Gut microbiota and hyperuricemia: From mechanisms to therapeutic strategies

Hyperuricemia (HUA), a condition characterized by elevated levels of uric acid (UA) in the bloodstream, is intricately connected to an imbalance in the gut microbiota. UA, a byproduct of purine metabolism, serves as a crucial endogenous antioxidant. Recent research indicates that modifying the gut microbiome offers a promising avenue for managing HUA. This work delves into the complex relationship between HUA and changes in the gut microbiota, examining its impact on UA excretion, reabsorption, and the activity of enzymes involved in purine breakdown. Elucidating the precise mechanisms behind this connection is essential for developing effective treatments, and exploring various therapeutic approaches, including probiotics, prebiotics, dietary interventions, and fecal microbiota transplantation, which target the gut microbiota to reduce UA levels. These treatments may exert their effects through diverse pathways, such as inhibiting key enzymes, regulating UA transporters, reducing oxidative stress and inflammation, and restoring the balance of the gut microbiome. Furthermore, maintaining a healthy gut barrier is a valuable complementary therapy. This review aims to provide insights into the potential of gut microbiota manipulation as a novel and promising strategy for managing HUA. While this approach holds great promise, it is important to consider the potential risks and challenges associated with gut microbiota manipulation, and further research and clinical trials are warranted to fully understand its efficacy and safety.

- Crane JK. Role of host xanthine oxidase in infection due to enteropathogenic and Shiga-toxigenic Escherichia coli. Gut Microbes. 2013;4(5):388-391. doi: 10.4161/gmic.25584
- Kurosaki M, Li Calzi M, Scanziani E, Garattini E, Terao M. Tissue-and cell-specific expression of mouse xanthine oxidoreductase gene in vivo: Regulation by bacterial lipopolysaccharide. Biochem J. 1995;306(Pt 1):225-234. doi: 10.1042/bj3060225
- Yamada N, Iwamoto C, Kano H, et al. Evaluation of purine utilization by Lactobacillus gasseri strains with potential to decrease the absorption of food-derived purines in the human intestine. Nucleosides Nucleotides Nucleic Acids. 2016;35:670-676. doi: 10.1080/15257770.2015.1125000
- Martínez-Nava GA, Méndez-Salazar EO, Vázquez-Mellado J, et al. The impact of short-chain fatty acid-producing bacteria of the gut microbiota in hyperuricemia and gout diagnosis. Clin Rheumatol. 2023;42:203-214. doi: 10.1007/s10067-022-06392-9
- Wei J, Zhang Y, Dalbeth N, et al. Association between gut microbiota and elevated serum urate in two independent cohorts. Arthritis Rheumatol. 2022;74:682-691. doi: 10.1002/art.42009
- Borghi C, Agabiti-Rosei E, Johnson RJ, et al. Hyperuricaemia and gout in cardiovascular, metabolic and kidney disease. Eur J Intern Med. 2020;80:1-11. doi: 10.1016/j.ejim.2020.07.006
- Beam A, Clinger E, Hao L. Effect of diet and dietary components on the composition of the gut microbiota. Nutrients. 2021;13(8):2795. doi: 10.3390/nu13082795
- Soldán M, Argalášová Ľ, Hadvinová L, Galileo B, Babjaková J. The effect of dietary types on gut microbiota composition and development of non-communicable diseases: A narrative review. Nutrients. 2024;16(18):3134. doi: 10.3390/nu16183134
- Randeni N, Bordiga M, Xu B. A comprehensive review of the triangular relationship among diet-gut microbiota-inflammation. Int J Mol Sci. 2024;25(17):9366. doi: 10.3390/ijms25179366
- Johnson RJ, Bakris GL, Borghi C, et al. Hyperuricemia, acute and chronic kidney disease, hypertension, and cardiovascular disease: Report of a scientific workshop organized by the national kidney foundation. Am J Kidney Dis. 2018;71:851-865. doi: 10.1053/j.ajkd.2017.12.009
- Wu X, You C. The biomarkers discovery of hyperuricemia and gout: Proteomics and metabolomics. PeerJ. 2023;11:e14554. doi: 10.7717/peerj.14554
- Wan H, Zhang K, Wang Y, et al. The associations between gonadal hormones and serum uric acid levels in men and postmenopausal women with diabetes. Front Endocrinol (Lausanne). 2020;11:55. doi: 10.3389/fendo.2020.00055
- Chen-Xu M, Yokose C, Rai SK, Pillinger MH, Choi HK. Contemporary prevalence of gout and hyperuricemia in the United States and decadal trends: The national health and nutrition examination survey, 2007-2016. Arthritis Rheumatol. 2019;71(6):991-999. doi: 10.1002/art.40807
- Li L, Zhang Y, Zeng C. Update on the epidemiology, genetics, and therapeutic options of hyperuricemia. Am J Transl Res. 2020;12(7):3167-3181.
