Genetic susceptibility to severe COVID-19 and COVID-19 hospitalization and the risk of pre-eclampsia: A Mendelian randomization study

The association between COVID-19 and pre-eclampsia (PE) has been explored in epidemiological observational studies. However, due to methodological constraints, consensus has yet to be established. To address these limitations and investigate the potential causal relationship between COVID-19 and PE risk, we conducted a two-sample mendelian randomization (MR) analysis. MR analyses were performed to explore the genetic links and potential causality between PE and two COVID-19 phenotypes: hospitalization and severe disease, using available genome-wide association studies summary statistics. To strengthen causal inference, the primary inverse variance weighting (IVW) approach was complemented by four additional methods—MR-Egger, weighted median, weighted mode, and simple mode—offering a robust and comprehensive evaluation. The MR analysis from the IVW model showed genetic liabilities to COVID-19 hospitalization (odds ratio [OR]: 1.15, 95% confidence interval [CI]: 1.01 – 1.30) and severe COVID-19 (OR: 1.09, 95% CI: 1.01 – 1.18) to be associated with an increased PE risk. This MR analysis provides genetic evidence supporting a positive causal link between severe COVID-19 and the risk of PE.
- Chow EJ, Uyeki TM, Chu HY. The effects of the COVID-19 pandemic on community respiratory virus activity. Nat Rev Microbiol. 2023;21(3):195-210. doi: 10.1038/s41579-022-00807-9
- Desikan R, Padmanabhan P, Kierzek AM, Van Der Graaf PH. Mechanistic models of COVID-19: Insights into disease progression, vaccines, and therapeutics. Int J Antimicrob Agents. 2022;60(1):106606. doi: 10.1016/j.ijantimicag.2022.106606
- Penninx BW, Benros ME, Klein RS, Vinkers CH. How COVID-19 shaped mental health: From infection to pandemic effects. Nat Med. 2022;28(10):2027-2037. doi: 10.1038/s41591-022-02028-2
- Toussi SS, Hammond JL, Gerstenberger BS, Anderson AS. Therapeutics for COVID-19. Nat Microbiol. 2023;8(5):771-786. doi: 10.1038/s41564-023-01356-4
- Jamieson DJ, Rasmussen SA. An update on COVID-19 and pregnancy. Am J Obstet Gynecol. 2022;226(2):177-186. doi: 10.1016/j.ajog.2021.08.054
- Ata B, Vermeulen N, Mocanu E, et al. SARS-CoV-2, fertility and assisted reproduction. Hum Reprod Update. 2023;29(2):177-196. doi: 10.1093/humupd/dmac037
- Vesce F, Battisti C, Crudo M. The inflammatory cytokine imbalance for miscarriage, pregnancy loss and COVID-19 pneumonia. Front Immunol. 2022;13:861245. doi: 10.3389/fimmu.2022.861245
- Nana M, Hodson K, Lucas N, Camporota L, Knight M, Nelson-Piercy C. Diagnosis and management of COVID-19 in pregnancy. BMJ. 2022;377:e069739. doi: 10.1136/bmj-2021-069739
- Kumar D, Verma S, Mysorekar IU. COVID-19 and pregnancy: Clinical outcomes; mechanisms, and vaccine efficacy. Transl Res. 2023;251:84-95. doi: 10.1016/j.trsl.2022.08.007
- Carvajal J, Casanello P, Toso A, et al. Functional consequences of SARS-CoV-2 infection in pregnant women, fetoplacental unit, and neonate. Biochim Biophys Acta Mol Basis Dis. 2023;1869(1):166582. doi: 10.1016/j.bbadis.2022.166582
- Ramirez Zegarra R, Dall’Asta A, Revelli A, Ghi T. COVID-19 and gestational diabetes: The role of nutrition and pharmacological intervention in preventing adverse outcomes. Nutrients. 2022;14(17):3562. doi: 10.3390/nu14173562
- Yao XD, Li Y, Jiang H, Ma J, Wen J. COVID-19 pandemic and neonatal birth weight: A systematic review and meta-analysis. Public Health. 2023;220:10-17. doi: 10.1016/j.puhe.2023.04.009
