounced in the AME + BLE group, indicating a potential prophylactic advantage. In addition, AME restored antioxidant enzyme levels and suppressed lipid peroxidation.

Conclusion: AME exhibits both preventive and therapeutic effects against BLE-induced lung injury. Its polyphenol-rich composition and antioxidative properties support its potential as a low-cost, low-toxicity candidate in pulmonary fibrosis management.

Keywords
Aronia melanocarpa
Bleomycin
Lung fibrosis
Oxidative stress
Antioxidant
Animal model
Funding
None.
Conflict of interest
The authors declare that they have no conflicts of interest, financial or otherwise, that could be perceived to influence the outcomes or interpretation of this study. No commercial or institutional affiliations exist that might constitute a potential conflict. All authors confirm that they have no relationships with any entities that might have an interest in the submitted work.
References
  1. Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214(2):199-210. doi: 10.1002/path.2277

 

  1. Friedman SL, Sheppard D, Duffield JS, Violette S. Therapy for fibrotic diseases: Nearing the starting line. Sci Transl Med. 2013;5(167):167sr1. doi: 10.1126/scitranslmed.3004700

 

  1. Wynn TA. Integrating mechanisms of pulmonary fibrosis. J Exp Med. 2011;208(7):1339-1350. doi: 10.1084/jem.20110551

 

  1. Jules-Elysee K, White DA. Bleomycin-induced pulmonary toxicity. Clin Chest Med. 1990;11(1):1-20.

 

  1. Sleijfer S. Bleomycin-induced pneumonitis. Chest. 2001;120(2):617-624. doi: 10.1378/chest.120.2.617

 

  1. O’Sullivan JM, Huddart RA, Norman AR, Nicholls J, Dearnaley DP, Horwich A. Predicting the risk of bleomycin lung toxicity in patients with germ-cell tumours. Ann Oncol. 2003;14(1):91-96. doi: 10.1093/annonc/mdg020

 

  1. Uzel I, Ozguroglu M, Uzel B, et al. Delayed onset bleomycin-induced pneumonitis. Urology. 2005;66(1):195. doi: 10.1016/j.urology.2005.01.038

 

  1. Schrier DJ, Phan SH, McGarry BM. The effects of the nude (nu/nu) mutation on bleomycin-induced pulmonary fibrosis. A biochemical evaluation. Am Rev Respir Dis. 1983;127(5):614-617. doi: 10.1164/arrd.1983.127.5.614

 

  1. Gibbons MA, MacKinnon AC, Ramachandran P, et al. Ly6Chi monocytes direct alternatively activated profibrotic macrophage regulation of lung fibrosis. Am J Respir Crit Care Med. 2011;184(5):569-581. doi: 10.1164/rccm.201010-1719OC

 

  1. Tao B, Jin W, Xu J, et al. Myeloid-specific disruption of tyrosine phosphatase Shp2 promotes alternative activation of macrophages and predisposes mice to pulmonary fibrosis. J Immunol. 2014;193(6):2801-2811. doi: 10.4049/jimmunol.1303463

 

  1. Cui H, Jiang D, Banerjee S, et al. Monocyte-derived alveolar macrophage apolipoprotein E participates in pulmonary fibrosis resolution. JCI Insight. 2020;5(5):e134539. doi: 10.1172/jci.insight.134539

 

  1. Hashimoto N, Jin H, Liu T, Chensue SW, Phan SH. Bone marrow-derived progenitor cells in pulmonary fibrosis. J Clin Invest. 2004;113(2):243-252. doi: 10.1172/JCI18847

 

  1. White DA, Stover DE. Severe bleomycin-induced pneumonitis. Clinical features and response to corticosteroids. Chest. 1984;86(5):723-728. doi: 10.1378/chest.86.5.723

 

  1. Delanoy N, Pécuchet N, Fabre E, et al. Bleomycin-induced pneumonitis in the treatment of ovarian sex cord-stromal tumors: A systematic review and meta-analysis. Int J Gynecol Cancer. 2015;25(9):1593-1598. doi: 10.1097/IGC.0000000000000530

 

  1. Sidor A, Drozdzynska A, Gramza-Michalowska A. Black chokeberry (Aronia melanocarpa) and its products as potential health-promoting factors - An overview. Trends Food Sci Technol. 2019;89:45-60. doi: 10.1016/j.tifs.2019.05.006

 

  1. Sidor A, Gramza-Michałowska A. Black chokeberry Aronia melanocarpa L.-A qualitative composition, phenolic profile and antioxidant potential. Molecules. 2019;24(20):3710. doi: 10.3390/molecules24203710

 