- Trifirò G, Morabito P, Cavagna L, et al. Epidemiology of gout and hyperuricaemia in Italy during the years 2005-2009: A nationwide population-based study. Ann Rheum Dis. 2013;72(5):694-700. doi: 10.1136/annrheumdis-2011-201254
- Cai Z, Xu X, Wu X, Zhou C, Li D. Hyperuricemia and the metabolic syndrome in Hangzhou. Asia Pac J Clin Nutr. 2009;18(1):81-87.
- Nan H, Qiao Q, Dong Y, et al. The prevalence of hyperuricemia in a population of the coastal city of Qingdao, China. J Rheumatol. 2006;33(7):1346-1350.
- Zhang Q, Gong H, Lin C, et al. The prevalence of gout and hyperuricemia in middle-aged and elderly people in Tibet Autonomous Region, China: A preliminary study. Medicine (Baltimore). 2020;99:e18542. doi: 10.1097/MD.0000000000018542
- Wang J, Chen Y, Chen S, et al. Prevalence and risk factors of hyperuricaemia in non-obese Chinese: A single-centre cross-sectional study. BMJ Open. 2022;12(6):e048574. doi: 10.1136/bmjopen-2020-048574
- Li S, Sanna S, Maschio A, et al. The GLUT9 gene is associated with serum uric acid levels in Sardinia and Chianti cohorts. PLoS Genet. 2007;3(11):e194. doi: 10.1371/journal.pgen.0030194
- Hosomi A, Nakanishi T, Fujita T, Tamai I. Extra-renal elimination of uric acid via intestinal efflux transporter BCRP/ABCG2. PLoS One. 2012;7(2):e30456. doi: 10.1371/journal.pone.0030456
- Hyndman D, Liu S, Miner JN. Urate handling in the human body. Curr Rheumatol Rep. 2016;18(6):34. doi: 10.1007/s11926-016-0587-7
- Emmerson BT. Effect of oral fructose on urate production. Ann Rheum Dis. 1974;33:276-280. doi: 10.1136/ard.33.3.276
- Dalbeth N, Gosling AL, Gaffo A, Abhishek A. Gout [published correction appears in Lancet. 2021;397(10287):1808. doi: 10.1016/S0140-6736(21)01010-2.]. Lancet. 2021;397 (10287):1843-1855. doi: 10.1016/S0140-6736(21)00569-9
- Zhang WZ. Why does hyperuricemia not necessarily induce gout? Biomolecules. 2021;11(2):280. doi: 10.3390/biom11020280
- Ramazzina I, Costa R, Cendron L, et al. An aminotransferase branch point connects purine catabolism to amino acid recycling. Nat Chem Biol. 2010;6(11):801-806. doi: 10.1038/nchembio.445
- Pan L, Han P, Ma S, et al. Abnormal metabolism of gut microbiota reveals the possible molecular mechanism of nephropathy induced by hyperuricemia. Acta Pharm Sin B. 2020;10(2):249-261. doi: 10.1016/j.apsb.2019.10.007
- Milani C, Duranti S, Bottacini F, et al. The first microbial colonizers of the human gut: Composition, activities, and health implications of the infant gut microbiota. Microbiol Mol Biol Rev. 2017;81(4):e00036-17. doi: 10.1128/MMBR.00036-17
- Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14:e1002533. doi: 10.1371/journal.pbio.1002533
- Méndez-Salazar EO, Martínez-Nava GA. Uric acid extrarenal excretion: The gut microbiome as an evident yet understated factor in gout development. Rheumatol Int. 2022;42(3):403-412. doi: 10.1007/s00296-021-05007-x
- Pascart T, Lioté F. Gout: State of the art after a decade of developments. Rheumatology (Oxford). 2019;58(1):27-44. doi: 10.1093/rheumatology/key002
- Song S, Lou Y, Mao Y, et al. Alteration of gut microbiome and correlated amino acid metabolism contribute to hyperuricemia and Th17-driven inflammation in Uox-KO mice. Front Immunol. 2022;13:804306. doi: 10.3389/fimmu.2022.804306
- Zhang H, Hua R, Zhang B, Zhang X, Yang H, Zhou X. Serine alleviates dextran sulfate sodium-induced colitis and regulates the gut microbiota in mice. Front Microbiol. 2018;9:3062. doi: 10.3389/fmicb.2018.03062
