Single-cell sequencing for lung cancer research: Progress and prospects

Lung cancer exhibits high morbidity and mortality rates, characterized by a heterogeneous genetic landscape and an immunosuppressive tumor microenvironment, despite recent therapeutic advances. High-resolution single-cell sequencing has facilitated a comprehensive analysis of malignant and host cell types, enhancing the understanding of lung cancer’s heterogeneity and adaptability under basal conditions and in response to therapeutic intervention. In this review, we provide an overview of the utilization of single-cell sequencing technology in characterizing the microenvironment of lung cancer, facilitating early diagnosis, monitoring tumor progression, and elucidating mechanisms of drug resistance, thereby offering new insights into potential therapeutic interventions.
- Thai AA, Solomon BJ, Sequist LV, Gainor JF, Heist RS. Lung cancer. Lancet (London, England). 2021;398(10299):535-554. doi: 10.1016/s0140-6736(21)00312-3
- Gridelli C, Rossi A, Carbone DP, et al. Non-small-cell lung cancer. Nat Rev Dis Prim. 2015;1:15009. doi: 10.1038/nrdp.2015.9
- Nooreldeen R, Bach H. Current and future development in lung cancer diagnosis. In J Mol Sci. 2021;22(16):8661. doi: 10.3390/ijms22168661
- Li MY, Liu LZ, Dong M. Progress on pivotal role and application of exosome in lung cancer carcinogenesis, diagnosis, therapy and prognosis. Mol Cancer. 2021;20(1):22. doi: 10.1186/s12943-021-01312-y
- Wauthoz N, Rosière R, Amighi K. Inhaled cytotoxic chemotherapy: Clinical challenges, recent developments, and future prospects. Expert Opin Drug Deliv. 2021;18(3):333-354. doi: 10.1080/17425247.2021.1829590
- Otano I, Ucero AC, Zugazagoitia J, Paz-Ares L. At the crossroads of immunotherapy for oncogene-addicted subsets of NSCLC. Nat Rev Clin Oncol. 2023;20(3):143-159. doi: 10.1038/s41571-022-00718-x
- McCoach CE. A cautionary analysis of immunotherapy prior to targeted therapy. J Thoracic Oncol. 2019;14(1):8-10. doi: 10.1016/j.jtho.2018.10.009
- Cai J, Fang L, Huang Y, et al. Simultaneous overactivation of Wnt/β-catenin and TGFβ signalling by miR-128-3p confers chemoresistance-associated metastasis in NSCLC. Nat Commun. 2017;8:15870. doi: 10.1038/ncomms15870
- Lambrechts D, Wauters E, Boeckx B, et al. Phenotype molding of stromal cells in the lung tumor microenvironment. Nat Med. 2018;24(8):1277-1289. doi: 10.1038/s41591-018-0096-5
- Altorki NK, Markowitz GJ, Gao D, et al. The lung microenvironment: An important regulator of tumour growth and metastasis. Nat Rev Cancer. 2019;19(1):9-31. doi: 10.1038/s41568-018-0081-9
- Bischoff P, Trinks A, Obermayer B, et al. Single-cell RNA sequencing reveals distinct tumor microenvironmental patterns in lung adenocarcinoma. Oncogene. 2021;40(50):6748-6758. doi: 10.1038/s41388-021-02054-3
- Tang F, Barbacioru C, Wang Y, et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods. 2009;6(5):377-382. doi: 10.1038/nmeth.1315
- Navin N, Kendall J, Troge J, et al. Tumour evolution inferred by single-cell sequencing. Nature. 2011;472(7341):90-94. doi: 10.1038/nature09807
- Xu X, Hou Y, Yin X, et al. Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell. 2012;148(5):886-895. doi: 10.1016/j.cell.2012.02.025
- Zhang J, Song C, Tian Y, Yang X. Single-cell RNA sequencing in lung cancer: Revealing phenotype shaping of stromal cells in the microenvironment. Front Immunol. 2021;12:802080. doi: 10.3389/fimmu.2021.802080
- Yu D, Zhang S, Liu Z, Xu L, Chen L, Xie L. Single-cell RNA sequencing analysis of gene regulatory network changes in the development of lung adenocarcinoma. Biomolecules. 2023;13(4):671. doi: 10.3390/biom13040671