  1. Veberic R, Slatnar A, Bizjak J, Štampar F, Mikulič- Petkovšek M. Anthocyanin composition of different wild and cultivated berry species. LWT-Food Sci Technol. 2015;60(1):509-517. doi: 10.1016/j.lwt.2014.08.033

 

  1. Tian Y, Liimatainen J, Alanne AL, et al. Phenolic compounds extracted by acidic aqueous ethanol from berries and leaves of different berry plants. Food Chem. 2017;220:266-281. doi: 10.1016/j.foodchem.2016.09.145

 

  1. Bräunlich M, Slimestad R, Wangensteen H, Brede C, Malterud KE, Barsett H. Extracts, anthocyanins and procyanidins from Aronia melanocarpa as radical scavengers and enzyme inhibitors. Nutrients. 2013;5(3):663-678. doi: 10.3390/nu5030663

 

  1. Oszmiański J, Lachowicz S. Effect of the production of dried fruits and juice from chokeberry (Aronia melanocarpa L.) on the content and antioxidative activity of bioactive compounds. Molecules. 2016;21(8):1098. doi: 10.3390/molecules21081098

 

  1. Zhao Y, Liu X, Ding C, et al. Aronia melanocarpa polysaccharide ameliorates liver fibrosis through TGF- β1-mediated the activation of PI3K/AKT pathway and modulating gut microbiota. J Pharmacol Sci. 2022;150(4):289-300. doi: 10.1016/j.jphs.2022.10.001

 

  1. Sharma OP, Bhat TK. DPPH antioxidant assay revisited. Food Chem. 2009;113(4):1202-1205. doi: 10.1016/j.foodchem.2008.08.008

 

  1. Singleton VL, Orthofer R, Lamuela-Raventos RM. [14 Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999;299:152-178. doi: 10.1016/S0076-6879(99)99017-1

 

  1. Park YS, Jung ST, Kang SG, Heo BG. Antioxidants and proteins in ethylene-treated kiwifruits. Food Chem. 2008;107(2):640-648. doi: 10.1016/j.foodchem.2007.08.070

 

  1. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671-675. doi: 10.1038/nmeth.2089

 

  1. Roda E, Luca F, Iorio CD, et al. Novel medicinal mushroom blend as a promising supplement in integrative oncology: A multi-tiered study using 4T1 triple-negative mouse breast cancer model. Int J Mol Sci. 2020;21(10):3479. doi: 10.3390/ijms21103479

 

  1. Thi ND, Hwang ES. Bioactive compound contents and antioxidant activity in aronia (Aronia melanocarpa) leaves collected at different growth stages. Prev Nutr Food Sci. 2014;19(3):204-212. doi: 10.3746/pnf.2014.19.3.204

 

  1. Naruszewicz M, Laniewska I, Millo B, Dłuzniewski M. Combination therapy of statin with flavonoids rich extract from chokeberry fruits enhanced reduction in cardiovascular risk markers in patients after myocardial infraction (MI). Atherosclerosis. 2007;194(2):e179-e184. doi: 10.1016/j.atherosclerosis.2006.12.032

 

  1. Xie L, Vance T, Kim B, et al. Aronia berry polyphenol consumption reduces plasma total and low-density lipoprotein cholesterol in former smokers without lowering biomarkers of inflammation and oxidative stress: A randomized controlled trial. Nutr Res. 2017;37:67-77. doi: 10.1016/j.nutres.2016.12.007

 

  1. Yang J, Gao J, Yu W, Hao R, Fan J, Wei J. The effects and mechanism of Aronia melanocarpa Elliot anthocyanins on hepatic fibrosis. J Funct Foods. 2020;68:103897. doi: 10.1016/j.jff.2020.103897

 

  1. Cui Y, Zhao J, Chen J, et al. Cyanidin-3-galactoside from Aronia melanocarpa ameliorates silica-induced pulmonary fibrosis by modulating the TGF-β/mTOR and NRF2/HO-1 pathways. Food Sci Nutr. 2022;10(8):2558-2567. doi: 10.1002/fsn3.2861

 

  1. Bellamy EA, Husband JE, Blaquiere RM, Law MR. Bleomycin-related lung damage: CT evidence. Radiology. 1985;156(1):155-158. doi: 10.1148/radiology.156.1.2408293

 

  1. Tulek B, Kiyan E, Toy H, Kiyici A, Narin C, Suerdem M. Anti-inflammatory and anti-fibrotic effects of sirolimus on bleomycin-induced pulmonary fibrosis in rats. Clin Invest Med. 2011;34(6):E341. doi: 10.25011/cim.v34i6.15894

 

  1. Wang P, Tian Q, Liang ZX, et al. Gefitinib attenuates murine pulmonary fibrosis induced by bleomycin. Chin Med J (Engl). 2010;123(16):2259-2264.

