AccScience Publishing / EJMO / Online First / DOI: 10.36922/EJMO025260274
ORIGINAL RESEARCH ARTICLE

Causal relationships between obstructive sleep apnea and pre-eclampsia: A Mendelian randomization study

Jinhua Ouyang1 Mingqian Chen1 Ke Yi1,2*
Show Less
1 Department of Obstetrics and Gynecology, Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases/Hubei Provincial Clinical Research Center for Nephrology, Minda Hospital of Hubei Minzu University, Hubei Minzu University, Enshi, Hubei, China
2 Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
Received: 24 June 2025 | Revised: 16 July 2025 | Accepted: 1 August 2025 | Published online: 2 September 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Introduction: Previous observational investigations have revealed a possible association between obstructive sleep apnea (OSA) and pre-eclampsia (PE), but they are limited by confounding factors.

Objective: We employed genetic data in a two-sample Mendelian randomization (MR) study to investigate the causal link between PE and OSA.

Methods: To assess the causal influences of OSA and PE, this MR investigation used single-nucleotide polymorphisms (SNPs) as instrumental variables. The FinnGen database provided the genetic information for OSA, which included 50,200 cases and 401,484 controls, whereas data for PE were sourced from a study with 1728 cases and 192,399 controls. Sensitivity analyses were performed to check for pleiotropy and heterogeneity, and reverse MR was carried out to analyze potential bidirectional relationships.

Results: OSA and an elevated PE risk were found to be significantly correlated by the inverse variance weighted analysis (odds ratio [OR] [95% confidence interval (CI)] = 1.640 [1.166–2.306]; p=0.004). Sensitivity analyses revealed no heterogeneity or pleiotropy, as verified by MR-Egger intercept analysis and Cochran’s Q test. Leave-one-out analysis showed that no individual SNP drove the results. Evidence of a causal connection between PE and OSA was not found by reverse MR analysis (OR [95% CI] = 0.970 [0.927–1.015]; p=0.194).

Conclusion: This MR investigation points to a genetically supported causal link between higher PE risk and OSA.

Keywords
Obstructive sleep apnea
Mendelian randomization
Pre-eclampsia
Instrumental variable
Single nucleotide polymorphism
Funding
None.
Conflict of interest
The authors declare that they have no conflicts of interest.
References
  1. Fu R, Li Y, Li X, Jiang W. Hypertensive disorders in pregnancy: Global burden from 1990 to 2019, current research hotspots and emerging trends. Curr Probl Cardiol. 2023;48(12):101982. doi: 10.1016/j.cpcardiol.2023.101982

 

  1. Wu P, Green M, Myers JE. Hypertensive disorders of pregnancy. BMJ. 2023;381:e071653. doi: 10.1136/bmj-2022-071653

 

  1. Ives CW, Sinkey R, Rajapreyar I, Tita ATN, Oparil S. Preeclampsia-pathophysiology and clinical presentations: JACC state-of-the-art review. J Am Coll Cardiol. 2020;76(14):1690-1702. doi: 10.1016/j.jacc.2020.08.014

 

  1. Miller EC, Wilczek A, Bello NA, Tom S, Wapner R, Suh Y. Pregnancy, preeclampsia and maternal aging: From epidemiology to functional genomics. Ageing Res Rev. 2022;73:101535. doi: 10.1016/j.arr.2021.101535

 

  1. Abalos E, Cuesta C, Grosso AL, Chou D, Say L. Global and regional estimates of preeclampsia and eclampsia: A systematic review. Eur J Obstet Gynecol Reprod Biol. 2013;170(1):1-7. doi: 10.1016/j.ejogrb.2013.05.005

 

  1. Phipps EA, Thadhani R, Benzing T, Karumanchi SA. Pre-eclampsia: Pathogenesis, novel diagnostics and therapies. Nat Rev Nephrol. 2019;15(5):275-289. doi: 10.1038/s41581-019-0119-6

 

  1. Kuehn BM. Hypertensive disorders in pregnancy are on the rise. JAMA. 2022;327(24):2387. doi: 10.1001/jama.2022.9510

 

  1. Yang Y, Le Ray I, Zhu J, Zhang J, Hua J, Reilly M. Preeclampsia prevalence, risk factors, and pregnancy outcomes in Sweden and China. JAMA Netw Open. 2021;4(5):e218401. doi: 10.1001/jamanetworkopen.2021.8401

 

  1. Kipnis CM, Daly PL, Goodwin ET, Smith DK. Hypertensive conditions: Hypertensive disorders in pregnancy. FP Essent. 2022;522:25-33.

