Morphological changes in intracellular small organelles during paraptosis and their relationship with diseases: A review

Paraptosis, a distinct form of programmed cell death, has attracted significant attention in cell biology due to its unique characteristics and potential therapeutic implications. Unlike classical apoptosis or necrosis, paraptosis is induced by specific stimuli and is marked by cell swelling, organelle distension, and the absence of nuclear condensation. This review explores the morphological changes in intracellular small organelles during paraptosis, including mitochondria, endoplasmic reticulum (ER), Golgi apparatus, lysosomes, and autophagosomes. Mitochondria undergo swelling and cristae loss, which impair adenosine triphosphate production and disrupt calcium homeostasis. The ER expands and experiences calcium ion imbalance, triggering ER stress and the unfolded protein response. The Golgi apparatus undergoes vasicularization and structural disassembly, impacting protein glycosylation and secretion. Lysosomal membrane instability leads to the release of acidic hydrolases, exacerbating cellular damage, while autophagosome formation is characterized by the development of double-membrane vesicles and their fusion with lysosomes. These organelle-specific changes are tightly regulated by complex intracellular signaling pathways and provide valuable insights into the mechanisms underlying paraptosis. Understanding these processes offers a theoretical foundation for developing novel therapeutic strategies targeting diseases characterized by dysregulated cell death. In tumor therapy, paraptosis, as a form of immunogenic cell death, can overcome tumor cell resistance to traditional apoptosis-inducing drugs and enhance the efficacy of immunotherapy. In neurodegenerative diseases, mild paraptosis is linked to tumorigenesis, whereas severe paraptosis is associated with neurodegenerative diseases such as Alzheimer’s disease. The mechanisms of action and potential therapeutic value of paraptosis in these disease contexts continue to be actively investigated.
- Fontana F, Raimondi M, Marzagalli M, Di Domizio A, Limonta P. The emerging role of paraptosis in tumor cell biology: Perspectives for cancer prevention and therapy with natural compounds. Biochim Biophys Acta Rev Cancer. 2020;1873(2):188338. doi: 10.1016/j.bbcan.2020.188338
- Xu CC, Lin YF, Huang MY, et al. Paraptosis: A non-classical paradigm of cell death for cancer therapy. Acta Pharmacol Sin. 2024;45(2):223-237. doi: 10.1038/s41401-023-01159-7
- Huang D, Chen S, Xiong D, et al. Mitochondrial dynamics: Working with the cytoskeleton and intracellular organelles to mediate mechanotransduction. Aging Dis. 2023;14(5):1511-1532. doi: 10.14336/AD.2023.0201
- Zhao S, Feng H, Jiang D, et al. ER Ca2+ overload activates the IRE1α signaling and promotes cell survival. Cell Biosci. 2023;13(1):123. doi: 10.1186/s13578-023-01062-y
- Kunst C, Tümen D, Ernst M, Tews HC, Müller M, Gülow K. Paraptosis-a distinct pathway to cell death. Int J Mol Sci. 2024;25(21):11478. doi: 10.3390/ijms252111478
- Sperandio S, de Belle I, Bredesen DE. An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci U S A. 2000;97(26):14376-14381. doi: 10.1073/pnas.97.26.14376
