Enhanced expression of metastasis-associated genes in colorectal cancer

Introduction: Globally, colorectal cancer (CRC) continues to be a major cause of cancer-related morbidity and death, with metastasis—particularly to the liver—significantly worsening patient outcomes.
Objective: The aim of this study was to investigate the expression of key epithelial-mesenchymal transition (EMT) transcription factors (Snail family transcriptional repressor 1 [SNAI1], zinc finger e-box binding homeobox 1 [ZEB1], Slug, Twist, and metastasis-associated protein 3 [MTA3]) and the pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-α) in CRC cases with and without metastasis to the liver.
Methods: A total of 41 CRC patients (20 non-metastatic, 21 with liver metastasis) from Dr. Sardjito General Hospital, Yogyakarta, were examined utilizing reverse transcription quantitative polymerase chain reaction of the adjacent normal tissues and the tumors.
Results: SNAI1, ZEB1, Slug, Twist, and TNF-α were significantly upregulated in metastatic CRC, while MTA3 was downregulated. Expression of these markers correlated with body mass index, liver enzymes (aspartate aminotransferase), and cancer stage.
Conclusion: These findings highlight the central role of EMT-related transcription factors and inflammatory signaling in CRC metastasis and suggest that targeting these pathways could offer novel therapeutic strategies for metastatic CRC.
- Klimeck L, Heisser T, Hoffmeister M, Brenner H. Colorectal cancer: A health and economic problem. Best Pract Res Clin Gastroenterol. 2023;66:101839. doi: 10.1016/j.bpg.2023.101839
- Sharzehan MAK, Sito H, Abdullah N, et al. Association between CYP2E1 polymorphisms and colorectal cancer risk: A systematic review and meta-analysis. Sci Rep. 2022;12(1):20149. doi: 10.1038/s41598-022-24398-w
- Islam MR, Aziz MA, Shahriar M, Islam MS. Polymorphisms in IL-17A gene and susceptibility of colorectal cancer in bangladeshi population: A case-control analysis. Cancer Control. 2022;29:1-11. doi: 10.1177/10732748221143879
- Diao YE, Xu Q. CASR rs1801725 polymorphism is associated with the risk and prognosis of colorectal cancer: A case-control study. J Clin Lab Anal. 2020;34(11):e23463. doi: 10.1002/jcla.23463
- Yi C, Li T, Shen Y, et al. Polymorphisms of nucleotide excision repair genes associated with colorectal cancer risk: Meta-analysis and trial sequential analysis. Front Genet. 2022;13:1009938. doi: 10.3389/fgene.2022.1009938
- Nguyen LH, Goel A, Chung DC. Pathways of colorectal carcinogenesis. Gastroenterology. 2020;158(2):291-302. doi: 10.1053/j.gastro.2019.08.059
- Li Q, Geng S, Luo H, et al. Signaling pathways involved in colorectal cancer: Pathogenesis and targeted therapy. Sig Transduct Target Ther. 2024;9(1):266. doi: 10.1038/s41392-024-01953-7
- Li J, Ma X, Chakravarti D, Shalapour S, DePinho RA. Genetic and biological hallmarks of colorectal cancer. Genes Dev. 2021;35(11-12):787-820. doi: 10.1101/gad.348226.120
- Shweikeh F, Zeng Y, Jabir AR, et al. The emerging role of blood-based biomarkers in early detection of colorectal cancer: A systematic review. Cancer Treat Res Commun. 2024;42:100872. doi: 10.1016/j.ctarc.2025.100872
- Schiliro C, Firestein BL. Mechanisms of metabolic reprogramming in cancer cells supporting enhanced growth and proliferation. Cells. 2021;10(5):1056. doi: 10.3390/cells10051056
