AccScience Publishing / EJMO / Online First / DOI: 10.36922/EJMO025160124
ORIGINAL RESEARCH ARTICLE

Comprehensive characterization of the material basis and network pharmacology of Dan-Shen-Yin in the treatment of gastritis

Jianbing Dong1† Zhirong Zhou1† Yi Chen2† Peng Lei1 Qingrui Zhang1 Miaomiao Jiang1,3*
Show Less
1 National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
2 College of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
3 Science and Technology Project of Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
†These authors contributed equally to this work.
Received: 15 April 2025 | Revised: 28 May 2025 | Accepted: 20 June 2025 | Published online: 17 July 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Objective: Dan-Shen-Yin (DSY), a traditional Chinese medicinal prescription composed of Salvia miltiorrhiza Bge. (DS), Santalum album L. (TX) and Amomum villosum Lour. (SR), has been widely employed in the treatment of gastritis in modern clinical practice and demonstrates excellent therapeutic efficacy. However, the main active ingredient and underlying mechanisms of action remain unclear. The objective is to comprehensively characterize the chemical composition of DSY and elucidate its potential mechanisms in the treatment of gastritis.

Methods: The nonvolatile compounds in DSY were analyzed through liquid chromatography-mass spectrometry using the data-dependent acquisition approach, employing an in-house database. The volatile compounds and polysaccharides were detected by gas chromatography-mass spectrometry and high-performance liquid chromatography, respectively. Network pharmacology analysis was performed based on the identified compounds.

Results: A total of 52 nonvolatile and 15 volatile compounds were identified in DSY decoction, primarily including phenylpropanoids, phenols, flavonoids, and terpenoids. Specifically, 54 compounds were found in DS, 14 in SR, and 8 in TX. DSY polysaccharide consisted of seven kinds of monosaccharides, including mannose, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose, and arabinose, with molar percentages of 0.21%, 0.53%, 0.15%, 4.12%, 6.24%, 18.07%, and 0.84%, respectively. Network pharmacology analysis identified 22 key compounds among the 67 compounds detected. These compounds exert the therapeutic effects through 55 core targets (e.g., interleukin-6, tumor necrosis factor, and TP53) and 10 inflammation-related pathways, such as the MAPK and nuclear factor kappa B signaling pathways.

Conclusion: This study further enriches the research on the material basis of DSY and reveals that its volatile compounds, nonvolatile compounds, and polysaccharides contribute to its therapeutic efficacy against gastritis. These findings may facilitate further development and application of DSY in gastritis treatment.

Keywords
Dan-Shen-Yin
Gastritis
Chemical components
Network pharmacology
Funding
This study was supported by the Science and Technology Program of Tianjin, China (Grant numbers: 24ZYJDSS00310 and 24ZYJDSS00300).
Conflict of interest
Miaomiao Jiang is an Editorial Board Member of this journal, but was not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Separately, other authors declared that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.
References
  1. Wafaey AA, El-Hawary SS, Abdelhameed MF, et al. Green synthesis of zinc oxide nanoparticles using ethanolic extract of Gliricidia sepium (Jacq.) kunth. Ex. Walp., stem: Characterizations and their gastroprotective effect on ethanol-induced gastritis in rats. Bioorg Chem. 2024;145:107225. doi: 10.1016/j.bioorg.2024.107225

 

  1. Gao X, Yin P, Ren Y, et al. Predicting personalized diets based on microbial characteristics between patients with superficial gastritis and atrophic gastritis. Nutrients. 2023;15(22):4738. doi: 10.3390/nu15224738

 

  1. López MJ, Carbajal J, Alfaro AL, et al. Characteristics of gastric cancer around the world. Crit Rev Oncol Hematol. 2023;181:103841. doi: 10.1016/j.critrevonc.2022.103841

 

  1. Li JX, Chen J, Lu B, Wang YG. Consensus on diagnosis and treatment of chronic atrophic gastritis with integrated traditional Chinese and western medicine (2017). Chin J Integr Tradit West Med Dig. 2018;26(2):121-131. doi: 10.3969/j.issn.1671-038X.2018.02.03

 

  1. Du LJ, Chen BR, Kim JJ, Kim S, Shen JH, Dai N. Helicobacter pylori eradication therapy for functional dyspepsia: Systematic review and meta-analysis. World J Gastroenterol. 2016;22(12):3486-3495. doi: 10.3748/wjg.v22.i12.3486

 

