AccScience Publishing / EJMO / Online First / DOI: 10.36922/EJMO025150095
REVIEW ARTICLE

NOTCH3 signalling as a therapeutic nexus: Bridging cerebral small vessel disease and breast cancer pathophysiology

Zaw Myo Hein1 Nisha Shantakumari1 Muhammad Danial Che Ramli2 Usman Jaffer3 Hafizah Abdul Hamid4 Che Mohd Nasril Che Mohd Nassir5*
Show Less
1 Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman, United Arab Emirates
2 Department of Diagnostic and Allied Health Science, Faculty of Health and Life Sciences, Management and Science University, Shah Alam, Selangor, Malaysia
3 Department of Human Science, Kulliyyah of Islamic Revealed Knowledge and Human Sciences, International Islamic University Malaysia, Kuala Lumpur, Malaysia
4 Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
5 Department of Anatomy and Physiology, School of Basic Medical Sciences, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Terengganu, Malaysia
Received: 8 April 2025 | Revised: 24 April 2025 | Accepted: 8 May 2025 | Published online: 30 May 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

The neurogenic locus notch homolog protein 3 (NOTCH3), is central in both vasculogenesis and oncogenesis and, therefore, has been considered an important factor in the development of cerebral small vessel disease (CSVD) and breast cancer (BC). Pathogenic mutations of NOTCH3 induce vascular smooth muscle cell degeneration, microvascular dysfunction and neurovascular damage in cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), which is a genetic cause of CSVD. Meanwhile, NOTCH3 aberrant signalling in BC promotes tumour progression, metastasis and chemoresistance, especially in aggressive subtypes, such as triple-negative BC. A growing body of evidence points to a common molecular pathway whereby NOTCH3 dysregulation mediates vascular and tumour pathologies, thus providing an important link between these conditions. This narrative review synthesises current insights into the dual role of NOTCH3, focusing on translational relevance as a therapeutic target. Targeting NOTCH3 may mitigate vascular damage in CSVD and simultaneously inhibit tumour progression and metastasis in BC. The review further discusses NOTCH3 as a biomarker for early diagnosis and risk stratification, besides novel therapeutic strategies involving γ-secretase inhibitors and monoclonal antibodies. Future directions include studies into the ligand-independent functions of NOTCH3, its role within the tumour microenvironment, and the development of therapies with dual-action potential. This review discusses, for the 1st time, common mechanisms between CSVD and BC, thereby opening new avenues for therapies that could effectively target both conditions. By translating these laboratory findings into clinical applications, this approach aims to improve outcomes for patients affected by these devastating disorders.

Keywords
Cerebral small vessel disease
Breast cancer
Neurogenic locus notch homolog protein 3
Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy
Tumor
Funding
Financial support for the article processing charge was provided by Ajman University, UAE.
Conflict of interest
The authors declare they have no competing interests.
References
  1. Kim K, Lee JH. Risk factors and biomarkers of ischemic stroke in cancer patients. J Stroke. 2014;16(2):91-96. doi: 10.5853/jos.2014.16.2.91

 

  1. Quintas S, Rogado J, Gullón P, et al. Predictors of unknown cancer in patients with ischemic stroke. J Neurooncol. 2018;137(3):551-557. doi: 10.1007/s11060-017-2741-0

 

  1. Muiño E, Gallego-Fabrega C, Cullell N, et al. Systematic review of cysteine-sparing NOTCH3 missense mutations in patients with clinical suspicion of CADASIL. Int J Mol Sci. 2017;18:1964. doi: 10.3390/ijms18091964

 

  1. Dupré N, Drieu A, Joutel A. Pathophysiology of cerebral small vessel disease: A journey through recent discoveries. J Clin Invest. 2024;134(10):e172841. doi: 10.1172/JCI172841

 

  1. Che Mohd Nassir CMN, Mohamad Ghazali M, Ahmad Safri A, et al. Elevated circulating microparticle subpopulations in incidental cerebral white matter hyperintensities: A multimodal study. Brain Sci. 2021;11:133. doi: 10.3390/brainsci11020133

 

  1. Hu C, Dievart A, Lupien M, Calvo E, Tremblay G, Jolicoeur P. Overexpression of activated murine Notch1 and Notch3 in transgenic mice blocks mammary gland development and induces mammary tumors. Am J Pathol. 2006;168:973-990. doi: 10.2353/ajpath.2006.050416

 

  1. Choy L, Hagenbeek TJ, Solon M, et al. Constitutive NOTCH3 signalling promotes the growth of basal breast cancers. Cancer Res. 2017;77(6):1439-1452. doi: 10.1158/0008-5472.CAN-16-1022

 

  1. Xiao Y, Ye Y, Zou X, et al. The lymphovascular embolus of inflammatory breast cancer exhibits a Notch 3 addiction. Oncogene. 2011;30(3):287-300. doi: 10.1038/onc.2010.405

 

  1. Feng Y, Spezia M, Huang S, et al. Breast cancer development and progression: Risk factors, cancer stem cells, signalling pathways, genomics, and molecular pathogenesis. Genes Dis. 2018;5(2):77-106. doi: 10.1016/j.gendis.2018.05.001

 

  1. Henry NL, Shah PD, Haider I, Freer PE, Jagsi R, Sabel MS. Cancer of the breast. In: Niederhuber JE, Armitage JO, Doroshow JH, Kastan MB, Tepper JE, editors. Abeloff’s Clinical Oncology. 6th ed. Philadelphia, PA: Elsevier; 2020.