- Ohoka N, Nagai K, Shibata N, et al. SNIPER(TACC3) induces cytoplasmic vacuolization and sensitizes cancer cells to Bortezomib. Cancer Sci. 2017;8(5):1032-1041. doi: 10.1111/cas.13198
- Liu S, Tian Y, Liu C, Gui Z, Yu T, Zhang L. TNFRSF19 promotes endoplasmic reticulum stress-induced paraptosis via the activation of the MAPK pathway in triple-negative breast cancer cells. Cancer Gene Ther. 2024;31(2):217-227. doi: 10.1038/s41417-023-00696-x
- Yoon MJ, Kim EH, Lim JH, Kwon TK, Choi KS. Superoxide anion and proteasomal dysfunction contribute to curcumin-induced paraptosis of malignant breast cancer cells. Free Radic Biol Med. 2010;48(5):713-726. doi: 10.1016/j.freeradbiomed.2009.12.016
- Ma L, Xuan X, Fan M, et al. A novel 8-hydroxyquinoline derivative induces breast cancer cell death through paraptosis and apoptosis. Apoptosis. 2022;27(7-8):577-589. doi: 10.1007/s10495-022-01737-w
- Yoon MJ, Lee AR, Jeong SA, et al. Release of Ca2+ from the endoplasmic reticulum and its subsequent influx into mitochondria trigger celastrol-induced paraptosis in cancer cells. Oncotarget. 2014;5(16):6816-6831. doi: 10.18632/oncotarget.2256
- Dilshara MG, Neelaka Molagoda IM, Prasad Tharanga Jayasooriya RG, Choi YH, Park C, Kim GY. Indirubin-3’- monoxime induces paraptosis in MDA-MB-231 breast cancer cells by transmitting Ca2+ from endoplasmic reticulum to mitochondria. Arch Biochem Biophys. 2021;698:108723. doi: 10.1016/j.abb.2020.108723
- Bury M, Girault A, Mégalizzi V, et al. Ophiobolin A induces paraptosis-like cell death in human glioblastoma cells by decreasing BKCa channel activity. Cell Death Dis. 2013;4(3):e561. doi: 10.1038/cddis.2013.85
- Yumnam S, Hong GE, Raha S, et al. Mitochondrial dysfunction and Ca (2+) overload contributes to hesperidin induced paraptosis in hepatoblastoma cells, HepG2. J Cell Physiol. 2016;231(6):1261-1268. doi: 10.1002/jcp.25222
- Zhang JS, Li DM, He N, et al. A paraptosis-like cell death induced by δ-tocotrienol in human colon carcinoma SW620 cells is associated with the suppression of the Wnt signaling pathway. Toxicology. 2011;285(1-2):8-17. doi: 10.1016/j.tox.2011.03.011
- Suresh RN, Jung YY, Harsha KB, Mohan CD, Ahn KS, Rangappa KS. Isoxazolyl-urea derivative evokes apoptosis and paraptosis by abrogating the Wnt/β-catenin axis in colon cancer cells. Chem Biol Interact. 2024;399:111143. doi: 10.1016/j.cbi.2024.111143
- Chang LC, Chiang SK, Chen SE, Hung MC. Exploring paraptosis as a therapeutic approach in cancer treatment. J Biomed Sci. 2024;31(1):101. doi: 10.1186/s12929-024-01089-4
- Hanson S, Dharan A, Jinsha PV, et al. Paraptosis: A unique cell death mode for targeting cancer. Front Pharmacol 2023;14:1274076. doi: 10.3389/fphar.2023.1159409
- Takahashi M, Kitaura H, Kakita A, et al. USP10 is a driver of ubiquitinated protein aggregation and aggresome formation to inhibit apoptosis. iScience. 2018;9:433-450. doi: 10.1016/j.isci.2018.11.006
- Schwarz DS, Blower MD. The endoplasmic reticulum: Structure, function and response to cellular signaling. Cell Mol Life Sci. 2016;73(1):79-94. doi: 10.1007/s00018-015-2052-6
- Chen X, Chen X, Zhang X, et al. Curcuminoid B63 induces ROS-mediated paraptosis-like cell death by targeting TrxR1 in gastric cells. Redox Biol. 2019;21:101061. doi: 10.1016/j.redox.2018.11.019