  1. Li Z, Wu C, Li L, et al. Effect of long-term proton pump inhibitor administration on gastric mucosal atrophy: A meta-analysis. Saudi J Gastroenterol. 2017;23(4):222-228. doi: 10.4103/sjg.SJG-573-16

 

  1. Liu M, Li Z, Yue O, et al. Material basis and integrative pharmacology of danshen decoction in the treatment of cardiovascular diseases. Phytomedicine. 2023;108:154503. doi: 10.1016/j.phymed.2022.154503

 

  1. Yu ZH. Observation on the therapeutic effect of modified danshen yin on chronic gastritis. Chin J Clin Ration Drug Use. 2012;5(4):86-87. doi: 10.15887/j.cnki.13-1389/r.2012.04.017

 

  1. Sun XN, Su YQ, Xu XQ, Zhao CP, Ji JL, Sun B. Treating gastric collaterals obstructed type of chronic gastritis with the danshen decoction by professor sun bin. Clin J Chin Med. 2021;13(14):69-72. doi: 10.3969/j.issn.1674-7860.2021.14.020

 

  1. Wang Df, Zhao M, Dong XY, Li XY. Clinical effect and mechanism of modified danshenyin against chronic atrophic gastritis with syndrome of stasis in stomach collateral: Based on theory of collateral diseases. Chin J Exp Tradit Med Form. 2022;28(23):122-127. doi: 10.13422/j.cnki.syfjx.20221623

 

  1. Li J, Chai JB. Experimental study on the mechanism of danshen yin in preventing pyloric ligation induced gastric ulcer in rats. Chin Arch Tradit Chin Med. 2006;(4):588-589. doi: 10.3969/j.issn.1673-7717.2006.04.003

 

  1. Zhang HQ, Liu L. Effects and mechanisms of danshenyin on accelerate gastric ulcer healing. Chin J Clin Pharmacol Ther. 2005;(7):812-818. doi: 10.3969/j.issn.1009-2501.2005.07.022

 

  1. Liu MN, Yuan G, Luo G, et al. Network pharmacology analysis and experimental verification strategies reveal the action mechanism of danshen decoction in treating ischemic cardiomyopathy. Evid Based Complement Alternat Med. 2022;2022:7578055. doi: 10.1155/2022/7578055

 

  1. Jing YS, Ma YF, Wang FF, Zhang YW, Wu LF, Zhang DS. Research progress on content determination, structural characterization and pharmacological activity of Salvia miltiorrhiza polysaccharides. China Pharm. 2020;31(16):2037-2042. doi: 10.6039/j.issn.1001-0408.2020.16.22

 

  1. Shan XX, Hong BZ, Liu J, et al. Review of chemical composition, pharmacological effects, and clinical review of chemical composition, pharmacological effects, and clinical. China J Chin Mater Med. 2021;46(21):5496-5511. doi: 10.19540/j.cnki.cjcmm.20210630.203

 

  1. Yang DS, Zhang Y, Shu Y, Cao H. Research progress on chemical constituents and pharmacological effects of Amomum villosum. Guangdong Chem Ind. 2022;49(8):111-114. doi: 10.3969/j.issn.1007-1865.2022.08.035

 

  1. Zhang W, Liu YY, Zou YC, Yu M, Zhan ZL, Xin GS. Advances on the investigation of phytochemistry and pharmacological activities of heartwood of Santalum album L. World Sci Technol Modernization Tradit Chin Med. 2020;22(12):4300-4307. doi: 10.11842/wst.20200407016

 

  1. Navarini L, Gilli R, Gombac V, Abatangelo A, Bosco M, Toffanin R. Polysaccharides from hot water extracts of roasted Coffea arabica beans: Isolation and characterization. Carbohydr Polym. 1999;40(1):71-81. doi: 10.1016/S0144-8617(99)00032-6

 

  1. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28(3):350-356. doi: 10.1021/ac60111a017

 

  1. Blumenkrantz N, Asboe-Hansen G. New method for quantitative determination of uronic acids. Anal Biochem. 1973;54(2):484-489. doi: 10.1016/0003-2697(73)90377-1

 

  1. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem. 1951;193(1):265-275. doi: 10.1016/S0021-9258(19)52451-6

 

  1. Sun X, Wang H, Han X, Chen S, Zhu S, Dai J. Fingerprint analysis of polysaccharides from different Ganoderma by HPLC combined with chemometrics methods. Carbohydr Polym. 2014;114:432-439. doi: 10.1016/j.carbpol.2014.08.048

 

  1. Guo JS, Liu HY, Huang XJ, Zhang M, Chen J, Nie ZW. Effect of the different extracts of santali albi lignum on isolated the small intestine movement function and gastric emptying of mice. Chin J Exp Tradit Med Form. 2012;18(2):139-143. doi: 10.3495/R.2011116.1422.001

 

  1. Zhang HF, Xue YW. Empirical study in the relation of gastric mucosal lesion with gastric emptying and gastric acid secretion. Zhonghua Wei Chang Wai Ke Za Zhi. 2008;11(5):472-476.