- Mahbub MH, Yamaguchi N, Takahashi H, et al. Association of plasma free amino acids with hyperuricemia in relation to diabetes mellitus, dyslipidemia, hypertension and metabolic syndrome. Sci Rep. 2017;7(1):17616. doi: 10.1038/s41598-017-17710-6
- Wang F, Sun L, Zong G, et al. Associations of amino acid and acylcarnitine profiles with incident hyperuricemia in middle-aged and older Chinese individuals. Arthritis Care Res (Hoboken). 2020;72(9):1305-1314. doi: 10.1002/acr.24013
- Ma C, Yang X, Lv Q, et al. Soluble uric acid induces inflammation via TLR4/NLRP3 pathway in intestinal epithelial cells. Iran J Basic Med Sci. 2020;23(6):744-750. doi: 10.22038/ijbms.2020.44948.10482
- Halimulati M, Wang R, Aihemaitijiang S, et al. Anti-hyperuricemic effect of anserine based on the gut-kidney axis: Integrated analysis of metagenomics and metabolomics. Nutrients. 2023;15(4):969. doi: 10.3390/nu15040969
- Espírito Santo C, Caseiro C, Martins MJ, Monteiro R, Brandão I. Gut microbiota, in the halfway between nutrition and lung function. Nutrients. 2021;13(5):1716. doi: 10.3390/nu13051716
- Li M, Liu B, Li R, Yang P, Leng P, Huang Y. Exploration of the link between gut microbiota and purinergic signalling. Purinergic Signal. 2023;19:315-327. doi: 10.1007/s11302-022-09891-1
- Shao T, Shao L, Li H, Xie Z, He Z, Wen C. Combined signature of the fecal microbiome and metabolome in patients with gout. Front Microbiol. 2017;8:268. doi: 10.3389/fmicb.2017.00268
- Guo Z, Zhang J, Wang Z, et al. Intestinal microbiota distinguish gout patients from healthy humans. Sci Rep. 2016;6:20602. doi: 10.1038/srep20602
- Chu Y, Sun S, Huang Y, et al. Metagenomic analysis revealed the potential role of gut microbiome in gout. NPJ Biofilms Microbiomes. 2021;7(1):66. doi: 10.1038/s41522-021-00235-2
- He L, Tang W, Huang L, et al. Rational design of a genome-based insulated system in Escherichia coli facilitates heterologous uricase expression for hyperuricemia treatment. Bioeng Transl Med. 2022;8(2):e10449. doi: 10.1002/btm2.10449
- Liu X, Lv Q, Ren H, et al. The altered gut microbiota of high-purine-induced hyperuricemia rats and its correlation with hyperuricemia. PeerJ. 2020;8:e8664. doi: 10.7717/peerj.8664
- Sapankaew T, Thadanipon K, Ruenroengbun N, et al. Efficacy and safety of urate-lowering agents in asymptomatic hyperuricemia: Systematic review and network meta-analysis of randomized controlled trials. BMC Nephrol. 2022;23(1):223. doi: 10.1186/s12882-022-02850-3
- Wang J, Chen Y, Zhong H, et al. The gut microbiota as a target to control hyperuricemia pathogenesis: Potential mechanisms and therapeutic strategies. Crit Rev Food Sci Nutr. 2022;62(14):3979-3989. doi: 10.1080/10408398.2021.1874287
- Dong L, Dong F, Guo P, et al. Gut microbiota as a new target for hyperuricemia: A perspective from natural plant products. Phytomedicine. 2025;138:156402. doi: 10.1016/j.phymed.2025.156402
- Ananthakrishnan AN, Luo C, Yajnik V, et al. Gut microbiome function predicts response to anti-integrin biologic therapy in inflammatory bowel diseases. Cell Host Microbe. 2017;21(5):603-610.e3. doi: 10.1016/j.chom.2017.04.010
- Liu Y, Jarman JB, Low YS, et al. A widely distributed gene cluster compensates for uricase loss in hominids [published correction appears in Cell. 2023;186(20):4472-4473. doi: 10.1016/j.cell.2023.08.036]. Cell. 2023;186(16):3400- 3413.e20. doi: 10.1016/j.cell.2023.06.010
