AccScience Publishing / EJMO / Online First / DOI: 10.36922/ejmo.8383
REVIEW ARTICLE

CXC chemokines as potential non-invasive biomarkers and therapeutic targets for non-alcoholic fatty liver disease: A review

Zhihui Li1 Zhiyun Chen1*
Show Less
1 Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
Submitted: 3 January 2025 | Revised: 26 January 2025 | Accepted: 17 February 2025 | Published: 11 April 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Lately, non-alcoholic fatty liver disease (NAFLD) has risen as the leading chronic liver disease worldwide, posing a significant risk for the development of cirrhosis and hepatocellular carcinoma. The rising prevalence of NAFLD among adolescents mirrors the increasing rates of obesity in this demographic group. Despite ongoing research, the precise etiology of NAFLD remains unclear, with the “multiple parallel hits” hypothesis garnering the most support. Among the various factors implicated in NAFLD’s progression, the CXC chemokine family has been identified as a potential contributor to its development. The purpose of this review is to explore the involvement of CXC chemokines in the development of NAFLD, identify their potential targets within the disease’s development, and explore possible clinical therapeutic avenues. In addition, we assess the feasibility of utilizing CXC chemokines as biomarkers for the diagnosis of NAFLD.

Keywords
Non-alcoholic steatohepatitis
CXC chemokines
Non-invasive biomarkers
Inflammatory factor
Pathogenic mechanism
Medication
Funding
This work was supported by Zhejiang Scientific Research Foundation of Traditional Chinese Medicine (NO.2022ZB106).
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Younossi ZM, Golabi P, Paik JM, Henry A, Van Dongen C, Henry L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): A systematic review. Hepatology. 2023;77(4):1335-1347. doi: 10.1097/HEP.0000000000000004

 

  1. Riazi K, Azhari H, Charette JH, et al. The prevalence and incidence of NAFLD worldwide: A systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2022;7(9):851-861. doi: 10.1016/S2468-1253(22)00165-0

 

  1. Younossi ZM, Golabi P, De Avila L, et al. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis. J Hepatol. 2019;71(4):793-801. doi: 10.1016/j.jhep.2019.06.021

 

  1. Huang DQ, El-Serag HB, Loomba R. Global epidemiology of NAFLD-related HCC: Trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2021;18(4):223-238. doi: 10.1038/s41575-020-00381-6

 

  1. Paik JM, Kabbara K, Eberly KE, Younossi Y, Henry L, Younossi ZM. Global burden of NAFLD and chronic liver disease among adolescents and young adults. Hepatology. 2022;75(5):1204-1217. doi: 10.1002/hep.32228

 

  1. Ajmera V, Loomba R. Imaging biomarkers of NAFLD, NASH, and fibrosis. Mol Metab. 2021;50:101167. doi: 10.1016/j.molmet.2021.101167

 

  1. Guo X, Yin X, Liu Z, Wang J. Non-alcoholic fatty liver disease (NAFLD) Pathogenesis and natural products for prevention and treatment. Int J Mol Sci. 2022;23(24):15489. doi: 10.3390/ijms232415489

 

  1. Takaki A, Kawai D, Yamamoto K. Multiple hits, including oxidative stress, as pathogenesis and treatment target in non-alcoholic steatohepatitis (NASH). Int J Mol Sci. 2013;14(10):20704-20728. doi: 10.3390/ijms141020704

 

  1. Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 2018;24(7):908-922. doi: 10.1038/s41591-018-0104-9

 

  1. Tacke F, Puengel T, Loomba R, Friedman SL. An integrated view of anti-inflammatory and antifibrotic targets for the treatment of NASH. J Hepatol. 2023;79(2):552-566. doi: 10.1016/j.jhep.2023.03.038

 

  1. Farrell GC, Larter CZ. Nonalcoholic fatty liver disease: From steatosis to cirrhosis. Hepatology. 2006;43(2 Suppl 1):S99-S112. doi: 10.1002/hep.20973

 

  1. Powell EE, Wong VW, Rinella M. Non-alcoholic fatty liver disease. Lancet. 2021;397(10290):2212-2224. doi: 10.1016/S0140-6736(20)32511-3