- Pascual G, Benitah SA. Lipids in the tumor microenvironment: Immune modulation and metastasis. Front Oncol. 2024;14:1435480. doi: 10.3389/fonc.2024.1435480
- Zhang YH, Chen XL, Wang YR, Hou YW, Zhang YD, Wang KJ. Prevention of malignant digestive system tumors should focus on the control of chronic inflammation. World J Gastrointest Oncol. 2023;15(3):389-404. doi: 10.4251/wjgo.v15.i3.389
- Varghese N, Majeed A, Nyalakonda S, Boortalary T, Halegoua-DeMarzio D, Hann HW. Review of related factors for persistent risk of hepatitis b virus-associated hepatocellular carcinoma. Cancers (Basel). 2024;16(4):777. doi: 10.3390/cancers16040777
- Kaur A, Azeez GA, Thirunagari M, et al. Association of chronic hepatitis B with colorectal cancer and its dual impact on colorectal liver metastasis: A narrative review. Cureus. 2024;16(12):e76079. doi: 10.7759/cureus.76079
- Zhao L, Hou X, Feng Y, et al. A chronic stress-induced microbiome perturbation, highly enriched in Ruminococcaceae_UCG-014, promotes colorectal cancer growth and metastasis. Int J Med Sci. 2024;21(5):882-895. doi: 10.7150/ijms.90612
- Shi X, Wang X, Yao W, et al. Mechanism insights and therapeutic intervention of tumor metastasis: Latest developments and perspectives. Signal Transduct Target Ther. 2024;9(1):1-46. doi: 10.1038/s41392-024-01885-2
- Zhao H, Wu L, Yan G, et al. Inflammation and tumor progression: Signaling pathways and targeted intervention. Signal Transduct Target Ther. 2021;6(1):1-46. doi: 10.1038/s41392-021-00658-5
- Hou S, Zhao Y, Chen J, Lin Y, Qi X. Tumor-associated macrophages in colorectal cancer metastasis: Molecular insights and translational perspectives. J Transl Med. 2024;22(1):62. doi: 10.1186/s12967-024-04856-x
- Yang S, Li Y, Zhang Y, Wang Y. Impact of chronic stress on intestinal mucosal immunity in colorectal cancer progression. Cytokine Growth Factor Rev. 2024;80:24-36. doi: 10.1016/j.cytogfr.2024.10.007
- Xue C, Chu Q, Shi Q, Zeng Y, Lu J, Li L. Wnt signaling pathways in biology and disease: Mechanisms and therapeutic advances. Signal Transduct Target Ther. 2025;10:106. doi: 10.1038/s41392-025-02142-w
- Wang H, Wang HS, Zhou BH, et al. Epithelial-mesenchymal transition (EMT) induced by TNF-α requires AKT/GSK- 3β-mediated stabilization of snail in colorectal cancer. PLoS One. 2013;8(2):e56664. doi: 10.1371/journal.pone.0056664
- Buyuk B, Jin S, Ye K. Epithelial-to-mesenchymal transition signaling pathways responsible for breast cancer metastasis. Cel Mol Bioeng. 2022;15(1):1-13. doi: 10.1007/s12195-021-00694-9
- Lu J, Kornmann M, Traub B. Role of epithelial to mesenchymal transition in colorectal cancer. Int J Mol Sci. 2023;24(19):14815. doi: 10.3390/ijms241914815
- Ribatti D, Tamma R, Annese T. Epithelial-mesenchymal transition in cancer: A historical overview. Transl Oncol. 2020;13(6):100773. doi: 10.1016/j.tranon.2020.100773
- Georgakopoulos-Soares I, Chartoumpekis DV, Kyriazopoulou V, Zaravinos A. EMT factors and metabolic pathways in cancer. Front Oncol. 2020;10:499. doi: 10.3389/fonc.2020.00499
- Bhat AA, Nisar S, Singh M, et al. Cytokine- and chemokine-induced inflammatory colorectal tumor microenvironment: Emerging avenue for targeted therapy. Cancer Commun (Lond). 2022;42(8):689-715. doi: 10.1002/cac2.12295
- Lu J, Fei F, Wu C, Mei J, Xu J, Lu P. ZEB1: Catalyst of immune escape during tumor metastasis. Biomed Pharmacother. 2022;153:113490. doi: 10.1016/j.biopha.2022.113490