- Marco ML, Sanders ME, Gänzle M, et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on fermented foods. Nat Rev Gastroenterol Hepatol. 2021;18(3):196-208. doi: 10.1038/s41575-020-00390-5
- Dimidi E, Christodoulides S, Scott SM, Whelan K. Mechanisms of action of probiotics and the gastrointestinal microbiota on gut motility and constipation. Adv Nutr. 2017;8(3):484-494. doi: 10.3945/an.116.014407
- Sanders ME, Merenstein DJ, Reid G, Gibson GR, Rastall RA. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic [published correction appears in Nat Rev Gastroenterol Hepatol. 2019;16(10):642. doi: 10.1038/s41575-019-0199-6]. Nat Rev Gastroenterol Hepatol. 2019;16(10):605-616. doi: 10.1038/s41575-019-0173-3
- Wang H, Mei L, Deng Y, et al. Lactobacillus brevis DM9218 ameliorates fructose-induced hyperuricemia through inosine degradation and manipulation of intestinal dysbiosis. Nutrition. 2019;62:63-73. doi: 10.1016/j.nut.2018.11.018
- Rodríguez JM, Garranzo M, Segura J, et al. A randomized pilot trial assessing the reduction of gout episodes in hyperuricemic patients by oral administration of Ligilactobacillus salivarius CECT 30632, a strain with the ability to degrade purines. Front Microbiol. 2023;14:1111652. doi: 10.3389/fmicb.2023.1111652
- Wei Z, Cui Y, Tian L, et al. Probiotic Lactiplantibacillus plantarum N-1 could prevent ethylene glycol-induced kidney stones by regulating gut microbiota and enhancing intestinal barrier function. FASEB J. 2021;35(11):e21937. doi: 10.1096/fj.202100887RR
- Li Y, Zhu J, Lin G, et al. Probiotic effects of Lacticaseibacillus rhamnosus 1155 and Limosilactobacillus fermentum 2644 on hyperuricemic rats. Front Nutr. 2022;9:993951. doi: 10.3389/fnut.2022.993951
- Ni C, Li X, Wang L, et al. Lactic acid bacteria strains relieve hyperuricaemia by suppressing xanthine oxidase activity via a short-chain fatty acid-dependent mechanism. Food Funct. 2021;12(15):7054-7067. doi: 10.1039/d1fo00198a
- Zou Y, Ro KS, Jiang C, et al. The anti-hyperuricemic and gut microbiota regulatory effects of a novel purine assimilatory strain, Lactiplantibacillus plantarum X7022 [published correction appears in Eur J Nutr. 2024;63(5):1997. doi: 10.1007/s00394-024-03382-2]. Eur J Nutr. 2024;63(3):697-711. doi: 10.1007/s00394-023-03291-w
- Méndez-Salazar EO, Vázquez-Mellado J, Casimiro-Soriguer CS, et al. Taxonomic variations in the gut microbiome of gout patients with and without tophi might have a functional impact on urate metabolism. Mol Med. 2021;27(1):50. doi: 10.1186/s10020-021-00311-5
- Bindu S, Mazumder S, Bandyopadhyay U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem Pharmacol. 2020;180:114147. doi: 10.1016/j.bcp.2020.114147
- Singh AK, Durairajan SSK, Iyaswamy A, Williams LL. Elucidating the role of gut microbiota dysbiosis in hyperuricemia and gout: Insights and therapeutic strategies. World J Gastroenterol. 2024;30(40):4404-4410. doi: 10.3748/wjg.v30.i40.4404
- Cao J, Wang T, Liu Y, et al. Lactobacillus fermentum F40-4 ameliorates hyperuricemia by modulating the gut microbiota and alleviating inflammation in mice [published correction appears in Food Funct. 2024;15(4):2328. doi: 10.1039/d4fo90016b]. Food Funct. 2023;14(7):3259- 3268. doi: 10.1039/d2fo03701g
- Cao J, Liu Q, Hao H, et al. Lactobacillus paracasei X11 ameliorates hyperuricemia and modulates gut microbiota in mice [retracted in: Front Immunol. 2024;15:1517021. doi: 10.3389/fimmu.2024.1517021]. Front Immunol. 2022;13:940228. doi: 10.3389/fimmu.2022.940228