 

  1. Demirtas CO, Yilmaz Y. Metabolic-associated fatty liver disease: Time to integrate ground-breaking new terminology to our clinical practice? Hepatol Forum. 2020;1(3):79-81. doi: 10.14744/hf.2020.2020.0024

 

  1. Eslam M, Newsome PN, Sarin SK, et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J Hepatol. 2020;73(1):202-209. doi: 10.1016/j.jhep.2020.03.039

 

  1. Kawaguchi T, Tsutsumi T, Nakano D, Eslam M, George J, Torimura T. MAFLD enhances clinical practice for liver disease in the Asia-pacific region. Clin Mol Hepatol. 2022;28(2):150-163. doi: 10.3350/cmh.2021.0310

 

  1. Clayton M, Fabrellas N, Luo J, et al. From NAFLD to MAFLD: Nurse and allied health perspective. Liver Int. 2021;41(4):683-691. doi: 10.1111/liv.14788

 

  1. Ayada I, Van Kleef LA, Alferink LJM, Li P, De Knegt RJ, Pan Q. Systematically comparing epidemiological and clinical features of MAFLD and NAFLD by meta-analysis: Focusing on the non-overlap groups. Liver Int. 2022;42(2):277-287. doi: 10.1111/liv.15139

 

  1. Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American association for the study of liver diseases. Hepatology. 2018;67(1):328-357. doi: 10.1002/hep.29367

 

  1. Nassir F. NAFLD: Mechanisms, treatments, and biomarkers. Biomolecules. 2022;12(6):824. doi: 10.3390/biom12060824

 

  1. Cinkajzlová A, Mráz M, Haluzík M. Adipose tissue immune cells in obesity, type 2 diabetes mellitus and cardiovascular diseases. J Endocrinol. 2021;252(1):R1-R22. doi: 10.1530/JOE-21-0159

 

  1. Bachelerie F, Ben-Baruch A, Burkhardt AM, et al. International union of basic and clinical pharmacology. [Corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev. 2014;66(1):1-79. doi: 10.1124/pr.113.007724

 

  1. Hughes CE, Nibbs RJB. A guide to chemokines and their receptors. FEBS J. 2018;285(16):2944-2971. doi: 10.1111/febs.14466

 

  1. Griffith JW, Sokol CL, Luster AD. Chemokines and chemokine receptors: Positioning cells for host defense and immunity. Annu Rev Immunol. 2014;32:659-702. doi: 10.1146/annurev-immunol-032713-120145

 

  1. Strieter RM, Polverini PJ, Kunkel SL, et al. The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem. 1995;270(45):27348-27357. doi: 10.1074/jbc.270.45.27348

 

  1. Mellado M, Rodríguez-Frade JM, Mañes S, Martínez AC. Chemokine signaling and functional responses: the role of receptor dimerization and TK pathway activation. Annu Rev Immunol. 2001;19:397-421. doi: 10.1146/annurev.immunol.19.1.397

 

  1. Köhler A, De Filippo K, Hasenberg M, et al. G-CSF-mediated thrombopoietin release triggers neutrophil motility and mobilization from bone marrow via induction of Cxcr2 ligands. Blood. 2011;117(16):4349-4357. doi: 10.1182/blood-2010-09-308387

 

  1. Silva RL, Lopes AH, Guimarães RM, Cunha TM. CXCL1/ CXCR2 signaling in pathological pain: Role in peripheral and central sensitization. Neurobiol Dis. 2017;105:109-116. doi: 10.1016/j.nbd.2017.06.001

 

  1. Korbecki J, Szatkowska I, Kupnicka P, et al. The importance of CXCL1 in the physiological state and in noncancer diseases of the oral cavity and abdominal organs. Int J Mol Sci. 2022;23(13):7151. doi: 10.3390/ijms23137151

 

  1. Chang B, Xu MJ, Zhou Z, et al. Short- or long-term high-fat diet feeding plus acute ethanol binge synergistically induce acute liver injury in mice: An important role for CXCL1. Hepatology. 2015;62(4):1070-1085. doi: 10.1002/hep.27921