 

  1. Jagsi R, King TA, Lehman C, Morrow M, Harris JR, Burstein HJ. Malignant tumors of the breast. In: DeVita VT, Lawrence TS, Rosenberg SA, editors. DeVita, Hellman, and Rosenberg’s Cancer: Principles and Practice of Oncology. 11th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2019.

 

  1. Saunders C, Jassal S. Breast Cancer. 1st ed., Ch. 13. Oxford: Oxford University Press; 2009.

 

  1. Fakhri N, Chad MA, Lahkim M, et al. Risk factors for breast cancer in women: An update review. Med Oncol. 2022;39(12):197. doi: 10.1007/s12032-022-01804-x

 

  1. Torre LA, Siegel RL, Ward EM, Jemal A. Global cancer incidence and mortality rates and trends-an update. Cancer Epidemiol Biomark Prev. 2016;25(1):16-27. doi: 10.1158/1055-9965.EPI-15-0578

 

  1. World Health Organization (WHO). Breast Cancer; 2023. Available from: https://www.who.int/news-room/fact-sheets/detail/breast-cancer [Last accessed on 2025 May 19].

 

  1. Sharma R. Breast cancer incidence, mortality and mortality-to-incidence ratio (MIR) are associated with human development, 1990-2016: Evidence from Global Burden of Disease Study 2016. Breast Cancer. 2019;26:428-445.doi: 10.1007/s12282-018-00941-4

 

  1. Ferlay J, Laversanne M, Ervik M, et al. Global Cancer Observatory: Cancer Tomorrow. Lyon, France: International Agency for Research on Cancer; 2020. Available from: https://gco.iarc.fr/tomorrow [Last accessed on 2024 Dec 01].

 

  1. Porter P. Westernizing women’s risks? Breast cancer in lower-income countries. N Engl J Med. 2008;358:213-216. doi: 10.1056/NEJMp0708307

 

  1. McKee MJ, Keith K, Deal AM, et al. A multidisciplinary breast cancer brain metastases clinic: The University of North Carolina experience. Oncologist. 2016;21(1):16-20. doi: 10.1634/theoncologist.2015-0328

 

  1. Shiovitz S, Korde LA. Genetics of breast cancer: A topic in evolution. Ann Oncol. 2015;26:1291-1299. doi: 10.1093/annonc/mdv022

 

  1. Shahbandi A, Nguyen HD, Jackson JG. TP53 mutations and outcomes in breast cancer: Reading beyond the headlines. Trends Cancer. 2020;6:98-110. doi: 10.1016/j.trecan.2020.01.007

 

  1. Corso G, Veronesi P, Sacchini V, Galimberti V. Prognosis and outcome in CDH1-mutant lobular breast cancer. Eur J Cancer Prev. 2018;27(3):237-238. doi: 10.1097/CEJ.0000000000000405

 

  1. Kechagioglou P, Papi RM, Provatopoulou X, et al. Tumor suppressor PTEN in breast cancer: Heterozygosity, mutations and protein expression. Anticancer Res. 2014;34(3):1387-1400.

 

  1. Chen J, Lindblom A. Germline mutation screening of the STK11/LKB1 gene in familial breast cancer with LOH on 19p. Clin Genet. 2000;57(5):394-397. doi: 10.1034/j.1399-0004.2000.570511.x

 

  1. Rahman N, Seal S, Thompson D, et al. PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet. 2007;39(2):165-167. doi: 10.1038/ng1959

 

  1. Stucci LS, Internò V, Tucci M, et al. The ATM gene in breast cancer: Its relevance in clinical practice. Genes (Basel). 2021;12(5):727. doi: 10.3390/genes12050727

 

  1. Gorodetska I, Kozeretska I, Dubrovska A. BRCA genes: The role in genome stability, cancer stemness and therapy resistance. J Cancer. 2019;10(9):2109-2127. doi: 10.7150/jca.30410

 

  1. Qu Y, Qin S, Yang Z, et al. Targeting the DNA repair pathway for breast cancer therapy: Beyond the molecular subtypes. Biomed Pharmacother. 2023;169:115877. doi: 10.1016/j.biopha.2023.115877

 

  1. Khan U, Khan MS. Prognostic value estimation of BRIP1 in breast cancer by exploiting transcriptomics data through bioinformatics approaches. Bioinform Biol Insights. 2021;15:11779322211055892. doi: 10.1177/11779322211055892

 