 

  1. Li J, Ren XJ, Lou Y. Research progress on the pathogenesis of gastric cancer induced by bile acids and the potential effects of Salvia miltiorrhiza extract. J Chin Foreign Med Pharm Res. 2024;3(8):156-158. doi: 10.3969/j.issn.2096-6229.2024.08.052

 

  1. Miao HX, Zhang HW, Wang J. Research progress on pharmacological mechanism of Salvia miltiorrhiza and its extracts in the treatment of oral malignant tumors. Glob Tradit Chin Med. 2023;16(3):565-570. doi: 10.3969/j.issn.1674-1749.2023.03.038

 

  1. Yu YY, Zhu YY, Zhang SC, et al. Research progress of plant polysaccharides in treatment of gastrointestinal diseases. Chin Arch Tradit Chin Med. 2024;42(4):194-199. doi: 10.13193/j.issn.1673-7717.2024.04.038

 

  1. Li L, Lan X, Peng X, et al. Polysaccharide from Salviae miltiorrhizae radix et rhizoma attenuates the progress of obesity-induced non-alcoholic fatty liver disease through modulating intestinal microbiota-related gut-liver axis. Int J Mol Sci. 2022;23(18):10620. doi: 10.3390/ijms231810620

 

  1. Gao BQ, Liu Y, Chen YH, Yang DC, Liu GP. Characteristics of gut microbiota in patients with chronic atrophic gastritis. Chin J Microecol. 2024;36(3):282-291. doi: 10.3389/fcimb.2019.00369

 

  1. Liu H, Zhuang S, Liang C, et al. Effects of a polysaccharide extract from Amomum villosum lour. on gastric mucosal injury and its potential underlying mechanism. Carbohydr Polym. 2022;294:119822. doi: 10.1016/j.carbpol.2022.119822

 

  1. Heidari F, Komeili-Movahhed T, Hamidizad Z, Moslehi A. The protective effects of rosmarinic acid on ethanol-induced gastritis in male rats: Antioxidant defense enhancement. Res Pharm Sci. 2021;16(3):305-314. doi: 10.4103/1735-5362.314829

 

  1. Hiruma-Lima CA, Batista LM, Almeida AB, et al. Antiulcerogenic action of ethanolic extract of the resin from Virola surinamensis warb. (Myristicaceae). J Ethnopharmacol. 2009;122(2):406-409. doi: 10.1016/j.jep.2008.12.023

 

  1. Chen ZM, Huang L, Li MM, Meng L, Ying SC, Xu AM. Inhibitory effects of isocryptotanshinone on gastric cancer. Sci Rep. 2018;8(1):9307. doi: 10.1038/s41598-018-27638-0

 

  1. Ohno T, Ohtani M, Suto H, et al. Effect of green tea catechins on gastric mucosal dysplasia in insulin-gastrin mice. Oncol Rep. 2016;35(6):3241-3247. doi: 10.3892/or.2016.4717

 

  1. Cheng YT, Lin JA, Jhang JJ, Yen GC. Protocatechuic acid-mediated DJ-1/PARK7 activation followed by PI3K/mTOR signaling pathway activation as a novel mechanism for protection against ketoprofen-induced oxidative damage in the gastrointestinal mucosa. Free Radic Biol Med. 2019;130:35-47. doi: 10.1016/j.freeradbiomed.2018.10.415

 

  1. Murakami S, Kijima H, Isobe Y, et al. Effect of salvianolic acid a, a depside from roots of Salvia miltiorrhiza, on gastric H+,K(+)-ATPase. Planta Med. 1990;56(4):360-363. doi: 10.1055/s-2006-960982

 

  1. Ren L, Wang LM, Zhang M. Study on the mechanism of tanshinone ⅡA alleviates gastric mucosal injury in rats with chronic atrophic gastritis by inhibiting JAK2/STAT3 pathway. Tianjin J Tradit Chin Med. 2024;41(7):914-921. doi: 10.11656/j.issn.1672-1519.2024.07.19