 

  1. Hwang S, Ren T, Gao B. Obesity and binge alcohol intake are deadly combination to induce steatohepatitis: A model of high-fat diet and binge ethanol intake. Clin Mol Hepatol. 2020;26(4):586-594. doi: 10.3350/cmh.2020.0100

 

  1. Tang S, Zhang J, Zhang L, et al. Knockdown of CXCL1 improves ACLF by reducing neutrophil recruitment to attenuate ROS production and hepatocyte apoptosis. Hepatol Commun. 2023;7(10):e0257. doi: 10.1097/HC9.0000000000000257

 

  1. Gao B, Ahmad MF, Nagy LE, Tsukamoto H. Inflammatory pathways in alcoholic steatohepatitis. J Hepatol. 2019;70(2):249-259. doi: 10.1016/j.jhep.2018.10.023

 

  1. Rodrigues RM, He Y, Hwang S, et al. E-selectin-dependent inflammation and lipolysis in adipose tissue exacerbate steatosis-to-NASH progression via S100A8/9. Cell Mol Gastroenterol Hepatol. 2022;13(1):151-171. doi: 10.1016/j.jcmgh.2021.08.002

 

  1. Hwang S, He Y, Xiang X, et al. Interleukin-22 ameliorates neutrophil-driven nonalcoholic steatohepatitis through multiple targets. Hepatology. 2020;72(2):412-429. doi: 10.1002/hep.31031

 

  1. Dahlquist KJV, Voth LC, Fee AJ, Stoeckman AK. An autocrine role for CXCL1 in progression of hepatocellular carcinoma. Anticancer Res. 2020;40(11):6075-6081. doi: 10.21873/anticanres.14628

 

  1. Dai W, Sun Y, Jiang Z, Du K, Xia N, Zhong G. Key genes associated with non-alcoholic fatty liver disease and acute myocardial infarction. Med Sci Monit. 2020;26:e922492.1-11. doi: 10.12659/MSM.922492

 

  1. Hwang S, Wang X, Rodrigues RM, et al. Protective and detrimental roles of p38α mitogen-activated protein kinase in different stages of nonalcoholic fatty liver disease. Hepatology. 2020;72(3):873-891. doi: 10.1002/hep.31390

 

  1. Gross B, Pawlak M, Lefebvre P, Staels B. PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD. Nat Rev Endocrinol. 2017;13(1):36-49. doi: 10.1038/nrendo.2016.135

 

  1. White GE, Iqbal AJ, Greaves DR. CC chemokine receptors and chronic inflammation--therapeutic opportunities and pharmacological challenges. Pharmacol Rev. 2013;65(1):47-89. doi: 10.1124/pr.111.005074

 

  1. Kobayashi Y. The role of chemokines in neutrophil biology. Front Biosci. 2008;13:2400-2407.doi: 10.2741/2853

 

  1. Haskill S, Peace A, Morris J, et al. Identification of three related human GRO genes encoding cytokine functions. Proc Natl Acad Sci U S A. 1990;87(19):7732-7736. doi: 10.1073/pnas.87.19.7732

 

  1. Burke SJ, Lu D, Sparer TE, et al. NF-ΚB and STAT1 control CXCL1 and CXCL2 gene transcription. Am J Physiol Endocrinol Metab. 2014;306(2):E131-E149. doi: 10.1152/ajpendo.00347.2013

 

  1. Kim DS, Han JH, Kwon HJ. NF-Kappab and c-jun-dependent regulation of macrophage inflammatory protein-2 gene expression in response to lipopolysaccharide in RAW 264.7 cells. Mol Immunol. 2003;40(9):633-643. doi: 10.1016/j.molimm.2003.07.001

 

  1. Pan X, Chiwanda Kaminga A, Liu A, Wen SW, Chen J, Luo J. Chemokines in non-alcoholic fatty liver disease: A systematic review and network meta-analysis. Front Immunol. 2020;11:1802. doi: 10.3389/fimmu.2020.01802

 

  1. Sanchez JI, Parra ER, Jiao J, et al. Cellular and molecular mechanisms of liver fibrosis in patients with NAFLD. Cancers (Basel). 2023;15(11):2871. doi: 10.3390/cancers15112871

