AccScience Publishing / EJMO / Online First / DOI: 10.36922/EJMO025080037
ORIGINAL RESEARCH ARTICLE

Tetramethyl thyroxine promotes bladder cancer development by regulating the expression of integrin αV, VEGF, and TP53

Wenjing Zhang1† Rui Guo1† Xiaoyang Chen1 Ruolan Chen1 Jian Dong1 Yan Liu1 Danning Song1 Shangyang Pan1 Zhao Yang1* Jianfeng Wang2*
Show Less
1 College of Life Science and Technology, State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
2 Department of Urology, China-Japan Friendship Hospital, Beijing, China
Submitted: 21 February 2025 | Revised: 30 March 2025 | Accepted: 2 April 2025 | Published: 17 April 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Bladder cancer (BC) is the most prevalent malignancy of the genitourinary system, exhibiting the highest morbidity and mortality rates among cancers in this category. Tetramethyl thyroxine (T4) has been recognized to promote the proliferation of various cancer cells. However, the possible effect and underlying mechanisms of T4 on the onset and progression of BC remain to be fully elucidated. Our research demonstrated that T4 significantly promoted the proliferation and migration of EJ-1 and T24 cells. The proliferation of T24 and EJ-1 cells increased by 5 – 28.3% and 4.7 – 18.7%, respectively. Similarly, the scratch healing rates of T24 and EJ-1 cells increased by 9.27 – 41.01% and 11.47 – 35.8%, respectively. In addition, apoptosis of T24 and EJ-1 cells was also significantly reduced after T4 treatment. Furthermore, in vivo xenograft tumor model further corroborated that T4 facilitated the growth of EJ-1 cell-derived tumors. Our findings indicated that T4 promoted tumor angiogenesis and cell proliferation by upregulating its receptor integrin αV and vascular endothelial growth factor, while simultaneously suppressed the expression of the tumor suppressor protein TP53. Collectively, our research has determined the tumor-promoting effect and molecular mechanism of T4 on BC through cell and animal models. In the future, by further expanding the sample size and pre-clinical design, it is expected to provide new theoretical foundations and potential targets for the prevention, diagnosis, and treatment of BC.

Keywords
Bladder cancer
Tetramethyl thyroxine
Proliferation
Migration
Integrin αV
Funding
Funding was received for the research, authorship, and/ or publication of this article. This work was supported by the Major Research Plan of the National Natural Science Foundation of China (92359202), National Key Research and Development Program (2024YFC3405500), “Open Competition to Select the Best Candidates” Key Technology Program for Nucleic Acid Drugs of NCTIB (NCTIB2022HS01016), and the Joint Project of Biomedical Translational Engineering Research Center of Beijing University of Chemical Technology-China-Japan Friendship Hospital (XK2023-21).
Conflict of interest
The authors declare that no commercial or financial conflicts of interest were identified in this research.
References
  1. Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229-263.doi: 10.3322/caac.21834

 

  1. Starek-Świechowicz B, Budziszewska B, Starek A. Endogenous estrogens-breast cancer and chemoprevention. Pharmacol Rep. 2021;73(6):1497-1512. doi: 10.1007/s43440-021-00317-0

 

  1. Dai C, Dehm SM, Sharifi N. Targeting the androgen signaling axis in prostate cancer. J Clin Oncol. 2023;41(26):4267-4278. doi: 10.1200/jco.23.00433

 

  1. Croft PR, Lathrop SL, Feddersen RM, Joste NE. Estrogen receptor expression in papillary urothelial carcinoma of the bladder and ovarian transitional cell carcinoma. Arch Pathol Lab Med. 2005;129(2):194-199. doi: 10.5858/2005-129-194-ereipu

 

  1. Ding M, Zhan H, Liao X, et al. Enhancer RNA - P2RY2e induced by estrogen promotes malignant behaviors of bladder cancer. Int J Biol Sci. 2018;14(10):1268-1276. doi: 10.7150/ijbs.27151