  1. Gamble LA, McClelland PH, Teke ME, et al. Defining features of hereditary lobular breast cancer due to CDH1 with magnetic resonance imaging and tumor characteristics. NPJ Breast Cancer. 2023;9(1):77. doi: 10.1038/s41523-023-00585-4

 

  1. Rainville I, Hatcher S, Rosenthal E, et al. High risk of breast cancer in women with biallelic pathogenic variants in CHEK2. Breast Cancer Res Treat. 2020;180(2):503-509. doi: 10.1007/s10549-020-05543-3

 

  1. Hu ZY, Liu L, Xie N, et al. Germline PALB2 mutations in cancers and its distinction from somatic PALB2 mutations in breast cancers. Front Genet. 2020;11:829. doi: 10.3389/fgene.2020.00829

 

  1. Fusco N, Sajjadi E, Venetis K, et al. PTEN alterations and their role in cancer management: Are we making headway on precision medicine? Genes (Basel). 2020;11(7):719. doi: 10.3390/genes11070719

 

  1. Angeli D, Salvi S, Tedaldi G. Genetic predisposition to breast and ovarian cancers: How many and which genes to test? Int J Mol Sci. 2020;21(3):1128. doi: 10.3390/ijms21031128

 

  1. Børresen-Dale AL. TP53 and breast cancer. Hum Mutat. 2003;21:292-300. doi: 10.1002/humu.10174

 

  1. Leontovich AA, Jalalirad M, Salisbury JL, et al. NOTCH3 expression is linked to breast cancer seeding and distant metastasis. Breast Cancer Res. 2018;20(1):105. doi: 10.1186/s13058-018-1020-0

 

  1. Che Mohd Nassir CMN, Damodaran T, Yusof SR, et al. Aberrant neurogliovascular unit dynamics in cerebral small vessel disease: A rheological clue to vascular parkinsonism. Pharmaceutics. 2021;13(8):1207. doi: 10.3390/pharmaceutics13081207

 

  1. Wardlaw JM, Smith C, Dichgans M. Small vessel disease: Mechanisms and clinical implications. Lancet Neurol. 2019;18:684-696. doi: 10.1016/S1474-4422(19)30079-1

 

  1. Smith EE. Clinical presentations and epidemiology of vascular dementia. Clin Sci (Lond). 2017;131:1059-1068. doi: 10.1042/CS20160607

 

  1. Prabhakaran S, Naidech AM. Ischemic brain injury after intracerebral hemorrhage: A critical review. Stroke. 2012;43:2258-2263.doi: 10.1161/STROKEAHA.112.655910

 

  1. Duering M, Biessels GJ, Brodtmann A, et al. Neuroimaging standards for research into small vessel disease-advances since 2013. Lancet Neurol. 2023;22(7):602-618. doi: 10.1016/S1474-4422(23)00131-X

 

  1. Pantoni L. Cerebral small vessel disease: From pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010;9(7):689-701. doi: 10.1016/S1474-4422(10)70104-6

 

  1. Mustapha M, Nassir CMNCM, Aminuddin N, Safri AA, Ghazali MM. Cerebral small vessel disease (CSVD) - lessons from the animal models. Front Physiol. 2019;10:1317. doi:10.3389/fphys.2019.01317

 

  1. Chojdak-Łukasiewicz J, Dziadkowiak E, Zimny A, Paradowski B. Cerebral small vessel disease: A review. Adv Clin Exp Med. 2021;30(3):349-356. doi: 10.17219/acem/131216

 

  1. Zhuang FJ, Chen Y, He WB, Cai ZH. Prevalence of white matter hyperintensities increases with age. Neural Regen Res. 2018;13(12):2141-2146. doi: 10.4103/1673-5374.241465

 

  1. Li T, Huang Y, Cai W, et al. Age-related cerebral small vessel disease and inflammaging. Cell Death Dis. 2020;11(11):932. doi: 10.1038/s41419-020-03137-x

 

  1. Jann K, Shao X, Ma SJ, et al. Evaluation of cerebral blood flow measured by 3D PCASL as biomarker of vascular cognitive impairment and dementia (VCID) in a cohort of elderly Latinx subjects at risk of small vessel disease. Front Neurosci. 2021;15:627627. doi: 10.3389/fnins.2021.627627

 

  1. Baezner H, Blahak C, Poggesi A, et al. Association of gait and balance disorders with age-related white matter changes: The LADIS study. Neurology. 2008;70(12):935-942. doi: 10.1212/01.wnl.0000305959.46197.e6

 

  1. Naraoka M, Matsuda N, Shimamura N, Asano K, Ohkuma H. The role of arterioles and the microcirculation in the development of vasospasm after aneurysmal SAH. Biomed Res Int. 2014;2014:253746. doi: 10.1155/2014/253746

 

  1. Li Q, Yang Y, Reis C, et al. Cerebral small vessel disease. Cell Transplant. 2018;27(12):1711-1722. doi: 10.1177/0963689718795148