- Raimondi M, Fontana F, Marzagalli M, et al. Ca2+overload- and ROS-associated mitochondrial dysfunction contributes to δ-tocotrienol-mediated paraptosis in melanoma cells. Apoptosis. 2021;26(5-6):277-292. doi: 10.1007/s10495-021-01668-y
- Xue J, Li R, Zhao X, et al. Morusin induces paraptosis-like cell death through mitochondrial calcium overload and dysfunction in epithelial ovarian cancer. Chem Biol Interact. 2018;283:59-74. doi: 10.1016/j.cbi.2018.02.003
- Seo MJ, Kim IY, Lee DM, et al. Dual inhibition of thioredoxin reductase and proteasome is required for auranofin-induced paraptosis in breast cancer cells. Cell Death Dis. 2023;14(1):42. doi: 10.1038/s41419-023-05586-6
- Liu X, Gu Y, Bian Y, et al. Honokiol induces paraptosis-like cell death of acute promyelocytic leukemia via mTOR & MAPK signaling pathways activation. Apoptosis. 2021;26(3-4):195-208. doi: 10.1007/s10495-020-01655-9
- Lee H, Cho SW, Cha HS, Tae K, Choi CY. Transient activation of YAP/TAZ confers resistance to morusin-induced apoptosis. BMC Mol Cell Biol. 2025;26(1):4. doi: 10.1186/s12860-025-00531-1
- Yokoi K, Yamaguchi K, Umezawa M, Tsuchiya K, Aoki S. Induction of paraptosis by cyclometalated iridium complex-peptide hybrids and CGP37157 via a mitochondrial Ca2+ overload triggered by membrane fusion between mitochondria and the endoplasmic reticulum. Biochemistry. 2022;61(8):639-655. doi: 10.1021/acs.biochem.2c00061
- Videla LA, Marimán A, Ramos B, José Silva M, Del Campo A. Standpoints in mitochondrial dysfunction: Underlying mechanisms in search of therapeutic strategies. Mitochondrion. 2022;63:9-22. doi: 10.1016/j.mito.2021.12.006
- Kamerkar SC, Kraus F, Sharpe AJ, Pucadyil TJ, Ryan MT. Dynamin-related protein 1 has membrane constricting and severing abilities sufficient for mitochondrial and peroxisomal fission. Nat Commun. 2018;9(1):5239. doi: 10.1038/s41467-018-07543-w
- Zhao L, Zhong B, Zhu Y, et al. Nitrovin (difurazone), an antibacterial growth promoter, induces ROS-mediated paraptosis-like cell death by targeting thioredoxin reductase 1 (TrxR1). Biochem Pharmacol. 2023;210:115487. doi: 10.1016/j.bcp.2023.115487
- Wang H, Luo W, Chen H, Cai Z, Xu G. Mitochondrial dynamics and mitochondrial autophagy: Molecular structure, orchestrating mechanism and related disorders. Mitochondrion. 2024;75:101847. doi: 10.1016/j.mito.2024.101847
- Chen M, Chen TS, Lu YY, Liu CY, Qu JL. Dihydroarteminsin-induced apoptosis is not dependent on the translocation of Bim to the endoplasmic reticulum in human lung adenocarcinoma cells. Pathol Oncol Res. 2012;18(4):809-816. doi: 10.1007/s12253-012-9508-x
- Khatun J, Gelles JD, Chipuk JE. Dynamic death decisions: How mitochondrial dynamics shape cellular commitment to apoptosis and ferroptosis. Dev Cell. 2024;59(19):2549-2565. doi: 10.1016/j.devcel.2024.09.004
- Nagar P, Sharma P, Dhapola R, Kumari S, Medhi B, HariKrishnaReddy D. Endoplasmic reticulum stress in Alzheimer’s disease: Molecular mechanisms and therapeutic prospects. Life Sci. 2023;330:121983. doi: 10.1016/j.lfs.2023.121983
- Celik C, Lee SYT, Yap WS, Thibault G. Endoplasmic reticulum stress and lipids in health and diseases. Prog Lipid Res. 2023;89:101198. doi: 10.1016/j.plipres.2022.101198
- Bartok A, Weaver D, Golenár T, et al. IP3 receptor isoforms differently regulate ER-mitochondrial contacts and local calcium transfer. Nat Commun. 2019;10(1):3726. doi: 10.1038/s41467-019-11646-3