 

  1. Han YH, Choi H, Kim HJ, Lee MO. Chemotactic cytokines secreted from kupffer cells contribute to the sex-dependent susceptibility to non-alcoholic fatty liver diseases in mice. Life Sci. 2022;306:120846. doi: 10.1016/j.lfs.2022.120846

 

  1. Barreyro FJ, Holod S, Finocchietto PV, et al. The pan-caspase inhibitor emricasan (IDN-6556) decreases liver injury and fibrosis in a murine model of non-alcoholic steatohepatitis. Liver Int. 2015;35(3):953-966. doi: 10.1111/liv.12570

 

  1. Morán-Salvador E, Titos E, Rius B, et al. Cell-specific PPARγ deficiency establishes anti-inflammatory and anti-fibrogenic properties for this nuclear receptor in non-parenchymal liver cells. J Hepatol. 2013;59(5):1045-1053. doi: 10.1016/j.jhep.2013.06.023

 

  1. Zhang X, Fan L, Wu J, et al. Macrophage p38α promotes nutritional steatohepatitis through M1 polarization. J Hepatol. 2019;71(1):163-174. doi: 10.1016/j.jhep.2019.03.014

 

  1. Waugh DJJ, Wilson C. The interleukin-8 pathway in cancer. Clin Cancer Res. 2008;14(21):6735-6741. doi: 10.1158/1078-0432.CCR-07-4843

 

  1. Hoffmann E, Dittrich-Breiholz O, Holtmann H, Kracht M. Multiple control of interleukin-8 gene expression. J Leukoc Biol. 2002;72(5):847-855.

 

  1. Brat DJ, Bellail AC, Van Meir EG. The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro Oncol. 2005;7(2):122-133. doi: 10.1215/S1152851704001061

 

  1. Stephens M, Von Der Weid PY. Lipopolysaccharides modulate intestinal epithelial permeability and inflammation in a species-specific manner. Gut Microbes. 2020;11(3):421-432. doi: 10.1080/19490976.2019.1629235

 

  1. Zhu Y, Yang S, Zhao N, et al. CXCL8 chemokine in ulcerative colitis. Biomed Pharmacother. 2021;138:111427. doi: 10.1016/j.biopha.2021.111427

 

  1. McHenry S, Glover M, Ahmed A, et al. NAFLD is associated with quiescent rather than active Crohn’s disease. Inflamm Bowel Dis. 2023;30(5):757-767. doi: 10.1093/ibd/izad129

 

  1. Li XP, Yang XY, Biskup E, et al. Co-expression of CXCL8 and HIF-1α is associated with metastasis and poor prognosis in hepatocellular carcinoma. Oncotarget. 2015;6(26):22880-22889. doi: 10.18632/oncotarget.4412

 

  1. Stienstra R, Saudale F, Duval C, et al. Kupffer cells promote hepatic steatosis via interleukin-1beta-dependent suppression of peroxisome proliferator-activated receptor alpha activity. Hepatology. 2010;51(2):511-522. doi: 10.1002/hep.23337

 

  1. Auguet T, Bertran L, Binetti J, et al. Relationship between IL-8 circulating levels and TLR2 hepatic expression in women with morbid obesity and nonalcoholic steatohepatitis. Int J Mol Sci. 2020;21(11):4189. doi: 10.3390/ijms21114189

 

  1. Stratakis N, Golden-Mason L, Margetaki K, et al. In utero exposure to mercury is associated with increased susceptibility to liver injury and inflammation in childhood. Hepatology. 2021;74(3):1546-1559. doi: 10.1002/hep.31809

 

  1. Tokunaga R, Zhang W, Naseem M, et al. CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation-A target for novel cancer therapy. Cancer Treat Rev. 2018;63:40-47. doi: 10.1016/j.ctrv.2017.11.007

 

  1. Rotondi M, Chiovato L, Romagnani S, Serio M, Romagnani P. Role of chemokines in endocrine autoimmune diseases. Endocr Rev. 2007;28(5):492-520. doi: 10.1210/er.2006-0044