- Hamada T, Hisatome I, Wakimizu T, et al. Lactobacillus gasseri PA-3 reduces serum uric acid levels in patients with marginal hyperuricemia. Nucleosides Nucleotides Nucleic Acids. 2022;41(4):361-369. doi: 10.1080/15257770.2022.2039702
- Yamanaka H, Taniguchi A, Tsuboi H, Kano H, Asami Y. Hypouricaemic effects of yoghurt containing Lactobacillus gasseri PA-3 in patients with hyperuricaemia and/or gout: A randomised, double-blind, placebo-controlled study. Mod Rheumatol. 2019;29(1):146-150. doi: 10.1080/14397595.2018.1442183
- Kuo YW, Hsieh SH, Chen JF, et al. Lactobacillus reuteri TSR332 and Lactobacillus fermentum TSF331 stabilize serum uric acid levels and prevent hyperuricemia in rats. PeerJ. 2021;9:e11209. doi: 10.7717/peerj.11209
- Stamp LK, Chapman PT. Allopurinol hypersensitivity: Pathogenesis and prevention. Best Pract Res Clin Rheumatol. 2020;34(4):101501. doi: 10.1016/j.berh.2020.101501
- Jordan A, Gresser U. Side effects and interactions of the xanthine oxidase inhibitor febuxostat. Pharmaceuticals (Basel). 2018;11(2):51. doi: 10.3390/ph11020051
- White WB, Saag KG, Becker MA, et al. Cardiovascular safety of febuxostat or allopurinol in patients with gout. N Engl J Med. 2018;378(13):1200-1210. doi: 10.1056/NEJMoa1710895
- Kawenoki-Minc E, Brzozowska-Jurkowska AM. Zastosowanie benzbromaronu w leczeniu chorych na dne [Benzbromarone in the treatment of gout]. Reumatologia. 1980;18(1):61-67.
- Shen Z, Rowlings C, Kerr B, et al. Pharmacokinetics, pharmacodynamics, and safety of lesinurad, a selective uric acid reabsorption inhibitor, in healthy adult males. Drug Des Dev Ther. 2015;9:3423-3434. doi: 10.2147/DDDT.S85193
- Pérez-Ruiz F, Jansen T, Tausche AK, Juárez-Campo M, Gurunath RK, Richette P. Efficacy and safety of lesinurad for the treatment of hyperuricemia in gout. Drugs Context. 2019;8:212581. doi: 10.7573/dic.212581
- Shi X, Zhao T, da Silva-Júnior EF, et al. Novel urate transporter 1 (URAT1) inhibitors: A review of recent patent literature (2020-present). Expert Opin Ther Pat. 2022;32(12):1175-1184. doi: 10.1080/13543776.2022.2165911
- Schlesinger N, Lipsky PE. Pegloticase treatment of chronic refractory gout: Update on efficacy and safety. Semin Arthritis Rheum. 2020;50(3S):S31-S38. doi: 10.1016/j.semarthrit.2020.04.011
- Sundy JS, Baraf HS, Yood RA, et al. Efficacy and tolerability of pegloticase for the treatment of chronic gout in patients refractory to conventional treatment: Two randomized controlled trials. JAMA. 2011;306(7):711-720. doi: 10.1001/jama.2011.1169
- Stamp LK, Merriman TR, Singh JA. Expert opinion on emerging urate-lowering therapies. Expert Opin Emerg Drugs. 2018;23(3):201-209. doi: 10.1080/14728214.2018.1527899
- Zhou X, Zhang B, Zhao X, et al. Chlorogenic acid supplementation ameliorates hyperuricemia, relieves renal inflammation, and modulates intestinal homeostasis. Food Funct. 2021;12(12):5637-5649. doi: 10.1039/d0fo03199b
- Gao J, Azad MAK, Han H, Wan D, Li T. Impact of prebiotics on enteric diseases and oxidative stress. Curr Pharm Des. 2020;26(22):2630-2641. doi: 10.2174/1381612826666200211121916
- Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J Nutr. 1995;125(6):1401-1412. doi: 10.1093/jn/125.6.1401
- Bindels LB, Delzenne NM, Cani PD, Walter J. Towards a more comprehensive concept for prebiotics. Nat Rev Gastroenterol Hepatol. 2015;12(5):303-310. doi: 10.1038/nrgastro.2015.47