- Zhang L, Lee M, Maslov AY, Montagna C, Vijg J, Dong X. Analyzing somatic mutations by single-cell whole-genome sequencing. Nat Protoc. 2024;19(2):487-516. doi: 10.1038/s41596-023-00914-8
- Funnell T, O’Flanagan CH, Williams MJ, et al. Single-cell genomic variation induced by mutational processes in cancer. Nature. 2022;612(7938):106-115. doi: 10.1038/s41586-022-05249-0
- Liao P, Huang Q, Zhang J, et al. How single-cell techniques help us look into lung cancer heterogeneity and immunotherapy. Front Immunol. 2023;14:1238454. doi: 10.3389/fimmu.2023.1238454
- Li W, Lu J, Lu P, et al. scNanoHi-C: A single-cell long-read concatemer sequencing method to reveal high-order chromatin structures within individual cells. Nat Methods. 2023;20(10):1493-1505. doi: 10.1038/s41592-023-01978-w
- Sasagawa Y, Nikaido I, Hayashi T, et al. Erratum to: Quartz- Seq: A highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity. Genome Biol. 2017;18(1):R31. doi: 10.1186/s13059-017-1154-x
- Ramsköld D, Luo S, Wang YC, et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol. 2012;30(8):777-782. doi: 10.1038/nbt.2282
- Picelli S, Björklund ÅK, Faridani OR, Sagasser S, Winberg G, Sandberg R. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods. 2013;10(11):1096-1098. doi: 10.1038/nmeth.2639
- Hashimshony T, Wagner F, Sher N, Yanai I. CEL-Seq: Single-cell RNA-Seq by multiplexed linear amplification. Cell Rep. 2012;2(3):666-673. doi: 10.1016/j.celrep.2012.08.003
- Jaitin DA, Kenigsberg E, Keren-Shaul H, et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science. 2014;343(6172):776-779. doi: 10.1126/science.1247651
- Macosko EZ, Basu A, Satija R, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161(5):1202-1214. doi: 10.1016/j.cell.2015.05.002
- Klein AM, Mazutis L, Akartuna I, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015;161(5):1187-1201. doi: 10.1016/j.cell.2015.04.044
- Huang D, Ma N, Li X, et al. Advances in single-cell RNA sequencing and its applications in cancer research. J Hematol Oncol. 2023;16(1):98. doi: 10.1186/s13045-023-01494-6
- Li Y, Xu Q, Wu D, Chen G. Exploring additional valuable information from single-cell RNA-Seq data. Front Cell Dev Biol. 2020;8:593007. doi: 10.3389/fcell.2020.593007
- Buenrostro JD, Wu B, Litzenburger UM, et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature. 2015;523(7561):486-490. doi: 10.1038/nature14590
- Shi P, Nie Y, Yang J, Zhang W, Tang Z, Xu J. Fundamental and practical approaches for single-cell ATAC-seq analysis. aBIOTECH. 2022;3(3):212-223. doi: 10.1007/s42994-022-00082-5
- Schwartzman O, Tanay A. Single-cell epigenomics: Techniques and emerging applications. Nat Rev Genet. 2015;16(12):716-726. doi: 10.1038/nrg3980
- Macaulay IC, Haerty W, Kumar P, et al. G and T-seq: Parallel sequencing of single-cell genomes and transcriptomes. Nat Methods. 2015;12(6):519-522. doi: 10.1038/nmeth.3370
- Vandereyken K, Sifrim A, Thienpont B, Voet T. Methods and applications for single-cell and spatial multi-omics. Nat Rev Genet. 2023;24(8):494-515. doi: 10.1038/s41576-023-00580-2
- Dey SS, Kester L, Spanjaard B, Bienko M, Van Oudenaarden A. Integrated genome and transcriptome sequencing of the same cell. Nat Biotechnol. 2015;33(3): 285-289. doi: 10.1038/nbt.3129
- Rodriguez-Meira A, Buck G, Clark SA, et al. Unravelling intratumoral heterogeneity through high-sensitivity single-cell mutational analysis and parallel RNA sequencing. Mol Cell. 2019;73(6):1292.e8-1305.e8. doi: 10.1016/j.molcel.2019.01.009