- Magee LA, Nicolaides KH, Von Dadelszen P. Preeclampsia. N Engl J Med. 2022;386(19):1817-1832. doi: 10.1056/NEJMra2109523
- Dimitriadis E, Rolnik DL, Zhou W, et al. Pre-eclampsia. Nat Rev Dis Primers. 2023;9(1):8. doi: 10.1038/s41572-023-00417-6
- Fishel Bartal M, Sibai BM. Eclampsia in the 21st century. Am J Obstet Gynecol. 2022;226(2S):S1237-S1253. doi: 10.1016/j.ajog.2020.09.037
- Gardikioti A, Venou TM, Gavriilaki E, et al. Molecular advances in preeclampsia and HELLP syndrome. Int J Mol Sci. 2022;23(7):3851 doi: 10.3390/ijms23073851
- Jung E, Romero R, Yeo L, et al. The etiology of preeclampsia. Am J Obstet Gynecol. 2022;226(2S):S844-S866. doi: 10.1016/j.ajog.2021.11.1356
- Motomura K, Morita H, Naruse K, Saito H, Matsumoto K. Implication of viruses in the etiology of preeclampsia. Am J Reprod Immunol. 2024;91(4):e13844. doi: 10.1111/aji.13844
- Stylianou N, Sebina I, Matigian N, et al. Whole transcriptome profiling of placental pathobiology in SARS-CoV-2 pregnancies identifies placental dysfunction signatures. Clin Transl Immunol. 2024;13(2):e1488. doi: 10.1002/cti2.1488
- Abbas-Hanif A, Rezai H, Ahmed SF, Ahmed A. The impact of COVID-19 on pregnancy and therapeutic drug development. Br J Pharmacol. 2022;179(10):2108-2120. doi: 10.1111/bph.15582
- Di Mascio D, Khalil A, Saccone G, et al. Outcome of coronavirus spectrum infections (SARS, MERS, COVID-19) during pregnancy: A systematic review and meta-analysis. Am J Obstet Gynecol MFM. 2020;2(2):100107. doi: 10.1016/j.ajogmf.2020.100107
- Emdin CA, Khera AV, Kathiresan S. Mendelian randomization. JAMA. 2017;318(19):1925-1926. doi: 10.1001/jama.2017.17219
- Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G. Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27(8):1133-1163. doi: 10.1002/sim.3034
- Davies NM, Holmes MV, Davey Smith G. Reading mendelian randomisation studies: A guide, glossary, and checklist for clinicians. BMJ. 2018;362:k601. doi: 10.1136/bmj.k601
- Burgess S, Dudbridge F, Thompson SG. Combining information on multiple instrumental variables in mendelian randomization: Comparison of allele score and summarized data methods. Stat Med. 2016;35(11):1880-1906. doi: 10.1002/sim.6835
- Bowden J, Del Greco MF, Minelli C, et al. Improving the accuracy of two-sample summary-data mendelian randomization: Moving beyond the NOME assumption. Int J Epidemiol. 2019;48(3):728-742. doi: 10.1093/ije/dyy258
- Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: Effect estimation and bias detection through egger regression. Int J Epidemiol. 2015;44(2):512-525. doi: 10.1093/ije/dyv080
- González-Vanegas O, Martinez-Perez O. SARS-CoV-2 infection and preeclampsia-how an infection can help us to know more about an obstetric condition. Viruses. 2023;15(7):1564. doi: 10.3390/v15071564
- Agostinis C, Mangogna A, Balduit A, et al. COVID-19, Pre-Eclampsia, and complement system. Front Immunol. 2021;12:775168. doi: 10.3389/fimmu.2021.775168
- Celewicz A, Celewicz M, Michalczyk M, et al. SARS CoV-2 infection as a risk factor of preeclampsia and pre-term birth. An interplay between viral infection, pregnancy-specific immune shift and endothelial dysfunction may lead to negative pregnancy outcomes. Ann Med. 2023;55(1):2197289. doi: 10.1080/07853890.2023.2197289
- Fields NJ, Palmer KR, Nisi A, Marshall SA. Preeclampsia to COVID-19: A journey towards improved placental and vascular function using sulforaphane. Placenta. 2023;141:84-93. doi: 10.1016/j.placenta.2023.08.063
- Syeda S, Baptiste C, Breslin N, Gyamfi-Bannerman C, Miller R. The clinical course of COVID in pregnancy. Semin Perinatol. 2020;44(7):151284. doi: 10.1016/j.semperi.2020.151284