- Chen X, Shi C, He M, Xiong S, Xia X. Endoplasmic reticulum stress: molecular mechanism and therapeutic targets. Signal Transduct Target Ther. 2023;8(1):352. doi: 10.1038/s41392-023-01570-w
- Liu H, Xiong C, Liu J, et al. Aspirin exerts anti-tumor effect through inhibiting Blimp1 and activating ATF4/CHOP pathway in multiple myeloma. Biomed Pharmacother. 2020;125:110005. doi: 10.1016/j.biopha.2020.110005
- Maharjan S, Oku M, Tsuda M, Hoseki J, Sakai Y. Mitochondrial impairment triggers cytosolic oxidative stress and cell death following proteasome inhibition. Sci Rep. 2014;4:5896. doi: 10.1038/srep05896
- Mohan AG, Calenic B, Ghiurau NA, Duncea-Borca RM, Constantinescu AE, Constan tinescu I. The golgi apparatus: A voyage through time, structure, function and implication in neurodegenerative isorders. Cells. 2023;2(15):1972. doi: 10.3390/cells12151972
- Kim E, Lee DM, Seo MJ, Lee HJ, Choi KS. Intracellular Ca2+ imbalance critically contributes to paraptosis. Front Cell Dev Biol. 2021;8:607844. doi: 10.3389/fcell.2020.607844
- Puthenveedu MA, Linstedt AD. Evidence that Golgi structure depends on a p115 activity that is independent of the vesicle tether components giantin and GM130. J Cell Biol. 2001;155(2):227-238. doi: 10.1083/jcb.200105005
- Seo MY, Rhee K. Caspase-mediated cleavage of the centrosomal proteins during apoptosis. Cell Death Dis. 2018;9(5):571. doi: 10.1038/s41419-018-0632-8
- Gustavo E, Carla SP, Gavilan MP, et al. Cytoskeleton and Golgi-apparatus interactions: A two-way road of function and structure. Cell Health Cytoskeleton. 2015;2015:37. doi: 10.2147/CHC.S57108.
- Cui X, Zheng H, Li H, et al. Paraptosome: A novel pathological feature in paraptotic cell death. BioRxiv. 2024. doi: 10.1101/2024.08.07.606501
- Gómez-Virgilio L, Silva-Lucero MD, Flores-Morelos DS, et al. Autophagy: A key regulator of homeostasis and disease: An overview of molecular mechanisms and modulators. Cells. 2022;11(15):2262. doi: 10.3390/cells11152262
- Martins WK, Santos NF, Rocha CS, et al. Parallel damage in mitochondria and lysosomes is an efficient way to photoinduce cell death. Autophagy. 2019;15(2):259-279. doi: 10.1080/15548627.2018.1515609
- Luke CJ, Markovina S, Good M, et al. Lysoptosis is an evolutionarily conserved cell death pathway moderated by intracellular serpins. Commun Biol. 2022;5(1):47. doi: 10.1038/s42003-021-02953-x
- Qi Z, Yang W, Xue B, et al. ROS-mediated lysosomal membrane permeabilization and autophagy inhibition regulate bleomycin-induced cellular senescence. Autophagy. 2024;20(9):2000-2016. doi: 10.1080/15548627.2024.2353548
- Milani M, Pihán P, Hetz C. Calcium signaling in lysosome-dependent cell death. Cell Calcium. 2023;113:102751. doi: 10.1016/j.ceca.2023.102751
- Zhu SY, Yao RQ, Li YX, et al. Lysosomal quality control of cell fate: A novel therapeutic target for human diseases. Cell Death Dis. 2020;11(9):817. doi: 10.1038/s41419-020-03032-5
- Lee DM, Kim IY, Seo MJ, Kwon MR, Choi KS. Nutlin-3 enhances the bortezomib sensitivity of p53-defective cancer cells by inducing paraptosis. Exp Mol Med. 2017;49(8):e365. doi: 10.1038/emm.2017.112
- Nakatogawa H. Mechanisms governing autophagosome biogenesis. Nat Rev Mol Cell Biol. 2020;21(8):439-458. doi: 10.1038/s41580-020-0241-0