 

  1. Wolpert BJ, Amr S, Ezzat S, et al. Estrogen exposure and bladder cancer risk in Egyptian women. Maturitas. 2010;67(4):353-357. doi: 10.1016/j.maturitas.2010.07.014

 

  1. Khan SR, Chaker L, Ruiter R, et al. Thyroid function and cancer risk: The Rotterdam study. J Clin Endocrinol Metab. 2016;101(12):5030-5036. doi: 10.1210/jc.2016-2104

 

  1. Wang Z, Rixiati Y, Jia C, et al. Causal effect of thyroid cancer on secondary primary malignancies: Findings from the UK Biobank and FinnGen cohorts. Front Immunol. 2024;15:1434737. doi: 10.3389/fimmu.2024.1434737

 

  1. Pierantoni F, Dionese M, Basso U, et al. The prognostic value of thyroid hormone levels in immunotherapy-treated patients with metastatic urothelial carcinoma. Clin Genitourin Cancer. 2023;21(5):e378-e385. doi: 10.1016/j.clgc.2023.04.006

 

  1. Wang T, Xia L, Ma S, et al. Hepatocellular carcinoma: Thyroid hormone promotes tumorigenicity through inducing cancer stem-like cell self-renewal. Sci Rep. 2016;6:25183. doi: 10.1038/srep25183

 

  1. Johnson JL, Felicetta JV. Hyperthyroidism: A comprehensive review. J Am Acad Nurse Pract. 1992;4(1):8-14. doi: 10.1111/j.1745-7599.1992.tb01105.x

 

  1. Zhang B, Jia P, Wang J, et al. Integrated analysis of racial disparities in genomic architecture identifies a trans-ancestry prognostic subtype in bladder cancer. Mol Oncol. 2023;17(4):564-581. doi: 10.1002/1878-0261.13360

 

  1. Lotan Y, Raman JD, Konety B, et al. Urinary analysis of FGFR3 and TERT gene mutations enhances performance of Cxbladder tests and improves patient risk stratification. J Urol. 2023;209(4):762-772. doi: 10.1097/ju.0000000000003126

 

  1. Ma Z, Li X, Mao Y, et al. Interferon-dependent SLC14A1+ cancer-associated fibroblasts promote cancer stemness via WNT5A in bladder cancer. Cancer Cell. 2022;40(12):1550- 1565.e7. doi: 10.1016/j.ccell.2022.11.005

 

  1. Yu D, Geng H, Liu Z, et al. Cigarette smoke induced urocystic epithelial mesenchymal transition via MAPK pathways. Oncotarget. 2017;8(5):8791-8800. doi: 10.18632/oncotarget.14456

 

  1. Liu W, Shen D, Ju L, et al. MYBL2 promotes proliferation and metastasis of bladder cancer through transactivation of CDCA3. Oncogene. 2022;41(41):4606-4617. doi: 10.1038/s41388-022-02456-x

 

  1. Yang E, Jing S, Wang F, et al. Mesenchymal stem cells in tumor microenvironment: Drivers of bladder cancer progression through mitochondrial dynamics and energy production. Cell Death Dis. 2024;15(9):688. doi: 10.1038/s41419-024-07068-9

 

  1. Liu YC, Yeh CT, Lin KH. Molecular functions of thyroid hormone signaling in regulation of cancer progression and anti-apoptosis. Int J Mol Sci. 2019;20(20):4986. doi: 10.3390/ijms20204986

 

  1. Mullur R, Liu YY, Brent GA. Thyroid hormone regulation of metabolism. Physiol Rev. 2014;94(2):355-382. doi: 10.1152/physrev.00030.2013

 

  1. Gouveia CHA, Miranda-Rodrigues M, Martins GM, Neofiti- Papi B. Thyroid hormone and skeletal development. Vitam Horm. 2018;106:383-472. doi: 10.1016/bs.vh.2017.06.002