 

  1. Zhang YY, Chan DKY, Cordato D, Shen Q, Sheng AZ. Stroke risk factor, pattern and outcome in patients with cancer. Acta Neurol Scand. 2006;114(6):378-383. doi: 10.1111/j.1600-0404.2006.00709.x

 

  1. Uemura J, Kimura K, Sibazaki K, Inoue T, Iguchi Y, Yamashita S. Acute stroke patients have occult malignancy more often than expected. Eur Neurol. 2010;64(3):140-144. doi: 10.1159/000316764

 

  1. Kim SG, Hong JM, Kim HY, et al. Ischemic stroke in cancer patients with and without conventional mechanisms: A multicenter study in Korea. Stroke. 2010;41(4):798-801. doi: 10.1161/STROKEAHA.109.571356

 

  1. Dearborn JL, Urrutia VC, Zeiler SR. Stroke and cancer-a complicated relationship. J Neurol Transl Neurosci. 2014;2(1):1039.

 

  1. Grazioli S, Paciaroni M, Agnelli G, et al. Cancer-associated ischemic stroke: A retrospective multicentre cohort study. Thromb Res. 2018;165:33-37. doi: 10.1016/j.thromres.2018.03.011

 

  1. Grisold W, Oberndorfer S, Struhal W. Stroke and cancer: A review. Acta Neurol Scand. 2009;119(1):1-16. doi: 10.1111/j.1600-0404.2008.01059.x

 

  1. Schwarzbach CJ, Schaefer A, Ebert A, et al. Stroke and cancer: The importance of cancer-associated hypercoagulation as a possible stroke etiology. Stroke. 2012;43(11):3029-3034. doi: 10.1161/STROKEAHA.112.658625

 

  1. Álvarez-Pérez FJ, Verde I, Usón-Martín M, Figuerola-Roig A, Ballabriga-Planas J, Espino-Ibañez A. Frequency and mechanism of ischemic stroke associated with malignancy: A retrospective series. Eur Neurol. 2012;68(4):209-213. doi: 10.1159/000341343

 

  1. Seok JM, Kim SG, Kim JW, et al. Coagulopathy and embolic signal in cancer patients with ischemic stroke. Ann Neurol. 2010;68(2):213-219. doi: 10.1002/ana.22050

 

  1. Dexter JS. The analysis of a case of continuous variation in Drosophila by a study of its linkage relations. Am Nat. 1914;48(576):712-758.

 

  1. Durieux I, Ginevra C, Attaiech L, et al. Diverse conjugative elements silence natural transformation in Legionella species. Proc Natl Acad Sci U S A. 2019;116(37):18613-18618. doi: 10.1073/pnas.1909374116

 

  1. Kopan R, Ilagan MX. The canonical Notch signalling pathway: Unfolding the activation mechanism. Cell. 2009;137(2):216-233. doi: 10.1016/j.cell.2009.03.045

 

  1. Yavropoulou MP, Maladaki A, Yovos JG. The role of Notch and Hedgehog signalling pathways in pituitary development and pathogenesis of pituitary adenomas. Hormones (Athens). 2015;14(1):5-18. doi: 10.1007/BF03401377

 

  1. Hori K, Sen A, Artavanis-Tsakonas S. Notch signalling at a glance. J Cell Sci. 2013;126(Pt 10):2135-2140.

 

  1. Gozlan O, Sprinzak D. Notch signaling in development and homeostasis. Development. 2023;150(4):dev201138. doi: 10.1242/dev.201138

 

  1. Vlachakis D, Tsaniras SC, Ioannidou K, Papageorgiou L, Baumann M, Kossida S. A series of Notch3 mutations in CADASIL; insights from 3D molecular modelling and evolutionary analyses. J Mol Biochem. 2014;3(3):134.

 

  1. Bray SJ. Notch signalling in context. Nat Rev Mol Cell Biol. 2016;17(11):722-735. doi: 10.1038/nrm.2016.94

 

  1. Xiu MX, Liu YM. The role of oncogenic Notch2 signalling in cancer: A novel therapeutic target. Am J Cancer Res. 2019;9(5):837-854.

 

  1. Xia Y, Bhattacharyya A, Roszell EE, Sandig M, Mequanint K. The role of endothelial cell-bound Jagged1 in Notch3-induced human coronary artery smooth muscle cell differentiation. Biomaterials. 2012;33(8):2462-2472. doi: 10.1016/j.biomaterials.2011.12.001

 

  1. Xu X, Choi SH, Hu T, et al. Insights into autoregulation of Notch3 from structural and functional studies of its negative regulatory region. Structure. 2015;23(7):1227-1235. doi: 10.1016/j.str.2015.05.001

 

  1. Gera S, Dighe RR. The soluble ligand Y box-1 activates Notch3 receptor by binding to epidermal growth factor like repeats 20-23. Arch Biochem Biophys. 2018;660:129-136. doi: 10.1016/j.abb.2018.10.009