 

  1. Zhang X, Shen J, Man K, et al. CXCL10 plays a key role as an inflammatory mediator and a non-invasive biomarker of non-alcoholic steatohepatitis. J Hepatol. 2014;61(6):1365-1375. doi: 10.1016/j.jhep.2014.07.006

 

  1. Ibrahim SH, Hirsova P, Tomita K, et al. Mixed lineage kinase 3 mediates release of C-X-C motif ligand 10-bearing chemotactic extracellular vesicles from lipotoxic hepatocytes. Hepatology. 2016;63(3):731-744. doi: 10.1002/hep.28252

 

  1. Yang Z, Han X, Wang K, Fang J, Wang Z, Liu G. Combined with multiplex and network analysis to reveal the key genes and mechanisms of nonalcoholic fatty liver disease. Int Immunopharmacol. 2023;123:110708. doi: 10.1016/j.intimp.2023

 

  1. Xu Z, Zhang X, Lau J, Yu J. C-X-C motif chemokine 10 in non-alcoholic steatohepatitis: Role as a pro-inflammatory factor and clinical implication. Expert Rev Mol Med. 2016;18:e16. doi: 10.1017/erm.2016.16

 

  1. Dali-Youcef N, Vix M, Costantino F, et al. Interleukin-32 contributes to human nonalcoholic fatty liver disease and insulin resistance. Hepatol Commun. 2019;3(9):1205-1220. doi: 10.1002/hep4.1396

 

  1. Chang CC, Wu CL, Su WW, et al. Interferon gamma-induced protein 10 is associated with insulin resistance and incident diabetes in patients with nonalcoholic fatty liver disease. Sci Rep. 2015;5:10096. doi: 10.1038/srep10096

 

  1. Tomita K, Freeman BL, Bronk SF, et al. CXCL10-mediates macrophage, but not other innate immune cells-associated inflammation in murine nonalcoholic steatohepatitis. Sci Rep. 2016;6:28786. doi: 10.1038/srep28786

 

  1. Maina V, Sutti S, Locatelli I, et al. Bias in macrophage activation pattern influences non-alcoholic steatohepatitis (NASH) in mice. Clin Sci (Lond). 2012;122(11):545-553. doi: 10.1042/CS20110366

 

  1. Deiuliis JA, Oghumu S, Duggineni D, et al. CXCR3 modulates obesity-induced visceral adipose inflammation and systemic insulin resistance. Obesity (Silver Spring). 2014;22(5):1264-1274. doi: 10.1002/oby.20642

 

  1. Zhou C, Shen Z, Shen B, et al. FABP4 in LSECs promotes CXCL10-mediated macrophage recruitment and M1 polarization during NAFLD progression. Biochim Biophys Acta Mol Basis Dis. 2023;1869(7):166810. doi: 10.1016/j.bbadis.2023.166810

 

  1. Zhang X, Wu WK, Xu W, et al. C-X-C motif chemokine 10 impairs autophagy and autolysosome formation in non-alcoholic steatohepatitis. Theranostics. 2017;7(11):2822-2836. doi: 10.7150/thno.19068

 

  1. Kawaguchi S, Sakuraba H, Haga T, et al. Melanoma differentiation-associated gene 5 positively modulates TNF- α-induced CXCL10 expression in cultured HuH-7 and HLE Cells. Inflammation. 2019;42(6):2095-2104. doi: 10.1007/s10753-019-01073-3

 

  1. Harrison SA, Bedossa P, Guy CD, et al. A phase 3, randomized, controlled trial of resmetirom in NASH with liver fibrosis. N Engl J Med. 2024;390(6):497-509. doi: 10.1056/NEJMoa2309000

 

  1. Armstrong MJ, Gaunt P, Aithal GP, et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet. 2016;387(10019):679-690. doi: 10.1016/S0140-6736(15)00803-X

 

  1. Newsome PN, Buchholtz K, Cusi K, et al. A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis. N Engl J Med. 2021;384(12):1113-1124. doi: 10.1056/NEJMoa2028395

 