 

  1. Baksi S, Pradhan A. Thyroid hormone: Sex-dependent role in nervous system regulation and disease. Biol Sex Differ. 2021;12(1):25. doi: 10.1186/s13293-021-00367-2

 

  1. Jing L, Zhang Q. Intrathyroidal feedforward and feedback network regulating thyroid hormone synthesis and secretion. Front Endocrinol (Lausanne). 2022;13:992883. doi: 10.3389/fendo.2022.992883

 

  1. Gauthier BR, Sola-García A, Cáliz-Molina M, et al. Thyroid hormones in diabetes, cancer, and aging. Aging Cell. 2020;19(11):e13260.doi: 10.1111/acel.13260

 

  1. Tang HY, Lin HY, Zhang S, Davis FB, Davis PJ. Thyroid hormone causes mitogen-activated protein kinase-dependent phosphorylation of the nuclear estrogen receptor. Endocrinology. 2004;145(7):3265-3272. doi: 10.1210/en.2004-0308

 

  1. Davis PJ, Hercbergs A, Luidens MK, Lin HY. Recurrence of differentiated thyroid carcinoma during full TSH suppression: Is the tumor now thyroid hormone dependent? Horm Cancer. 2014;6(1):7-12. doi: 10.1007/s12672-014-0204-z

 

  1. Meng R, Tang HY, Westfall J, et al. Crosstalk between integrin αvβ3 and estrogen receptor-α is involved in thyroid hormone-induced proliferation in human lung carcinoma cells. PLoS One. 2011;6(11):e27547. doi: 10.1371/journal.pone.0027547

 

  1. Chen JR, Zhao JT, Xie ZZ. Integrin-mediated cancer progression as a specific target in clinical therapy. Biomed Pharmacother. 2022;155:113745. doi: 10.1016/j.biopha.2022.113745

 

  1. Malenica I, Adam J, Corgnac S, et al. Integrin-α(V)- mediated activation of TGF-β regulates anti-tumour CD8 T cell immunity and response to PD-1 blockade. Nat Commun. 2021;12(1):5209. doi: 10.1038/s41467-021-25322-y

 

  1. Cheuk IW, Siu MT, Ho JC, et al. ITGAV targeting as a therapeutic approach for treatment of metastatic breast cancer. Am J Cancer Res. 2020;10(1):211-223.

 

  1. Wang H, Chen H, Jiang Z, et al. Integrin subunit alpha V promotes growth, migration, and invasion of gastric cancer cells. Pathol Res Pract. 2019;215(9):152531. doi: 10.1016/j.prp.2019.152531

 

  1. Sato N, Sakai N, Furukawa K, et al. Yin Yang 1 regulates ITGAV and ITGB1, contributing to improved prognosis of colorectal cancer. Oncol Rep. 2022;47(5):87. doi: 10.3892/or.2022.8298

 

  1. Loeser H, Scholz M, Fuchs H, et al. Integrin alpha V (ITGAV) expression in esophageal adenocarcinoma is associated with shortened overall-survival. Sci Rep. 2020;10(1):18411. doi: 10.1038/s41598-020-75085-7

 

  1. Van der Horst G, Bos L, van der Mark M, et al. Targeting of alpha-v integrins reduces malignancy of bladder carcinoma. PLoS One. 2014;9(9):e108464. doi: 10.1371/journal.pone.0108464

 

  1. Sachs MD, Rauen KA, Ramamurthy M, et al. Integrin alpha(v) and coxsackie adenovirus receptor expression in clinical bladder cancer. Urology. 2002;60(3):531-536. doi: 10.1016/s0090-4295(02)01748-x

 

  1. Weis SM, Cheresh DA. αV integrins in angiogenesis and cancer. Cold Spring Harb Perspect Med. 2011;1(1):a006478. doi: 10.1101/cshperspect.a006478

 