- Zhao YG, Codogno P, Zhang H. Machinery, regulation and pathophysiological implications of autophagosome maturation. Nat Rev Mol Cell Biol. 2021;22(11):733-750. doi: 10.1038/s41580-021-00392-4
- Liu S, Yao S, Yang H, Liu S, Wang Y. Autophagy: Regulator of cell death. Cell Death Dis. 2023;14(10):648. doi: 10.1038/s41419-023-06154-8
- Mohan J, Moparthi SB, Girard-Blanc C, et al. ATG16L1 induces the formation of phagophore-like membrane cups. Nat Struct Mol Biol. 2024;31(9):1448-1459. doi: 10.1038/s41594-024-01300-y
- Yu L, Chen Y, Tooze SA. Autophagy pathway: Cellular and molecular mechanisms. Autophagy. 2018;14(2):207-215. doi: 10.1080/15548627.2017.1378838
- Høyer-Hansen M, Jäättelä M. Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium. Cell Death Differ. 2007;14(9):1576-1582. doi: 10.1038/sj.cdd.4402200
- Zhang C, Huang C, Xia H, Xu H, Tang Q, Bi F. Autophagic sequestration of SQSTM1 disrupts the aggresome formation of ubiquitinated proteins during proteasome inhibition. Cell Death Dis. 2022;13(7):615. doi: 10.1038/s41419-022-05061-8
- Sun-Wang JL, Ivanova S, Zorzano A. The dialogue between the ubiquitin-proteasome system and autophagy: Implications in ageing. Ageing Res Rev. 2020;64:101203. doi: 10.1016/j.arr.2020.101203
- De Leo MG, Staiano L, Vicinanza M, et al. Autophagosome-lysosome fusion triggers a lysosomal response mediated by TLR9 and controlled by OCRL. Nat Cell Biol. 2016;18(8):839-850. doi: 10.1038/ncb3386
- Peker N, Gozuacik D. Autophagy as a cellular stress response mechanism in the nervous system. J Mol Biol. 2020;432(8):2560-2588. doi: 10.1016/j.jmb.2020.01.017
- Werner H. The IGF1 signaling pathway: From basic concepts to therapeutic opportunities. Int J Mol Sci. 2023;24(19):14882. doi: 10.3390/ijms241914882
- Lee DM, Seo MJ, Lee HJ, Jin HJ, Choi KS. ISRIB plus bortezomib triggers paraptosis in breast cancer cells via enhanced translation and subsequent proteotoxic stress. Biochem Biophys Res Commun. 2022;596:56-62. doi: 10.1016/j.bbrc.2022.01.082
- Lee AR, Seo MJ, Kim J, et al. Lercanidipine synergistically enhances bortezomib cytotoxicity in cancer cells via enhanced endoplasmic reticulum stress and mitochondrial Ca2+ Overload. Int J Mol Sci. 2019;20(24):6112. doi: 10.3390/ijms20246112
- AnJ, Zhang Z, Zhang J, Zhang L, Liang G. Research progress in tumor therapy of carrier-free nanodrug. Biomed Pharmacother. 2024;178:117258. doi: 10.1016/j.biopha.2024.117258
- Li G, Wang C, Jin B, et al. Advances in smart nanotechnology-supported photodynamic therapy for cancer. Cell Death Discov. 2024;10(1):466. doi: 10.1038/s41420-024-02236-4
- Seo MJ, Lee DM, Kim IY, et al. Gambogic acid triggers vacuolization-associated cell death in cancer cells via disruption of thiol proteostasis. Cell Death Dis. 2019;10(3):187. doi: 10.1038/s41419-019-1360-4
- Arimoto KI, Miyauchi S, Liu M, Zhang DE. Emerging role of immunogenic cell death in cancer immunotherapy. Front Immunol. 2024;15:1390263. doi: 10.3389/fimmu.2024.1390263
- Jellinger KA, Stadelmann C. Mechanisms of cell death in neurodegenerative disorders. J Neural Transm Suppl. 2000;59:95-114. doi: 10.1007/978-3-7091-6781-6_13
- Chen F, Tang H, Cai X, et al. Targeting paraptosis in cancer: Opportunities and challenges. Cancer Gene Ther. 2024;31(3):349-363. doi: 10.1038/s41417-023-00722-y