- Guo Y, Yu Y, Li H, et al. Inulin supplementation ameliorates hyperuricemia and modulates gut microbiota in Uox-knockout mice. Eur J Nutr. 2021;60(4):2217-2230. doi: 10.1007/s00394-020-02414-x
- Yang H, Gao L, Niu Y, et al. Mangiferin inhibits renal urate reabsorption by modulating urate transporters in experimental hyperuricemia. Biol Pharm Bull. 2015;38(10):1591-1598. doi: 10.1248/bpb.b15-00402
- Han J, Wang X, Tang S, et al. Protective effects of tuna meat oligopeptides (TMOP) supplementation on hyperuricemia and associated renal inflammation mediated by gut microbiota. FASEB J. 2020;34(4):5061-5076. doi: 10.1096/fj.201902597RR
- Xie WR, Yang XY, Deng ZH, et al. Effects of washed microbiota transplantation on serum uric acid levels, symptoms, and intestinal barrier function in patients with acute and recurrent gout: A pilot study. Dig Dis. 2022;40(5):684-690. doi: 10.1159/000521273
- Leshem A, Horesh N, Elinav E. Fecal microbial transplantation and its potential application in cardiometabolic syndrome. Front Immunol. 2019;10:1341. doi: 10.3389/fimmu.2019.01341
- Kelly CR, Khoruts A, Staley C, et al. Effect of fecal microbiota transplantation on recurrence in multiply recurrent Clostridium difficile Infection: A randomized trial. Ann Intern Med. 2016;165(9):609-616. doi: 10.7326/M16-0271
- Ademe M. Benefits of fecal microbiota transplantation: A comprehensive review. J Infect Dev Ctries. 2020;14(10):1074-1080. doi: 10.3855/jidc.12780
- Zhang L, Ma X, Liu P, et al. Treatment and mechanism of fecal microbiota transplantation in mice with experimentally induced ulcerative colitis. Exp Biol Med (Maywood). 2021;246(13):1563-1575. doi: 10.1177/15353702211006044
- Ooijevaar RE, Terveer EM, Verspaget HW, Kuijper EJ, Keller JJ. Clinical application and potential of fecal microbiota transplantation. Annu Rev Med. 2019;70:335-351. doi: 10.1146/annurev-med-111717-122956
- Kelly CR, Ihunnah C, Fischer M, et al. Fecal microbiota transplant for treatment of Clostridium difficile infection in immunocompromised patients. Am J Gastroenterol. 2014;109(7):1065-1071. doi: 10.1038/ajg.2014.133
- Lu C, Tang S, Han J, et al. Apostichopus japonicus oligopeptide induced heterogeneity in the gastrointestinal tract microbiota and alleviated hyperuricemia in a microbiota-dependent manner. Mol Nutr Food Res. 2021;65(14):e2100147. doi: 10.1002/mnfr.202100147
- Han J, Wang Z, Lu C, et al. The gut microbiota mediates the protective effects of anserine supplementation on hyperuricaemia and associated renal inflammation. Food Funct. 2021;12:9030-9042. doi: 10.1039/d1fo01884a
- Choi HK, Liu S, Curhan G. Intake of purine-rich foods, protein, and dairy products and relationship to serum levels of uric acid: The Third National Health and Nutrition Examination Survey. Arthritis Rheum. 2005;52(1):283-289. doi: 10.1002/art.20761
- Dalbeth N, Wong S, Gamble GD, et al. Acute effect of milk on serum urate concentrations: A randomised controlled crossover trial. Ann Rheum Dis. 2010;69(9):1677-1682. doi: 10.1136/ard.2009.124230
- Dalbeth N, Gracey E, Pool B, et al. Identification of dairy fractions with anti-inflammatory properties in models of acute gout. Ann Rheum Dis. 2010;69:766-769. doi: 10.1136/ard.2009.113290
- MacFarlane LA, Kim SC. Gout: A review of nonmodifiable and modifiable risk factors. Rheum Dis Clin North Am. 2014;40(4):581-604. doi: 10.1016/j.rdc.2014.07.002