  1. Bao W, Strömblad S. Integrin alphav-mediated inactivation of p53 controls a MEK1-dependent melanoma cell survival pathway in three-dimensional collagen. J Cell Biol. 2004;167(4):745-756. doi: 10.1083/jcb.200404018

 

  1. Bu MT, Chandrasekhar P, Ding L, Hugo W. The roles of TGF-β and VEGF pathways in the suppression of antitumor immunity in melanoma and other solid tumors. Pharmacol Ther. 2022;240:108211. doi: 10.1016/j.pharmthera.2022.108211

 

  1. Morgos DT, Stefani C, Miricescu D, et al. Targeting PI3K/ AKT/mTOR and MAPK signaling pathways in gastric cancer. Int J Mol Sci. 2024;25(3):1848. doi: 10.3390/ijms25031848

 

  1. Xiong C, Ling H, Hao Q, Zhou X. Cuproptosis: p53-regulated metabolic cell death? Cell Death Differ. 2023;30(4):876-884. doi: 10.1038/s41418-023-01125-0

 

  1. Cayres LCF, de Salis LVV, Rodrigues GSP, et al. Detection of alterations in the gut microbiota and intestinal permeability in patients with Hashimoto thyroiditis. Front Immunol. 2021;12:579140. doi: 10.3389/fimmu.2021.579140

 

  1. Sirakov M, Kress E, Nadjar J, Plateroti M. Thyroid hormones and their nuclear receptors: New players in intestinal epithelium stem cell biology? Cell Mol Life Sci. 2014;71(15):2897-2907. doi: 10.1007/s00018-014-1586-3

 

  1. Rubingh J, van der Spek A, Fliers E, Boelen A. The role of thyroid hormone in the innate and adaptive immune response during infection. Compr Physiol. 2020;10(4):1277-1287. doi: 10.1002/cphy.c200003

 

  1. Korac-Prlic J, Degoricija M, Vilović K, Vujević S, Terzić J. BBN-driven urinary bladder cancer mouse model. Methods Cell Biol. 2021;163:77-92. doi: 10.1016/bs.mcb.2020.10.020

 

  1. Matuszczak M, Salagierski M. Diagnostic and prognostic potential of biomarkers CYFRA 21.1, ERCC1, p53, FGFR3 and TATI in bladder cancers. Int J Mol Sci. 2020;21(9):3360. doi: 10.3390/ijms21093360

 

  1. Yang CC, Yan YC, Pan GQ, et al. Thyroid hormones inhibit tumor progression and enhance the antitumor activity of lenvatinib in hepatocellular carcinoma via reprogramming glucose metabolism. Cell Death Discov. 2025;11(1):92. doi: 10.1038/s41420-025-02378-z

 

  1. Zhu X, Cheng SY. Thyroid hormone receptors as tumor suppressors in cancer. Endocrinology. 2024;165(10):bqae115. doi: 10.1210/endocr/bqae115

 

  1. Davis FB, Tang HY, Shih A, et al. Acting via a cell surface receptor, thyroid hormone is a growth factor for glioma cells. Cancer Res. 2006;66(14):7270-7275. doi: 10.1158/0008-5472.Can-05-4365

 

  1. Yang H, Holowko N, Grassmann F, Eriksson M, Hall P, Czene K. Hyperthyroidism is associated with breast cancer risk and mammographic and genetic risk predictors. BMC Med. 2020;18(1):225. doi: 10.1186/s12916-020-01690-y

 

  1. Medas F, Erdas E, Canu GL, et al. Does hyperthyroidism worsen prognosis of thyroid carcinoma? A retrospective analysis on 2820 consecutive thyroidectomies. J Otolaryngol Head Neck Surg. 2018;47(1):6. doi: 10.1186/s40463-018-0254-2
Share
Back to top
Eurasian Journal of Medicine and Oncology, Electronic ISSN: 2587-196X Print ISSN: 2587-2400, Published by AccScience Publishing