 

  1. Domenga V, Fardoux P, Lacombe P, et al. Notch3 is required for arterial identity and maturation of vascular smooth muscle cells. Genes Dev. 2004;18(22):2730-2735. doi: 10.1101/gad.308904

 

  1. Jin S, Hansson EM, Tikka S, et al. Notch signalling regulates platelet-derived growth factor receptor-beta expression in vascular smooth muscle cells. Circ Res. 2008; 102(12):1483-1491. doi: 10.1161/CIRCRESAHA.107.167965

 

  1. Ando K, Wang W, Peng D, et al. Peri-arterial specification of vascular mural cells from naïve mesenchyme requires Notch signalling. Development. 2019;146(2):dev165589. doi: 10.1242/dev.165589

 

  1. Wang Q, Zhao N, Kennard S, Lilly B. Notch2 and Notch3 function together to regulate vascular smooth muscle development. PLoS One. 2012;7:e37365. doi: 10.1371/journal.pone.0037365

 

  1. Baeten JT, Lilly B. Differential regulation of NOTCH2 and NOTCH3 contribute to their unique functions in vascular smooth muscle cells. J Biol Chem. 2015;290:16226-16237. doi: 10.1074/jbc.M115.655548

 

  1. Kawazu M, Kojima S, Ueno T, et al. Integrative analysis of genomic alterations in triple-negative breast cancer in association with homologous recombination deficiency. PLoS Genet. 2017;13(6):e1006853. doi: 10.1371/journal.pgen.1006853

 

  1. Doebar SC, Sieuwerts AM, de Weerd V, et al. Gene expression differences between ductal carcinoma in situ with and without progression to invasive breast cancer. Am J Pathol. 2017;187(7):1648-1655. doi: 10.1016/j.ajpath.2017.03.012

 

  1. Sansone P, Ceccarelli C, Berishaj M, et al. Self-renewal of CD133(hi) cells by IL6/Notch3 signalling regulates endocrine resistance in metastatic breast cancer. Nat Commun. 2016;7:10442. doi: 10.1038/ncomms10442

 

  1. Gu X, Lu C, He D, et al. Notch3 negatively regulates chemoresistance in breast cancers. Tumour Biol. 2016;37(7):9511-9519. doi: 10.1007/s13277-016-5412-4

 

  1. Serafin V, Persano L, Moserle L, et al. Notch3 signalling promotes tumour growth in colorectal cancer. J Pathol. 2011;224(4):448-460. doi: 10.1002/path.2895

 

  1. Suliman MA, Zhang Z, Na H, et al. Niclosamide inhibits colon cancer progression through downregulation of the Notch pathway and upregulation of the tumour suppressor miR-200 family. Int J Mol Med. 2016;38(3):776-784. doi: 10.3892/ijmm.2016.2689

 

  1. Xie T, Li Y, Li SL, Luo HF. Astragaloside IV enhances cisplatin chemosensitivity in human colorectal cancer via regulating NOTCH3. Oncol Res. 2016;24(6):447-453. doi: 10.3727/096504016X14685034103590

 

  1. Wu JK, Adepoju O, De Silva D, et al. A switch in Notch gene expression parallels stem cell to endothelial transition in infantile haemangioma. Angiogenesis. 2010;13(1):15-23. doi: 10.1007/s10456-009-9161-5

 

  1. Hu L, Xue F, Shao M, Deng A, Wei G. Aberrant expression of Notch3 predicts poor survival for hepatocellular carcinomas. Biosci Trends. 2013;7(3):152-156.

 

  1. Gramantieri L, Giovannini C, Lanzi A, et al. Aberrant Notch3 and Notch4 expression in human hepatocellular carcinoma. Liver Int. 2007;27(7):997-1006. doi: 10.1111/j.1478-3231.2007.01544.x

 

  1. Man CH, Wei-Man Lun S, et al. Inhibition of NOTCH3 signalling significantly enhances sensitivity to cisplatin in EBV-associated nasopharyngeal carcinoma. J Pathol. 2012;226(3):471-481.doi: 10.1002/path.2997

 

  1. Chen CY, Chen YY, Hsieh MS, et al. Expression of Notch gene and its impact on survival of patients with resectable non-small cell lung cancer. J Cancer. 2017;8(7):1292-1300. doi: 10.7150/jca.17741

 

  1. Shi C, Qian J, Ma M, Zhang Y, Han B. Notch3 protein, not its gene polymorphism, is associated with the chemotherapy response and prognosis of advanced NSCLC patients. Cell Physiol Biochem. 2014;34(3):743-752. doi: 10.1159/000363039

 

  1. Ikezawa Y, Sakakibara-Konishi J, Mizugaki H, et al. Inhibition of Notch and HIF enhances the antitumor effect of radiation in Notch expressing lung cancer. Int J Clin Oncol. 2017;22(1):59-69. doi: 10.1007/s10147-016-1031-8

 