 

  1. Thi Huyen Anh N, Manh Thang N, Thanh Huong T. Maternal and perinatal outcomes of hypertensive disorders in pregnancy: Insights from the National Hospital of Obstetrics and Gynecology in Vietnam. PLoS One. 2024;19(1):e0297302. doi: 10.1371/journal.pone.0297302

 

  1. Petca A, Miron BC, Pacu I, et al. HELLP syndrome-holistic insight into pathophysiology. Medicina (Kaunas). 2022;58(2):326. doi: 10.3390/medicina58020326

 

  1. Yang C, Baker PN, Granger JP, Davidge ST, Tong C. Long-term impacts of preeclampsia on the cardiovascular system of mother and offspring. Hypertension. 2023;80(9):1821-1833. doi: 10.1161/hypertensionaha.123.21061

 

  1. Li F, Wang T, Chen L, Zhang S, Chen L, Qin J. Adverse pregnancy outcomes among mothers with hypertensive disorders in pregnancy: A meta-analysis of cohort studies. Pregnancy Hypertens. 2021;24:107-117. doi: 10.1016/j.preghy.2021.03.001

 

  1. Silveira MR, Martins GJ, Matsuda NS, et al. PP091. Prematurity and hypertensive disorders in pregnancy. A major public health problem. Pregnancy Hypertens. 2012;2(3):289-290. doi: 10.1016/j.preghy.2012.04.202

 

  1. Tian T, Wang L, Ye R, Liu J, Ren A. Maternal hypertension, preeclampsia, and risk of neonatal respiratory disorders in a large-prospective cohort study. Pregnancy Hypertens. 2020;19:131-137. doi: 10.1016/j.preghy.2020.01.006

 

  1. Scime NV, Hetherington E, Tomfohr-Madsen L, Nettel- Aguirre A, Chaput KH, Tough SC. Hypertensive disorders in pregnancy and child development at 36 months in the All Our Families prospective cohort study. PLoS One. 2021;16(12):e0260590. doi: 10.1371/journal.pone.0260590

 

  1. Jung E, Romero R, Yeo L, et al. The etiology of preeclampsia. Am J Obstet Gynecol. 2022;226(2s):S844-S866. doi: 10.1016/j.ajog.2021.11.1356

 

  1. Dimitriadis E, Rolnik DL, Zhou W, et al. Pre-eclampsia. Nat Rev Dis Primers. 2023;9(1):8. doi: 10.1038/s41572-023-00417-6

 

  1. Zare M, Namavar Jahromi B, Gharesi-Fard B. Analysis of the frequencies and functions of CD4(+)CD25(+)CD127(low/ neg), CD4(+)HLA-G(+), and CD8(+)HLA-G(+) regulatory T cells in pre-eclampsia. J Reprod Immunol. 2019;133:43-51. doi: 10.1016/j.jri.2019.06.002

 

  1. Abbasi M, Rasoal D, Kharaghani R, et al. Association between sleep disorders and preeclampsia: A systematic review and meta-analysis. J Matern Fetal Neonatal Med. 2024;37(1):2419383. doi: 10.1080/14767058.2024.2419383

 

  1. Valverde-Pérez E, Olea E, Rocher A, Aaronson PI, Prieto- Lloret J. Effects of gestational intermittent hypoxia on the respiratory system: A tale of the placenta, fetus, and developing offspring. J Sleep Res. 2024:e14435. doi: 10.1111/jsr.14435

 