- Conway EM, Mackman N, Warren RQ, et al. Understanding COVID-19-associated coagulopathy. Nat Rev Immunol. 2022;22(10):639-649. doi: 10.1038/s41577-022-00762-9
- Govender R, Moodley J, Naicker T. The COVID-19 pandemic: An appraisal of its impact on human immunodeficiency virus infection and pre-eclampsia. Curr Hypertens Rep. 2021;23(2):9. doi: 10.1007/s11906-021-01126-9
- Marín R, Pujol FH, Rojas D, Sobrevia L. SARS- CoV-2 infection and oxidative stress in early-onset preeclampsia. Biochim Biophys Acta Mol Basis Dis. 2022;1868(3):166321. doi: 10.1016/j.bbadis.2021.166321
- Tan JS, Liu NN, Guo TT, Hu S, Hua L. Genetic predisposition to COVID-19 may increase the risk of hypertension disorders in pregnancy: A two-sample mendelian randomization study. Pregnancy Hypertens. 2021;26:17-23. doi: 10.1016/j.preghy.2021.08.112
- Xing Y, Wang Z, Qi X, Xu Q, Pu R. Genetic liability between COVID-19 and pre-eclampsia/eclampsia: A mendelian randomization study. Hypertens Pregnancy. 2023;42(1):2285757. doi: 10.1080/10641955.2023.2285757
- Deer E, Herrock O, Campbell N, et al. The role of immune cells and mediators in preeclampsia. Nat Rev Nephrol. 2023;19(4):257-270. doi: 10.1038/s41581-022-00670-0
- Cunningham FG, Twickler DM. Neurocysticercosis complicating pregnancy. Obstet Gynecol. 2022;140(2):220-225. doi: 10.1097/aog.0000000000004854
- Nieves C, Victoria Da Costa Ghignatti P, Aji N, Bertagnolli M. Immune cells and infectious diseases in preeclampsia susceptibility. Can J Cardiol. 2024;40(12):2340-2355. doi: 10.1016/j.cjca.2024.09.012
- Amer A, Ayoub A, Brousseau Ã, Auger N. Risk of severe influenza infection in women with a history of pregnancy complications: A longitudinal cohort study. PLoS One. 2024;19(11):e0313653. doi: 10.1371/journal.pone.0313653
- Chaudhary N, Newby AN, Whitehead KA. Non-viral RNA delivery during pregnancy: Opportunities and challenges. Small. 2024;20(41):e2306134. doi: 10.1002/smll.202306134
- Ahuja S, Muntode Gharde P. A narrative review of maternal and perinatal outcomes of dengue in pregnancy. Cureus. 2023;15(11):e48640. doi: 10.7759/cureus.48640
- Patnaik R, Kulkarni S, Karan N. Dengue and HELLP: Beware of the masquerade. Indian J Crit Care Med. 2022;26(5):639-640. doi: 10.5005/jp-journals-10071-24213
- Li J, Wu G, Cao Y, Hou Z. Roles of miR-210 in the pathogenesis of pre-eclampsia. Arch Med Sci. 2019;15(1):183-190. doi: 10.5114/aoms.2018.73129
- Licini C, Avellini C, Picchiassi E, et al. Pre-eclampsia predictive ability of maternal miR-125b: A clinical and experimental study. Transl Res. 2021;228:13-27. doi: 10.1016/j.trsl.2020.07.011
- Li S, Liu J, Kong F, Wang Y, Li N, Zou Y. LncRNA GHET1 has effects in development of pre-eclampsia. J Cell Biochem. 2019;120(8):12647-12652. doi: 10.1002/jcb.28531
- Bates DO. An unexpected tail of VEGF and PlGF in pre-eclampsia. Biochem Soc Trans. 2011;39(6):1576-1582. doi: 10.1042/bst20110671
- Lind Malte A, Uldbjerg N, Wright D, Tørring N. Prediction of severe pre-eclampsia/HELLP syndrome by combination of sFlt-1, CT-pro-ET-1 and blood pressure: Exploratory study. Ultrasound Obstet Gynecol. 2018;51(6):768-774. doi: 10.1002/uog.17561
- Demir B, Demir S, Atamer Y, et al. Serum levels of lipids, lipoproteins and paraoxonase activity in pre-eclampsia. J Int Med Res. 2011;39(4):1427-1431. doi: 10.1177/147323001103900430
- Barrett HL, Dekker Nitert M, McIntyre HD, Callaway LK. Maternal lipids in pre-eclampsia: Innocent bystander or culprit? Hypertens Pregnancy. 2014;33(4):508-523. doi: 10.3109/10641955.2014.946614