- Wu D, Chen R, Li Q, et al. Tea (Camellia sinensis) Ameliorates hyperuricemia via uric acid metabolic pathways and gut microbiota. Nutrients. 2022;14:2666. doi: 10.3390/nu14132666
- Yuan D, Lin L, Peng Y, et al. Effects of black tea and black brick tea with fungal growth on lowering uric acid levels in hyperuricemic mice. J Food Biochem. 2022;46(7):e14140. doi: 10.1111/jfbc.14140
- Chen G, Tan ML, Li KK, Leung PC, Ko CH. Green tea polyphenols decreases uric acid level through xanthine oxidase and renal urate transporters in hyperuricemic mice. J Ethnopharmacol. 2015;175:14-20. doi: 10.1016/j.jep.2015.08.043
- Zhu C, Tai LL, Wan XC, Li DX, Zhao YQ, Xu Y. Comparative effects of green and black tea extracts on lowering serum uric acid in hyperuricemic mice. Pharm Biol. 2017;55(1):2123-2128. doi: 10.1080/13880209.2017.1377736
- Peluso I, Teichner A, Manafikhi H, Palmery M. Camellia sinensis in asymptomatic hyperuricemia: A meta-analysis of tea or tea extract effects on uric acid levels. Crit Rev Food Sci Nutr. 2017;57(2):391-398. doi: 10.1080/10408398.2014.889653
- Lee C, Lau E, Chusilp S, et al. Protective effects of vitamin D against injury in intestinal epithelium. Pediatr Surg Int. 2019;35(12):1395-1401. doi: 10.1007/s00383-019-04586-y
- Stacchiotti V, Rezzi S, Eggersdorfer M, Galli F. Metabolic and functional interplay between gut microbiota and fat-soluble vitamins. Crit Rev Food Sci Nutr. 2021;61(19):3211-3232. doi: 10.1080/10408398.2020.1793728
- Yang Q, Liang Q, Balakrishnan B, Belobrajdic DP, Feng QJ, Zhang W. Role of dietary nutrients in the modulation of gut microbiota: A narrative review. Nutrients. 2020;12(2):381. doi: 10.3390/nu12020381
- Peterson CT, Rodionov DA, Osterman AL, Peterson SN. B vitamins and their role in immune regulation and cancer. Nutrients. 2020;12(11):3380. doi: 10.3390/nu12113380
- Zhu J, Chen C, Lu L, et al. Vitamin B6, and vitamin B12 status in association with metabolic syndrome incidence. JAMA Netw Open. 2023;6(1):e2250621. doi: 10.1001/jamanetworkopen.2022.50621
- Lewis AS, Murphy L, McCalla C, Fleary M, Purcell S. Inhibition of mammalian xanthine oxidase by folate compounds and amethopterin. J Biol Chem. 1984;259(1):12-15.
- Qin X, Li Y, He M, et al. Folic acid therapy reduces serum uric acid in hypertensive patients: A substudy of the China Stroke Primary Prevention Trial (CSPPT). Am J Clin Nutr. 2017;105(4):882-889. doi: 10.3945/ajcn.116.143131
- Slot O. Homocysteine, a marker of cardiovascular disease risk, is markedly elevated in patients with gout. Ann Rheum Dis. 2013;72(3):457. doi: 10.1136/annrheumdis-2012-202023
- Cohen E, Levi A, Vecht-Lifshitz SE, Goldberg E, Garty M, Krause I. Assessment of a possible link between hyperhomocysteinemia and hyperuricemia. J Investig Med. 2015;63(3):534-538. doi: 10.1097/JIM.0000000000000152
- Granger M, Eck P. Dietary vitamin C in human health. Adv Food Nutr Res. 2018;83:281-310. doi: 10.1016/bs.afnr.2017.11.006
- Sun Y, Sun J, Wang J, Gao T, Zhang H, Ma A. Association between vitamin C intake and risk of hyperuricemia in US adults. Asia Pac J Clin Nutr. 2018;27(6):1271-1276. doi: 10.6133/apjcn.201811_27(6).0014
- Csupor D, Lantos T, Hegyi P, et al. Vitex agnus-castus in premenstrual syndrome: A meta-analysis of double-blind randomised controlled trials. Complement Ther Med. 2019;47:102190. doi: 10.1016/j.ctim.2019.08.024