 

  1. Shimbori C, Shiota N, Okunishi H. Effects of montelukast, a cysteinyl-leukotriene type 1 receptor antagonist, on the pathogenesis of bleomycin-induced pulmonary fibrosis in mice. Eur J Pharmacol. 2011;650(1):424-430. doi: 10.1016/j.ejphar.2010.09.084

 

  1. Rhee CK, Lee SH, Yoon HK, et al. Effect of nilotinib on bleomycin-induced acute lung injury and pulmonary fibrosis in mice. Respiration. 2011;82(3):273-287. doi: 10.1159/000327719

 

  1. Kim JW, Rhee CK, Kim TJ, et al. Effect of pravastatin on bleomycin-induced acute lung injury and pulmonary fibrosis. Clin Exp Pharmacol Physiol. 2010;37(11):1055-1063. doi: 10.1111/j.1440-1681.2010.05431.x

 

  1. Tao N, Li K, Liu J, Fan G, Sun T. Liproxstatin-1 alleviates bleomycin-induced alveolar epithelial cells injury and mice pulmonary fibrosis via attenuating inflammation, reshaping redox equilibrium, and suppressing ROS/p53/α-SMA pathway. Biochem Biophys Res Commun. 2021;551:133-139. doi: 10.1016/j.bbrc.2021.02.127

 

  1. Lan YJ, Cheng MH, Ji HM, et al. Melatonin ameliorates bleomycin-induced pulmonary fibrosis via activating NRF2 and inhibiting galectin-3 expression. Acta Pharmacol Sin. 2023;44(5):1029-1037. doi: 10.1038/s41401-022-01018-x

 

  1. Zhan P, Lu X, Li Z, et al. Mitoquinone alleviates bleomycin-induced acute lung injury via inhibiting mitochondrial ROS-dependent pulmonary epithelial ferroptosis. Int Immunopharmacol. 2022;113(Pt A):109359. doi: 10.1016/j.intimp.2022.109359

 

  1. Yin W, Han J, Zhang Z, Han Z, Wang S. Aloperine protects mice against bleomycin-induced pulmonary fibrosis by attenuating fibroblast proliferation and differentiation. Sci Rep. 2018;8(1):6265. doi: 10.1038/s41598-018-24565-y

 

  1. Liu P, Miao K, Zhang L, et al. Curdione ameliorates bleomycin-induced pulmonary fibrosis by repressing TGF- β-induced fibroblast to myofibroblast differentiation. Respir Res. 2020;21(1):58. doi: 10.1186/s12931-020-1300-y

 

  1. Zhang D, Liu B, Cao B, et al. Synergistic protection of schizandrin B and glycyrrhizic acid against bleomycin-induced pulmonary fibrosis by inhibiting TGF-β1/ Smad2 pathways and overexpression of NOX4. Int Immunopharmacol. 2017;48:67-75. doi: 10.1016/j.intimp.2017.04.024

 

  1. Fang L, Wang W, Chen J, et al. Osthole attenuates bleomycin-induced pulmonary fibrosis by modulating NADPH oxidase 4-derived oxidative stress in mice [retracted in: Oxid Med Cell Longev. 2024;2024:9869057. doi: 10.1155/2024/9869057]. Oxid Med Cell Longev. 2021;2021:3309944. doi: 10.1155/2021/3309944

 

  1. Li RJ, Wu CY, Ke HL, Wang XP, Zhang YW. Qing Fei Hua Xian decoction ameliorates bleomycin-induced pulmonary fibrosis by suppressing oxidative stress through balancing ACE-AngII-AT1R/ACE2-Ang-(1-7)-Mas axis. Iran J Basic Med Sci. 2023;26(1):107-113. doi: 10.22038/IJBMS.2022.67042.14700

 

  1. Amirkhosravi A, Mirtajaddini Goki M, Heidari MR, et al. Combination of losartan with pirfenidone: A protective anti-fibrotic against pulmonary fibrosis induced by bleomycin in rats. Sci Rep. 2024;14(1):8729. doi: 10.1038/s41598-024-59395-8

 

  1. Baek AR, Hong J, Song KS, et al. Spermidine attenuates bleomycin-induced lung fibrosis by inducing autophagy and inhibiting endoplasmic reticulum stress (ERS)-induced cell death in mice. Exp Mol Med. 2020;52(12):2034-2045. doi: 10.1038/s12276-020-00545-z

 