- Shiravand Y, Khodadadi F, Kashani SMA, et al. Immune checkpoint inhibitors in cancer therapy. Curr Oncol. 2022;29(5):3044-3060. doi: 10.3390/curroncol29050247
- Rahimi A, Baghernejadan Z, Hazrati A, et al. Combination therapy with immune checkpoint inhibitors in colorectal cancer: Challenges, resistance mechanisms, and the role of microbiota. Biomed Pharmacother. 2025;186:118014. doi: 10.1016/j.biopha.2025.118014
- Herrera A, Herrera M, Guerra-Perez N, et al. Endothelial cell activation on 3D-matrices derived from PDGF-BB-stimulated fibroblasts is mediated by snail1. Oncogenesis. 2018;7(9):76. doi: 10.1038/s41389-018-0085-z
- Zhang X, Luo Y, Cen Y, et al. MACC1 promotes pancreatic cancer metastasis by interacting with the EMT regulator SNAI1. Cell Death Dis. 2022;13(11):923. doi: 10.1038/s41419-022-05285-8
- Hu X, Zhu X, Chen Y, et al. Senescence-related signatures predict prognosis and response to immunotherapy in colon cancer. J Gastrointest Oncol. 2024;15(3):1020-1034. doi: 10.21037/jgo-24-339
- Kim YH, Kim G, Kwon CI, Kim JW, Park PW, Hahm KB. TWIST1 and SNAI1 as markers of poor prognosis in human colorectal cancer are associated with the expression of ALDH1 and TGF-β1. Oncol Rep. 2014;31(3):1380-1388. doi: 10.3892/or.2014.2970
- Marques-Magalhães Â, Monteiro-Ferreira S, Canão PA, et al. Patient-derived colorectal cancer extracellular matrices modulate cancer cell stemness markers. Int J Mol Sci. 2025;26(7):2890. doi: 10.3390/ijms26072890
- Qian J, Liu H, Chen W, et al. Knockdown of Slug by RNAi inhibits the proliferation and invasion of HCT116 colorectal cancer cells. Mol Med Rep. 2013;8(4):1055-1059. doi: 10.3892/mmr.2013.1604
- Brzozowa M, Michalski M, Wyrobiec G, et al. The role of Snail1 transcription factor in colorectal cancer progression and metastasis. Contemp Oncol (Pozn). 2015;19(4):265-270. doi: 10.5114/wo.2014.42173
- Lindner P, Paul S, Eckstein M, et al. EMT transcription factor ZEB1 alters the epigenetic landscape of colorectal cancer cells. Cell Death Dis. 2020;11(2):1-13. doi: 10.1038/s41419-020-2340-4
- Li CW, Xia W, Huo L, et al. Epithelial-mesenchyme transition induced by TNF-α requires NF-κB-mediated transcriptional upregulation of Twist1. Cancer Res. 2012;72(5):1290-1300. doi: 10.1158/0008-5472.can-11-3123
- Wu Y, Zhou BP. TNF-α/NF-κB/Snail pathway in cancer cell migration and invasion. Br J Cancer. 2010;102(4):639-644. doi: 10.1038/sj.bjc.6605530
- Al Obeed OA, Alkhayal KA, Al Sheikh A, et al. Increased expression of tumor necrosis factor-α is associated with advanced colorectal cancer stages. World J Gastroenterol. 2014;20(48):18390-18396. doi: 10.3748/wjg.v20.i48.18390
- Derwinger K, Kodeda K, Bexe-Lindskog E, Taflin H. Tumour differentiation grade is associated with TNM staging and the risk of node metastasis in colorectal cancer. Acta Oncologica. 2010;49(1):57-62. doi: 10.3109/02841860903334411
- Liaghat M, Ferdousmakan S, Mortazavi SH, et al. The impact of epithelial-mesenchymal transition (EMT) induced by metabolic processes and intracellular signaling pathways on chemo-resistance, metastasis, and recurrence in solid tumors. Cell Commun Signal. 2024;22(1):575. doi: 10.1186/s12964-024-01957-4
- Hoffmann H, Wartenberg M, Vorlova S, et al. Normalization of Snai1-mediated vessel dysfunction increases drug response in cancer. Oncogene. 2024;43(35):2661-2676. doi: 10.1038/s41388-024-03113-1
- Dong B, Wu Y. Epigenetic regulation and post-translational modifications of SNAI1 in cancer metastasis. Int J Mol Sci. 2021;22(20):11062. doi: 10.3390/ijms222011062