  1. Loomba R, Sanyal AJ, Kowdley KV, et al. Randomized, controlled trial of the FGF21 analogue pegozafermin in NASH. N Engl J Med. 2023;389(11):998-1008. doi: 10.1056/NEJMoa2304286

 

  1. Shih PH, Shiue SJ, Chen CN, et al. Fucoidan and fucoxanthin attenuate hepatic steatosis and inflammation of NAFLD through modulation of leptin/adiponectin axis. Mar Drugs. 2021;19(3):148. doi: 10.3390/md19030148

 

  1. Gawrieh S, Noureddin M, Loo N, et al. Saroglitazar, a PPAR-α/γ agonist, for treatment of NAFLD: A randomized controlled double-blind phase 2 trial. Hepatology. 2021;74(4):1809-1824. doi: 10.1002/hep.31843

 

  1. Anstee QM, Neuschwander-Tetri BA, Wai-Sun Wong V, et al. Cenicriviroc lacked efficacy to treat liver fibrosis in nonalcoholic steatohepatitis: AURORA phase III randomized study. Clin Gastroenterol Hepatol. 2024;22(1):124-134.e1. doi: 10.1016/j.cgh.2023.04.003

 

  1. Gart E, Van Duyvenvoorde W, Caspers MPM, et al. Intervention with isoleucine or valine corrects hyperinsulinemia and reduces intrahepatic diacylglycerols, liver steatosis, and inflammation in Ldlr-/-.Leiden mice with manifest obesity-associated NASH. FASEB J. 2022;36(8):e22435. doi: 10.1096/fj.202200111R

 

  1. Yang YM, Fukui M, Wang Z, Miao F, Karriker MJ, Seki E. Interventional potential of recombinant feline hepatocyte growth factor in a mouse model of non-alcoholic steatohepatitis. Front Endocrinol (Lausanne). 2018;9:378. doi: 10.3389/fendo.2018.00378

 

  1. Knudsen C, Neyrinck AM, Leyrolle Q, et al. Hepatoprotective effects of indole, a gut microbial metabolite, in leptin-deficient obese mice. J Nutr. 2021;151(6):1507-1516. doi: 10.1093/jn/nxab032

 

  1. Jung JW, Wang F, Turk A, et al. Zaluzanin c alleviates inflammation and lipid accumulation in kupffer cells and hepatocytes by regulating mitochondrial ROS. Molecules. 2023;28(22):7484. doi: 10.3390/molecules28227484

 

  1. Tomita K, Kabashima A, Freeman BL, Bronk SF, Hirsova P, Ibrahim SH. Mixed lineage kinase 3 mediates the induction of CXCL10 by a STAT1-dependent mechanism during hepatocyte lipotoxicity. J Cell Biochem. 2017;118(10):3249-3259. doi: 10.1002/jcb.25973

 

  1. Wada N, Takaki A, Ikeda F, et al. Serum-inducible protein (IP)-10 is a disease progression-related marker for non-alcoholic fatty liver disease. Hepatol Int. 2017;11(1):115-124. doi: 10.1007/s12072-016-9773-y

 

  1. Konishi H, Shirabe K, Nakagawara H, et al. Suppression of silent information regulator 1 activity in noncancerous tissues of hepatocellular carcinoma: Possible association with non-B non-C hepatitis pathogenesis. Cancer Sci. 2015;106(5):542-549. doi: 10.1111/cas.12653

 

  1. Alchera E, Rolla S, Imarisio C, et al. Adenosine A2a receptor stimulation blocks development of nonalcoholic steatohepatitis in mice by multilevel inhibition of signals that cause immunolipotoxicity. Transl Res. 2017;182:75-87. doi: 10.1016/j.trsl.2016.11.009

 

  1. Moragrega AB, Gruevska A, Fuster-Martínez I, et al. Anti-inflammatory and immunomodulating effects of rilpivirine: Relevance for the therapeutics of chronic liver disease. Biomed Pharmacother. 2023;167:115537. doi: 10.1016/j.biopha.2023.115537
Share
Back to top
Eurasian Journal of Medicine and Oncology, Electronic ISSN: 2587-196X Print ISSN: 2587-2400, Published by AccScience Publishing