  1. Liu Z, Yun R, Yu X, et al. Overexpression of Notch3 and pS6 is associated with poor prognosis in human ovarian epithelial cancer. Mediators Inflamm. 2016;2016:5953498. doi: 10.1155/2016/5953498

 

  1. Jung SG, Kwon YD, Song JA, et al. Prognostic significance of Notch 3 gene expression in ovarian serous carcinoma. Cancer Sci. 2010;101(9):1977-1983. doi: 10.1111/j.1349-7006.2010.01641.x

 

  1. Chen CF, Dou XW, Liang YK, et al. Notch3 overexpression causes arrest of cell cycle progression by inducing Cdh1 expression in human breast cancer cells. Cell Cycle. 2016;15(3):432-440. doi: 10.1080/15384101.2015.1127474

 

  1. Ross AE, Marchionni L, Vuica-Ross M, et al. Gene expression pathways of high-grade localized prostate cancer. Prostate. 2011;71(14):1568-1577. doi: 10.1002/pros.21373

 

  1. Danza G, Di Serio C, Ambrosio MR, et al. Notch3 is activated by chronic hypoxia and contributes to the progression of human prostate cancer. Int J Cancer. 2013;133(11):2577-2588. doi: 10.1002/ijc.28293

 

  1. Yeasmin S, Nakayama K, Rahman MT, et al. Expression of nuclear Notch3 in cervical squamous cell carcinomas and its association with adverse clinical outcomes. Gynecol Oncol. 2010;117(3):409-416. doi: 10.1016/j.ygyno.2010.03.004

 

  1. Liu J, Fan H, Ma Y, et al. Notch1 is a 5-fluorouracil resistant and poor survival marker in human esophagus squamous cell carcinomas. PLoS One. 2013;8(2):e56141. doi: 10.1371/journal.pone.0056141

 

  1. Lee SH, Jeong EG, Yoo NJ, Lee SH. Mutational analysis of NOTCH1, 2, 3 and 4 genes in common solid cancers and acute leukemias. APMIS. 2007;115(12):1357-1363. doi: 10.1111/j.1600-0463.2007.00751.x

 

  1. Masiero M, Minuzzo S, Pusceddu I, et al. Notch3-mediated regulation of MKP-1 levels promotes survival of T acute lymphoblastic leukemia cells. Leukemia. 2011;25(4):588-598. doi: 10.1038/leu.2010.323.

 

  1. Tang XF, Cao Y, Peng DB, et al. Overexpression of Notch3 is associated with metastasis and poor prognosis in osteosarcoma patients. Cancer Manag Res. 2019;11:547-559. doi: 10.2147/CMAR.S185495

 

  1. Zhang Y, Chen B, Wang Y, et al. NOTCH3 overexpression and posttranscriptional regulation by miR-150 were associated with EGFR-TKI resistance in lung adenocarcinoma. Oncol Res. 2019;27(7):751-761. doi: 10.3727/096504018X15372657298381

 

  1. Xiu M, Wang Y, Li B, et al. The role of Notch3 signaling in cancer stemness and chemoresistance: Molecular mechanisms and targeting strategies. Front Mol Biosci. 2021;8:694141. doi: 10.3389/fmolb.2021.694141

 

  1. Bernasconi-Elias P, Hu T, Jenkins D, et al. Characterization of activating mutations of NOTCH3 in T-cell acute lymphoblastic leukemia and anti-leukemic activity of NOTCH3 inhibitory antibodies. Oncogene. 2016; 35(47):6077-6086. doi: 10.1038/onc.2016.133

 

  1. Papadakos KS, Bartoschek M, Rodriguez C, et al. Cartilage oligomeric matrix protein initiates cancer stem cells through activation of Jagged1-Notch3 signaling. Matrix Biol. 2019;81:107-121. doi: 10.1016/j.matbio.2018.11.007

 

  1. Fang CH, Lin YT, Liang CM, Liang SM. A novel C-Kit/ phospho-prohibitin axis enhances ovarian cancer stemness and chemoresistance via Notch3-PBX1 and β-catenin- ABCG2 signaling. J Biomed Sci. 2020;27(1):42. doi: 10.1186/s12929-020-00638-x

 

  1. Meurette O, Mehlen P. Notch signaling in the tumour microenvironment. Cancer Cell. 2018;34(4):536-548. doi: 10.1016/j.ccell.2018.07.009.