  1. Zheng Q, Tong M, Ou B, Liu C, Hu C, Yang Y. Isorhamnetin protects against bleomycin-induced pulmonary fibrosis by inhibiting endoplasmic reticulum stress and epithelial-mesenchymal transition. Int J Mol Med. 2019;43(1):117-126. doi: 10.3892/ijmm.2018.3965

 

  1. Hatipoglu OF, Uctepe E, Opoku G, et al. Osteopontin silencing attenuates bleomycin-induced murine pulmonary fibrosis by regulating epithelial-mesenchymal transition. Biomed Pharmacother. 2021;139:111633. doi: 10.1016/j.biopha.2021.111633

 

  1. Zhao H, Qin HY, Cao LF, et al. Phenylbutyric acid inhibits epithelial-mesenchymal transition during bleomycin-induced lung fibrosis. Toxicol Lett. 2015;232(1):213-220. doi: 10.1016/j.toxlet.2014.10.013

 

  1. Zhang Q, Gan C, Liu H, et al. Cryptotanshinone reverses the epithelial-mesenchymal transformation process and attenuates bleomycin-induced pulmonary fibrosis. Phytother Res 2020;34(10):2685-2696. doi: 10.1002/ptr.6699

 

  1. Guan R, Zhao X, Wang X, et al. Emodin alleviates bleomycin-induced pulmonary fibrosis in rats. Toxicol Lett. 2016;262:161-172. doi: 10.1016/j.toxlet.2016.10.004

 

  1. Jia L, Sun P, Gao H, et al. Mangiferin attenuates bleomycin-induced pulmonary fibrosis in mice through inhibiting TLR4/p65 and TGF-β1/Smad2/3 pathway. J Pharm Pharmacol. 2019;71(6):1017-1028. doi: 10.1111/jphp.13077

 

  1. Gan W, Li X, Cui Y, et al. Pinocembrin relieves lipopolysaccharide and bleomycin induced lung inflammation via inhibiting TLR4-NF-κB-NLRP3 inflammasome signaling pathway. Int Immunopharmacol. 2021;90:107230. doi: 10.1016/j.intimp.2020.107230

 

  1. Liu W, Han X, Li Q, Sun L, Wang J. Iguratimod ameliorates bleomycin-induced pulmonary fibrosis by inhibiting the EMT process and NLRP3 inflammasome activation. Biomed Pharmacother. 2022;153:113460. doi: 10.1016/j.biopha.2022.113460

 

  1. Liang Q, Cai W, Zhao Y, et al. Lycorine ameliorates bleomycin-induced pulmonary fibrosis via inhibiting NLRP3 inflammasome activation and pyroptosis. Pharmacol Res. 2020;158:104884. doi: 10.1016/j.phrs.2020.104884

 

  1. Abdelhady R, Cavalu S, Saber S, et al. Mirtazapine, an atypical antidepressant, mitigates lung fibrosis by suppressing NLPR3 inflammasome and fibrosis-related mediators in endotracheal bleomycin rat model. Biomed Pharmacother. 2023;161:114553. doi: 10.1016/j.biopha.2023.114553

 

  1. Aydin P, Aksakalli-Magden ZB, Civelek MS, et al. The melatonin agonist ramelteon attenuates bleomycin-induced lung fibrosis by suppressing the NLRP3/TGF-Β1/HMGB1 signaling pathway. Adv Med Sci. 2023;68(2):322-331. doi: 10.1016/j.advms.2023.09.004

 

  1. Li X, Liu X, Deng R, et al. Betulinic acid attenuated bleomycin-induced pulmonary fibrosis by effectively intervening Wnt/β-catenin signaling. Phytomedicine. 2021;81:153428. doi: 10.1016/j.phymed.2020.153428

 

  1. Gao Y, Lu J, Zhang Y, Chen Y, Gu Z, Jiang X. Baicalein attenuates bleomycin-induced pulmonary fibrosis in rats through inhibition of miR-21. Pulm Pharmacol Ther. 2013;26(6):649-654. doi: 10.1016/j.pupt.2013.03.006

 

  1. Xiao H, Huang X, Wang S, et al. Metformin ameliorates bleomycin-induced pulmonary fibrosis in mice by suppressing IGF-1. Am J Transl Res. 2020;12(3):940-949.

 

  1. Lurje I, Gaisa NT, Weiskirchen R, Tacke F. Mechanisms of organ fibrosis: Emerging concepts and implications for novel treatment strategies. Mol Aspects Med. 2023;92:101191. doi: 10.1016/j.mam.2023.101191
Share
Back to top
Eurasian Journal of Medicine and Oncology, Electronic ISSN: 2587-196X Print ISSN: 2587-2400, Published by AccScience Publishing