- Liao Z, Cai X, Zheng Y, et al. Sirtuin 1 in osteoarthritis: Perspectives on regulating glucose metabolism. Pharmacol Res. 2024;202:107141. doi: 10.1016/j.phrs.2024.107141
- Tsirigoti C, Ali MM, Maturi V, Heldin CH, Moustakas A. Loss of SNAI1 induces cellular plasticity in invasive triple-negative breast cancer cells. Cell Death Dis. 2022;13(9):832.doi: 10.1038/s41419-022-05280-z
- Zhang GJ, Zhou T, Tian HP, Liu ZL, Xia SS. High expression of ZEB1 correlates with liver metastasis and poor prognosis in colorectal cancer. Oncol Lett. 2013;5(2):564-568. doi: 10.3892/ol.2012.1026
- Parfenyev SE, Daks AA, Shuvalov OY, et al. Dualistic role of ZEB1 and ZEB2 in tumor progression. Biol Direct. 2025;20(1):32. doi: 10.1186/s13062-025-00604-3
- El-Deek HEDM, El-Naggar MS, Morsy AMM, Sedik MF, Osman HA, Ahmed AM. P4HA2 involved in SLUG-associated EMT predicts poor prognosis of patients with KRAS-positive colorectal cancer. Med Mol Morphol. 2024;57(3):167-176. doi: 10.1007/s00795-024-00385-0
- Lautert-Dutra W, Melo CM, Chaves LP, et al. Investigating the role of SNAI1 and ZEB1 expression in prostate cancer progression and immune modulation of the tumor microenvironment. Cancers (Basel). 2024;16(8):1480. doi: 10.3390/cancers16081480
- Tong J, Shen Y, Zhang Z, Hu Y, Zhang X, Han L. Apigenin inhibits epithelial-mesenchymal transition of human colon cancer cells through NF-κB/Snail signaling pathway. Biosci Rep. 2019;39(5):BSR20190452. doi: 10.1042/bsr20190452
- Cianciosi D, Forbes-Hernandez T, Armas Diaz Y, et al. Manuka honey’s anti-metastatic impact on colon cancer stem-like cells: Unveiling its effects on epithelial-mesenchymal transition, angiogenesis and telomere length. Food Funct. 2024;15(13):7200-7213. doi: 10.1039/d4fo00943f
- Herrera A, Herrera M, Alba-Castellón L, et al. Protumorigenic effects of Snail-expression fibroblasts on colon cancer cells. Int J Cancer. 2014;134(12):2984-2990. doi: 10.1002/ijc.28613
- Liu Y, Lu T, Li R, et al. Discovery of Jaspamycin from marine-derived natural product based on MTA3 to inhibit hepatocellular carcinoma progression. Sci Rep. 2024;14(1):25294. doi: 10.1038/s41598-024-75205-7
- Guo C, Ma J, Deng G, et al. ZEB1 promotes oxaliplatin resistance through the induction of epithelial - mesenchymal transition in colon cancer cells. J Cancer. 2017;8(17):3555-3566. doi: 10.7150/jca.20952
- Qing F, Xue J, Sui L, et al. Intestinal epithelial SNAI1 promotes the occurrence of colorectal cancer by enhancing EMT and Wnt/β-catenin signaling. Med Oncol. 2023;41(1):34. doi: 10.1007/s12032-023-02253-w
- Razzaque MS, Atfi A. Regulatory role of the transcription factor Twist1 in cancer-associated muscle cachexia. Front Physiol. 2020;11:662. doi: 10.3389/fphys.2020.00662
- Qiu X, Lu R, He Q, Chen S, Huang C, Lin D. Metabolic signatures and potential biomarkers for the diagnosis and treatment of colon cancer cachexia. Acta Biochim Biophys Sin (Shanghai). 2023;55(12):1913-1924. doi: 10.3724/abbs.2023151
- Zhao S, Jiang J, Jing Y, et al. The concentration of tumor necrosis factor-α determines its protective or damaging effect on liver injury by regulating Yap activity. Cell Death Dis. 2020;11(1):70. doi: 10.1038/s41419-020-2264-z
- Chen W, Wang W, Zhou L, et al. Elevated AST/ALT ratio is associated with all-cause mortality and cancer incident. J Clin Lab Anal. 2022;36(5):e24356. doi: 10.1002/jcla.24356