  1. Redline S, Azarbarzin A, Peker Y. Obstructive sleep apnoea heterogeneity and cardiovascular disease. Nat Rev Cardiol. 2023;20(8):560-573. doi: 10.1038/s41569-023-00846-6

 

  1. West SD, Turnbull C. Obstructive sleep apnoea. Eye (Lond). 2018;32(5):889-903. doi: 10.1038/s41433-017-0006-y

 

  1. Aktas M, Demirci H. Sleep quality and obstructive sleep apnoea and triple screen test results in pregnancy. J Obstet Gynaecol. 2021;41(7):1067-1070. doi: 10.1080/01443615.2020.1845629

 

  1. Dave F, Cole S, Rees M. Obstructive sleep apnoea in multiple pregnancy. Aust N Z J Obstet Gynaecol. 2019;59(3):341-345. doi: 10.1111/ajo.12958

 

  1. Bourjeily G. Sleep disorders in pregnancy. Obstet Med. 2009;2(3):100-106. doi: 10.1258/om.2009.090015

 

  1. O’Brien LM, Bullough AS, Chames MC, et al. Hypertension, snoring, and obstructive sleep apnoea during pregnancy: A cohort study. BJOG. 2014;121(13):1685-1693. doi: 10.1111/1471-0528.12885

 

  1. Lévy P, Kohler M, McNicholas WT, et al. Obstructive sleep apnoea syndrome. Nat Rev Dis Primers. 2015;1:15015. doi: 10.1038/nrdp.2015.15

 

  1. Longworth H, McCallin K, Narayanan RP, et al. Screening methods for obstructive sleep apnoea in severely obese pregnant women. Clin Obes. 2017;7(4):239-244. doi: 10.1111/cob.12196

 

  1. Patel S, Louis JM. Obstructive sleep apnoea in pregnancy - more questions than answers. Eur Endocrinol. 2013;9(2):121-124. doi: 10.17925/ee.2013.09.02.121

 

  1. Clements F, Vedam H, Chung Y, et al. Patient preference of level I, II and III sleep diagnostic tests to diagnose obstructive sleep apnoea among pregnant women in early to mid-gestation. Sleep Breath. 2024;28:2387-2395. doi: 10.1007/s11325-024-03114-0

 

  1. Emdin CA, Khera AV, Kathiresan S. Mendelian randomization. JAMA. 2017;318(19):1925-1926. doi: 10.1001/jama.2017.17219

 

  1. Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G. Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27(8):1133-1163. doi: 10.1002/sim.3034

 

  1. Davies NM, Holmes MV, Davey Smith G. Reading Mendelian randomisation studies: A guide, glossary, and checklist for clinicians. BMJ. 2018;362:k601. doi: 10.1136/bmj.k601

 

  1. Yang ML, Xu C, Gupte T, et al. Sex-specific genetic architecture of blood pressure. Nat Med. 2024;30(3):818-828. doi: 10.1038/s41591-024-02858-2

 

  1. Bowden J, Del Greco MF, Minelli C, et al. Improving the accuracy of two-sample summary-data Mendelian randomization: Moving beyond the NOME assumption. Int J Epidemiol. 2019;48(3):728-742. doi: 10.1093/ije/dyy258

 

  1. Reutrakul S, Chen H, Chirakalwasan N, et al. Metabolomic profile associated with obstructive sleep apnoea severity in obese pregnant women with gestational diabetes mellitus: A pilot study. J Sleep Res. 2021;30(5):e13327. doi: 10.1111/jsr.13327

 

  1. Champagne K, Schwartzman K, Opatrny L, et al. Obstructive sleep apnoea and its association with gestational hypertension. Eur Respir J. 2009;33(3):559-565. doi: 10.1183/09031936.00122607

 

  1. Nugent R, Wee A, Kearney L, de Costa C. The effectiveness of continuous positive airway pressure for treating obstructive sleep apnoea in pregnancy: A systematic review. Aust N Z J Obstet Gynaecol. 2023;63(3):290-300. doi: 10.1111/ajo.13654

 