- Brzezińska O, Styrzyński F, Makowska J, Walczak K. Role of vitamin C in prophylaxis and treatment of gout-a literature review. Nutrients. 2021;13(2):701. doi: 10.3390/nu13020701
- Pham VT, Dold S, Rehman A, Bird JK, Steinert RE. Vitamins, the gut microbiome and gastrointestinal health in humans. Nutr Res. 2021;95:35-53. doi: 10.1016/j.nutres.2021.09.001
- Han Y, Han K, Zhang Y, Zeng X. Correction to: Serum 25-hydroxyvitamin D might be negatively associated with hyperuricemia in U.S. adults: An analysis of the National Health and Nutrition Examination Survey 2007-2014. J Endocrinol Invest. 2022;45(4):907. doi: 10.1007/s40618-021-01734-x
- Han Y, Zhang Y, Zeng X. Assessment of causal associations between uric acid and 25-hydroxyvitamin D levels. Front Endocrinol (Lausanne). 2022;13:1024675. doi: 10.3389/fendo.2022.1024675
- Zhang L, Shi X, Yu J, Zhang P, Ma P, Sun Y. Dietary vitamin E intake was inversely associated with hyperuricemia in US adults: NHANES 2009-2014. Ann Nutr Metab. 2020;76(5):354-360. doi: 10.1159/000509628
- Ghaffari T, Nouri M, Saei AA, Rashidi MR. Aldehyde and xanthine oxidase activities in tissues of streptozotocin-induced diabetic rats: Effects of vitamin E and selenium supplementation. Biol Trace Elem Res. 2012;147(1-3):217-225. doi: 10.1007/s12011-011-9291-7
- Mohd Fahami NA, Ibrahim IA, Kamisah Y, Mohd Ismail N. Palm vitamin E reduces catecholamines, xanthine oxidase activity and gastric lesions in rats exposed to water-immersion restraint stress. BMC Gastroenterol. 2012;12:54. doi: 10.1186/1471-230X-12-54
- Vos MB, Colvin R, Belt P, et al. Correlation of vitamin E, uric acid, and diet composition with histologic features of pediatric NAFLD. J Pediatr Gastroenterol Nutr. 2012;54(1):90-96. doi: 10.1097/MPG.0b013e318229da1a
- Vergalito F, Pietrangelo L, Petronio Petronio G, et al. Vitamin E for prevention of biofilm-caused healthcare-associated infections. Open Med (Wars). 2019;15:14-21. doi: 10.1515/med-2020-0004
- Khanna D, Fitzgerald JD, Khanna PP, et al. 2012 American College of Rheumatology guidelines for management of gout. Part 1: Systematic nonpharmacologic and pharmacologic therapeutic approaches to hyperuricemia. Arthritis Care Res (Hoboken). 2012;64(10):1431-1446. doi: 10.1002/acr.21772
- Pascart T, Richette P. Investigational drugs for hyperuricemia, an update on recent developments. Expert Opin Investig Drugs. 2018;27(5):437-444. doi: 10.1080/13543784.2018.1471133
- Howard SC, Jones DP, Pui CH. The tumor lysis syndrome [published correction appears in N Engl J Med. 2018;379(11):1094]. N Engl J Med. 2011;364(19): 1844-1854. doi: 10.1056/NEJMra0904569
- Teng H, Wang Y, Sui X, et al. Gut microbiota-mediated nucleotide synthesis attenuates the response to neoadjuvant chemoradiotherapy in rectal cancer. Cancer Cell. 2023;41(1):124-138.e6. doi: 10.1016/j.ccell.2022.11.013
- Wang L, Ye J. Commentary: Gut microbiota reduce the risk of hyperuricemia and gout in the human body. Acta Pharm Sin B. 2024;14(1):433-435. doi: 10.1016/j.apsb.2023.11.013
- Wan Y, Wong OWH, Tun HM, et al. Fecal microbial marker panel for aiding diagnosis of autism spectrum disorders. Gut Microbes. 2024;16(1):2418984. doi: 10.1080/19490976.2024.2418984
- Wang Q, Liang J, Zou Q, et al. Tryptophan metabolism-regulating probiotics alleviate hyperuricemia by protecting the gut barrier integrity and enhancing colonic uric acid excretion. J Agric Food Chem. 2024;72(48):26746-26761. doi: 10.1021/acs.jafc.4c07716