 

  1. Hanahan D, Coussens LM. Accessories to the crime: Functions of cells recruited to the tumour microenvironment. Cancer Cell. 2012;21(3):309-322. doi: 10.1016/j.ccr.2012.02.022

 

  1. Shen Q, Cohen B, Zheng W, et al. Notch shapes the innate immunophenotype in breast cancer. Cancer Discov. 2017;7(11):1320-1335. doi: 10.1158/2159-8290.CD-17-0037

 

  1. Tsuyada A, Chow A, Wu J, et al. CCL2 mediates cross-talk between cancer cells and stromal fibroblasts that regulates breast cancer stem cells. Cancer Res. 2012;72(11):2768-2779. doi: 10.1158/0008-5472.CAN-11-3567

 

  1. Boelens MC, Wu TJ, Nabet BY, et al. Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways. Cell. 2014;159(3):499-513. doi: 10.1016/j.cell.2014.09.051

 

  1. Studebaker AW, Storci G, Werbeck JL, et al. Fibroblasts isolated from common sites of breast cancer metastasis enhance cancer cell growth rates and invasiveness in an interleukin-6-dependent manner. Cancer Res. 2008;68(21):9087-9095. doi: 10.1158/0008-5472.CAN-08-0400

 

  1. Yamaguchi N, Oyama T, Ito E, et al. NOTCH3 signalling pathway plays crucial roles in the proliferation of ErbB2-negative human breast cancer cells. Cancer Res. 2008;68(6):1881-1888. doi: 10.1158/0008-5472.CAN-07-1597

 

  1. Huang TX, Guan XY, Fu L. Therapeutic targeting of the crosstalk between cancer-associated fibroblasts and cancer stem cells. Am J Cancer Res. 2019;9(9):1889-1904.

 

  1. Fernandez SV, Robertson FM, Pei J, et al. Inflammatory breast cancer (IBC): Clues for targeted therapies. Breast Cancer Res Treat. 2013;140(1):23-33. doi: 10.1007/s10549-013-2600-4

 

  1. Liu H, Wang J, Zhang M, et al. Jagged1 promotes aromatase inhibitor resistance by modulating tumour-associated macrophage differentiation in breast cancer patients. Breast Cancer Res Treat. 2017;166(1):95-107. doi: 10.1007/s10549-017-4394-2

 

  1. Sousa S, Brion R, Lintunen M, et al. Human breast cancer cells educate macrophages toward the M2 activation status. Breast Cancer Res. 2015;17:101. doi: 10.1186/s13058-015-0621-0

 

  1. Cahill EF, Tobin LM, Carty F, Mahon BP, English K. Jagged-1 is required for the expansion of CD4+ CD25+ FoxP3+ regulatory T cells and tolerogenic dendritic cells by murine mesenchymal stromal cells. Stem Cell Res Ther. 2015;6:19. doi: 10.1186/s13287-015-0021-5

 

  1. Lamy M, Ferreira A, Dias JS, Braga S, Silva G, Barbas A. Notch-out for breast cancer therapies. New Biotechnol. 2017;39:215-221. doi: 10.1016/j.nbt.2017.08.004

 

  1. Charbonnier LM, Wang S, Georgiev P, Sefik E, Chatila TA. Control of peripheral tolerance by regulatory T cell-intrinsic Notch signalling. Nat Immunol. 2015;16(11):1162-1173. doi: 10.1038/ni.3288

 

  1. Mezquita B, Mezquita J, Barrot C, et al. A truncated-Flt1 isoform of breast cancer cells is upregulated by Notch and downregulated by retinoic acid. J Cell Biochem. 2014;115(1):52-61. doi: 10.1002/jcb.24632

 

  1. Sabol HM, Amorim T, Ashby C, et al. Notch3 signalling between myeloma cells and osteocytes in the tumour niche promotes tumour growth and bone destruction. Neoplasia. 2022;28:100785. doi: 10.1016/j.neo.2022.100785

 

  1. Ying J, Tsujii M, Kondo J, et al. The effectiveness of an anti-human IL-6 receptor monoclonal antibody combined with chemotherapy to target colon cancer stem-like cells. Int J Oncol. 2015;46(4):1551-1559. doi: 10.3892/ijo.2015.2851

 

  1. Antony J, Tan TZ, Kelly Z, et al. The GAS6-AXL signalling network is a mesenchymal (Mes) molecular subtype-specific therapeutic target for ovarian cancer. Sci Signal. 2016;9(448):ra97. doi: 10.1126/scisignal.aaf8175

 

  1. Kent S, Hutchinson J, Balboni A, Decastro A, Cherukuri P, Direnzo J. ΔNp63α promotes cellular quiescence via induction and activation of Notch3. Cell Cycle. 2011;10(18):3111-3118. doi: 10.4161/cc.10.18.17300

 

  1. Belin de Chantemèle EJ, Retailleau K, Pinaud F, et al. Notch3 is a major regulator of vascular tone in cerebral and tail resistance arteries. Arterioscler Thromb Vasc Biol. 2008;28(12):2216-2224. doi: 10.1161/ATVBAHA.108.171751

 

  1. Kawai H, Kawaguchi D, Kuebrich BD, et al. Area-specific regulation of quiescent neural stem cells by Notch3 in the adult mouse subependymal zone. J Neurosci. 2017;37(49):11867-11880. doi: 10.1523/JNEUROSCI.0001-17.2017

 