  1. Alterki A, Abu-Farha M, Al Shawaf E, Al-Mulla F, Abubaker J. Investigating the relationship between obstructive sleep apnoea, inflammation and cardio-metabolic diseases. Int J Mol Sci. 2023;24(7):6807. doi: 10.3390/ijms24076807

 

  1. Graziani A, Grande G, Ferlin A. The complex relation between obstructive sleep apnoea syndrome, hypogonadism and testosterone replacement therapy. Front Reprod Health. 2023;5:1219239. doi: 10.3389/frph.2023.1219239

 

  1. Vicente E, Marin JM, Carrizo SJ, et al. Upper airway and systemic inflammation in obstructive sleep apnoea. Eur Respir J. 2016;48(4):1108-1117. doi: 10.1183/13993003.00234-2016

 

  1. Muraki I, Tanigawa T, Yamagishi K, et al. Nocturnal intermittent hypoxia and C reactive protein among middle-aged community residents: A cross-sectional survey. Thorax. 2010;65(6):523-527. doi: 10.1136/thx.2009.128744

 

  1. Vrooman OPJ, van Kerrebroeck PEV, van Balken MR, van Koeveringe GA, Rahnama’i MS. Nocturia and obstructive sleep apnoea. Nat Rev Urol. 2024;21:735-753. doi: 10.1038/s41585-024-00887-7

 

  1. Lavie L. Obstructive sleep apnoea syndrome--an oxidative stress disorder. Sleep Med Rev. 2003;7(1):35-51. doi: 10.1053/smrv.2002.0261

 

  1. Cattazzo F, Pengo MF, Giontella A, et al. Effect of continuous positive airway pressure on glucose and lipid profiles in patients with obstructive sleep apnoea: A systematic review and meta-analysis of randomized controlled trials. Arch Bronconeumol. 2023;59(6):370-376. doi: 10.1016/j.arbres.2023.03.012

 

  1. Shang W, Zhang Y, Wang G, Han D. Benefits of continuous positive airway pressure on glycaemic control and insulin resistance in patients with type 2 diabetes and obstructive sleep apnoea: A meta-analysis. Diabetes Obes Metab. 2021;23(2):540-548. doi: 10.1111/dom.14247

 

  1. Pien GW, Pack AI, Jackson N, Maislin G, Macones GA, Schwab RJ. Risk factors for sleep-disordered breathing in pregnancy. Thorax. 2014;69(4):371-377. doi: 10.1136/thoraxjnl-2012-202718

 

  1. Harrison RK, Egede LE, Palatnik A. Peripartum infectious morbidity in women with preeclampsia. J Matern Fetal Neonatal Med. 2021;34(8):1215-1220. doi: 10.1080/14767058.2019.1628944

 

  1. Jahan F, Vasam G, Cariaco Y, et al. NAD(+) depletion is central to placental dysfunction in an inflammatory subclass of preeclampsia. Life Sci Alliance. 2024;7(12):e202302505. doi: 10.26508/lsa.202302505

 

  1. Mannaerts D, Faes E, Cos P, et al. Oxidative stress in healthy pregnancy and preeclampsia is linked to chronic inflammation, iron status and vascular function. PLoS One. 2018;13(9):e0202919. doi: 10.1371/journal.pone.0202919

 

  1. Burwick RM, Rodriguez MH. Angiogenic biomarkers in preeclampsia. Obstet Gynecol. 2024;143(4):515-523. doi: 10.1097/aog.0000000000005532

 

  1. Stepan H, Hund M, Andraczek T. Combining biomarkers to predict pregnancy complications and redefine preeclampsia: The angiogenic-placental syndrome. Hypertension. 2020;75(4):918-926. doi: 10.1161/hypertensionaha.119.13763

 

  1. Chen CW, Jaffe IZ, Karumanchi SA. Pre-eclampsia and cardiovascular disease. Cardiovasc Res. 2014;101(4):579-586. doi: 10.1093/cvr/cvu018
Share
Back to top
Eurasian Journal of Medicine and Oncology, Electronic ISSN: 2587-196X Print ISSN: 2587-2400, Published by AccScience Publishing