- Fontana F, Moretti RM, Raimondi M, et al. δ-Tocotrienol induces apoptosis, involving endoplasmic reticulum stress and autophagy, and paraptosis in prostate cancer cells. Cell Prolif. 2019;52(3):e12576. doi: 10.1111/cpr.12576
- Li B, Zhao J, Wang CZ, et al. Ginsenoside Rh2 induces apoptosis and paraptosis-like cell death in colorectal cancer cells through activation of p53. Cancer Lett. 2011;301(2):185-192. doi: 10.1016/j.canlet.2010.11.015
- Sang J, Li W, Diao HJ, et al. Jolkinolide B targets thioredoxin and glutathione systems to induce ROS-mediated paraptosis and apoptosis in bladder cancer cells. Cancer Lett. 2021;509:13-25. doi: 10.1016/j.canlet.2021.03.030
- Li D, Yuan X, Ma J, et al. Morusin, a novel inhibitor of ACLY, induces mitochondrial apoptosis in hepatocellular carcinoma cells through ROS-mediated mitophagy. Biomed Pharmacother. 2024;180:117510. doi: 10.1016/j.biopha.2024.117510
- Zheng R, Zhao L, Chen X, et al. Metal-coordinated nanomedicine for combined tumor therapy by inducing paraptosis and apoptosis. J Control Release. 2021;336:159-168. doi: 10.1016/j.jconrel.2021.06.021
- Liu K, Zhao C, Adajar RC, DeZwaan-McCabe D, Rutkowski DT. A beneficial adaptive role for CHOP in driving cell fate selection during ER stress. EMBO Rep. 2024;25(1):228-253. doi: 10.1038/s44319-023-00026-0
- An X, Yu W, Liu J, Tang D, Yang L, Chen X. Oxidative cell death in cancer: mechanisms and therapeutic opportunities. Cell Death Dis. 2024;15(8):556. doi: 10.1038/s41419-024-06939-5
- Kandel R, Jung J, Neal S. Proteotoxic stress and the ubiquitin proteasome system. Semin Cell Dev Biol. 2024;156:107-120. doi: 10.1016/j.semcdb.2023.08.002
- Galluzzi L, Guilbaud E, Schmidt D, Kroemer G, Marincola FM. Targeting immunogenic cell stress and death for cancer therapy. Nat Rev Drug Discov. 2024;23(6):445-460. doi: 10.1038/s41573-024-00920-9
- Spencer BG, Finnie JW. The role of endoplasmic reticulum stress in cell survival and death. J Comp Pathol. 2020;181:86-91. doi: 10.1016/j.jcpa.2020.10.006
- Pelicano H, Carney D, Huang P. ROS stress in cancer cells and therapeutic implications. Drug Resist Updat. 2004;7(2):97-110. doi: 10.1016/j.drup.2004.01.004
- Yang MH, Baek SH, Jung YY, Um JY, Ahn KS. Activation of autophagy, paraptosis, and ferroptosis by micheliolide through modulation of the MAPK signaling pathway in pancreatic and colon tumor cells. Pathol Res Pract. 2024;263:155654. doi: 10.1016/j.prp.2024.155654
- Wepsic HT, Hoa N. Paraptosis and tumor immunity. Int Immunopharmacol. 2023;114:109491. doi: 10.1016/j.intimp.2022.109491
- Fulda S. Cross talk between cell death regulation and metabolism. Methods Enzymol. 2014;542:81-90. doi: 10.1016/B978-0-12-416618-9.00004-2
- Wang H, Xie Y. Advances in ferroptosis research: A comprehensive review of mechanism exploration, drug development, and disease treatment. Pharmaceuticals. 2025;18(3):334. doi: 10.3390/ph18030334
- Zheng XB, Wang X, Gao SQ, et al. NINJ1-mediated plasma membrane rupture of pyroptotic endothelial cells exacerbates blood-brain barrier destruction caused by neutrophil extracellular traps in traumatic brain injury. Cell Death Discov. 2025;11(1):69. doi: 10.1038/s41420-025-02350-x
- Jia DP, Wang S, Zhang BC, Fang F. Paraptosis triggers mitochondrial pathway-mediated apoptosis in Alzheimer’s disease. Exp Ther Med. 2021;22(5):1280. doi: 10.3892/etm.2021.10715