  1. Loerakker S, Stassen OMJA, Ter Huurne FM, Boareto M, Bouten CVC, Sahlgren CM. Mechano sensitivity of Jagged-Notch signalling can induce a switch-type behavior in vascular homeostasis. Proc Natl Acad Sci U S A. 2018;115(16):E3682-E3691. doi: 10.1073/pnas.1715277115

 

  1. Kitamoto T, Hanaoka K. Notch3 null mutation in mice causes muscle hyperplasia by repetitive muscle regeneration. Stem Cells. 2010;28(12):2205-2216. doi: 10.1002/stem.547

 

  1. Conboy IM, Rando TA. The regulation of Notch signalling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev Cell. 2002;3(3):397-409. doi: 10.1016/s1534-5807(02)00254-x

 

  1. Wei LK, Sutherland H, Au A, et al. A potential epigenetic marker mediating serum folate and vitamin B12 levels contributes to the risk of ischemic stroke. Biomed Res Int. 2015;2015:167976. doi: 10.1155/2015/167976

 

  1. Joutel A, Vahedi K, Corpechot C, et al. Strong clustering and stereotyped nature of Notch3 mutations in CADASIL patients. Lancet. 1997;350(9090):1511-1515. doi: 10.1016/S0140-6736(97)08083-5

 

  1. Soong BW, Liao YC, Tu PH, et al. A homozygous NOTCH3 mutation p.R544C and a heterozygous TREX1 variant p.C99MfsX3 in a family with hereditary small vessel disease of the brain. J Chin Med Assoc. 2013;76(6):319-324. doi: 10.1016/j.jcma.2013.03.002

 

  1. Bekris LM, Yu CE, Bird TD, Tsuang DW. Genetics of Alzheimer disease. J Geriatr Psychiatry Neurol. 2010;23(4):213-227. doi: 10.1177/0891988710383571

 

  1. Paulson HL, Igo I. Genetics of dementia. Semin Neurol. 2011;31(5):449-460. doi: 10.1055/s-0031-1299784

 

  1. Ruchoux MM, Maurage CA. CADASIL: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. J Neuropathol Exp Neurol. 1997;56(9):947-964.

 

  1. Tournier-Lasserve E, Joutel A, Melki J, et al. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy maps to chromosome 19q12. Nat Genet. 1993;3(3):256-259. doi: 10.1038/ng0393-256

 

  1. Stojanov D, Vojinovic S, Aracki-Trenkic A, et al. Imaging characteristics of cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL). Bosn J Basic Med Sci. 2015;15(1):1-8. doi: 10.17305/bjbms.2015.247

 

  1. O’Sullivan M, Jarosz JM, Martin RJ, Deasy N, Powell JF, Markus HS. MRI hyperintensities of the temporal lobe and external capsule in patients with CADASIL. Neurology. 2001;56(5):628-634. doi: 10.1212/wnl.56.5.628

 

  1. Joutel A, Corpechot C, Ducros A, et al. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature. 1996;383(6602):707-710. doi: 10.1038/383707a0

 

  1. Tikka S, Baumann M, Siitonen M, et al. CADASIL and CARASIL. Brain Pathol. 2014;24(5):525-544. doi: 10.1111/bpa.12181

 

  1. Schoemaker D, Arboleda-Velasquez JF. Notch3 signalling and aggregation as targets for the treatment of CADASIL and other NOTCH3-associated small-vessel diseases. Am J Pathol. 2021;191(11):1856-1870. doi: 10.1016/j.ajpath.2021.03.015

 

  1. Moreton F, Razvi S, Davidson R, Muir K. Changing clinical patterns and increasing prevalence in CADASIL. Acta Neurol Scand. 2014;130(3):197-203. doi: 10.1111/ane.12266

 

  1. Rutten JW, Hack RJ, Duering M, et al. Broad phenotype of cysteine-altering NOTCH3 variants in UK Biobank: CADASIL to nonpenetrance. Neurology. 2020;95(18):e1835-e1843. doi: 10.1212/WNL.0000000000010525

 

  1. Coupland K, Lendahl U, Karlström H. Role of NOTCH3 mutations in the cerebral small vessel disease cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Stroke. 2018;49(11):2793-2800. doi: 10.1161/STROKEAHA.118.021560

 

  1. Hosseini-Alghaderi S, Baron M. Notch3 in development, health and disease. Biomolecules. 2020;10(3):485. doi: 10.3390/biom10030485

 

  1. Song C, Zhang J, Xu C, Gao M, Li N, Geng Q. The critical role of γ-secretase and its inhibitors in cancer and cancer therapeutics. Int J Biol Sci. 2023;19(16):5089-5103. doi: 10.7150/ijbs.87334

 

  1. Takebe N, Nguyen D, Yang SX. Targeting notch signaling pathway in cancer: Clinical development advances and challenges. Pharmacol Ther. 2014;141(2):140-149. doi: 10.1016/j.pharmthera.2013.09.005
Share
Back to top
Eurasian Journal of Medicine and Oncology, Electronic ISSN: 2587-196X Print ISSN: 2587-2400, Published by AccScience Publishing