 

  1. Yang WS, Jeong S, Yi YS, et al. IRAK1/4-targeted anti-inflammatory action of caffeic acid. Mediators Inflamm. 2013;2013:518183. doi: 10.1155/2013/518183

 

  1. Ciciliato MP, Souza MCD, Tarran CM, Castilho ALTD, Vieira AJ, Rozza AL. Anti-inflammatory effect of vanillin protects the stomach against ulcer formation. Pharmaceutics. 2022;14(4):755. doi: 10.3390/pharmaceutics14040755

 

  1. Guo R, Li L, Su J, et al. Pharmacological activity and mechanism of tanshinone IIA in related diseases. Drug Des Devel Ther. 2020;14:4735-4748. doi: 10.2147/dddt.s266911

 

  1. Li J, Chen YH, Li LZ, et al. Omics and transgenic analyses reveal that salvianolic acid b exhibits its anti-inflammatory effects through inhibiting the mincle-syk-related pathway in macrophages. J Proteome Res. 2021;20(7):3734-3748. doi: 10.1021/acs.jproteome.1c00325

 

  1. Wu C, Zhao W, Zhang X, Chen X. Neocryptotanshinone inhibits lipopolysaccharide-induced inflammation in RAW264.7 macrophages by suppression of NF-κB and iNOS signaling pathways. Acta Pharm Sin B. 2015;5(4):323-329. doi: 10.1016/j.apsb.2015.01.010

 

  1. Wu YH, Wu YR, Li B, Yan ZY. Cryptotanshinone: A review of its pharmacology activities and molecular mechanisms. Fitoterapia. 2020;145:104633. doi: 10.1016/j.fitote.2020.104633

 

  1. Yoo SR, Jeong SJ, Lee NR, Shin HK, Seo CS. Simultaneous determination and anti-inflammatory effects of four phenolic compounds in dendrobii herba. Nat Prod Res. 2017;31(24):2923-2926. doi: 10.1080/14786419.2017.1300798

 

  1. Zhang J, Zhang Q, Liu G, Zhang N. Therapeutic potentials and mechanisms of the Chinese traditional medicine danshensu. Eur J Pharmacol. 2019;864:172710. doi: 10.1016/j.ejphar.2019.172710

 

  1. Zhang T, Lu SH, Bi Q, et al. Volatile oil from amomi fructus attenuates 5-fluorouracil-induced intestinal mucositis. Front Pharmacol. 2017;8:786. doi: 10.3389/fphar.2017.00786

 

  1. Jia JH, Zhao H, Li F, et al. Research on drug treatment and the novel signaling pathway of chronic atrophic gastritis. Biomed Pharmacother. 2024;176:116912. doi: 10.1016/j.biopha.2024.116912

 

  1. Liu X, Wang S, Li J, Zhang J, Liu D. Regulatory effect of traditional Chinese medicines on signaling pathways of process from chronic atrophic gastritis to gastric cancer. Chin Herb Med. 2022;14(1):5-19. doi: 10.1016/j.chmed.2021.10.008

 

  1. Nagura H, Ohtani H, Sasano H, Matsumoto T. The immuno-inflammatory mechanism for tissue injury in inflammatory bowel disease and helicobacter pylori-infected chronic active gastritis. Roles of the mucosal immune system. Digestion. 2001;63 Suppl 1:12-21. doi: 10.1159/000051905

 

  1. Nakamura H, Mukai E, Hirano D, Matsuhisa T, Yamada N, Yoshino S. Gastrointestinal disorder and helicobacter pylori infection in patients with rheumatoid arthritis. Mod Rheumatol. 2001;11(1):23-27. doi: 10.3109/s101650170039

 

  1. Polat A, Cinel L, Dusmez D, Aydin O, Egilmez R. Expression of cell-cycle related proteins in helicobacter pylori gastritis and association with gastric carcinoma. Neoplasma. 2002;49(2):95-100. doi: 10.1038/sj.neo.7900211

 

  1. Suzuki T, Ina K, Nishiwaki T, et al. Differential roles of interleukin-1beta and interleukin-8 in neutrophil transendothelial migration in patients with helicobacter pylori infection. Scand J Gastroenterol. 2004;39(4):313-321. doi: 10.1080/00365520310008610
Share
Back to top
Eurasian Journal of Medicine and Oncology, Electronic ISSN: 2587-196X Print ISSN: 2587-2400, Published by AccScience Publishing