- Yu L, Wang X, Mu Q, et al. scONE-seq: A single-cell multi-omics method enables simultaneous dissection of phenotype and genotype heterogeneity from frozen tumors. Sci Adv. 2023;9(1):eabp8901. doi: 10.1126/sciadv.abp8901
- He L, Wang W, Dang K, Ge Q, Zhao X. Integration of single‐cell transcriptome and proteome technologies: Toward spatial resolution levels. View. 2023;4(5):20230040. doi: 10.1002/viw.20230040
- Eisenstein M. Seven technologies to watch in 2022. Nature. 2022;601(7894):658-661. doi: 10.1038/d41586-022-00163-x
- Golo M, Newman PLH, Kempe D, Biro M. Mechanoimmunology in the solid tumor microenvironment. Biochem Soc Transact. 2024;52(3):1489-1502. doi: 10.1042/bst20231427
- Lei Y, Tang R, Xu J, et al. Applications of single-cell sequencing in cancer research: progress and perspectives. J Hematol Oncol. 2021;14(1):91. doi: 10.1186/s13045-021-01105-2
- Hinohara K, Polyak K. Intratumoral heterogeneity: More than just mutations. Trends Cell Biol. 2019;29(7):569-579. doi: 10.1016/j.tcb.2019.03.003
- Li Q, Wang R, Yang Z, et al. Molecular profiling of human non-small cell lung cancer by single-cell RNA-seq. Genome Med. 2022;14(1):87. doi: 10.1186/s13073-022-01089-9
- Tian Y, Li Q, Yang Z, et al. Single-cell transcriptomic profiling reveals the tumor heterogeneity of small-cell lung cancer. Signal Transduct Target Ther. 2022;7(1):346. doi: 10.1038/s41392-022-01150-4
- Chan JM, Quintanal-Villalonga Á, Gao VR, et al. Signatures of plasticity, metastasis, and immunosuppression in an atlas of human small cell lung cancer. Cancer cell. 2021;39(11):1479.e18-1496.e18. doi: 10.1016/j.ccell.2021.09.008
- Sainz de Aja J, Dost AFM, Kim CF. Alveolar progenitor cells and the origin of lung cancer. J Intern Med. 2021;289(5): 629-635. doi: 10.1111/joim.13201
- Hu J, Zhang L, Xia H, et al. Tumor microenvironment remodeling after neoadjuvant immunotherapy in non-small cell lung cancer revealed by single-cell RNA sequencing. Genome Med. 2023;15(1):14. doi: 10.1186/s13073-023-01164-9
- Lu H, Qian J, Cheng L, Shen Y, Chu T, Zhao C. Single-cell RNA-sequencing uncovers the dynamic changes of tumour immune microenvironment in advanced lung adenocarcinoma. BMJ Open Respir Res. 2023;10(1):e001878. doi: 10.1136/bmjresp-2023-001878
- Ran X, Tong L, Chenghao W, et al. Single-cell data analysis of malignant epithelial cell heterogeneity in lung adenocarcinoma for patient classification and prognosis prediction. Heliyon. 2023;9(9):e20164. doi: 10.1016/j.heliyon.2023.e20164
- Zhang L, Zhang Y, Wang C, et al. Integrated single-cell RNA sequencing analysis reveals distinct cellular and transcriptional modules associated with survival in lung cancer. Signal Transduct Target Ther. 2022;7(1):9. doi: 10.1038/s41392-021-00824-9
- Zhang H, Yue X, Chen Z, et al. Define cancer-associated fibroblasts (CAFs) in the tumor microenvironment: New opportunities in cancer immunotherapy and advances in clinical trials. Mol Cancer. 2023;22(1):159. doi: 10.1186/s12943-023-01860-5
- Hanley CJ, Waise S, Ellis MJ, et al. Single-cell analysis reveals prognostic fibroblast subpopulations linked to molecular and immunological subtypes of lung cancer. Nat Commun. 2023;14(1):387. doi: 10.1038/s41467-023-35832-6
- Xing F, Saidou J, Watabe K. Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front Biosci (Landmark Ed). 2010;15(1):166-179. doi: 10.2741/3613
- Dominguez CX, Müller S, Keerthivasan S, et al. Single-Cell RNA sequencing reveals stromal evolution into LRRC15+ myofibroblasts as a determinant of patient response to cancer immunotherapy. Cancer Discov. 2020;10(2):232-253. doi: 10.1158/2159-8290.Cd-19-0644
- Meier SL, Satpathy AT, Wells DK. Bystander T cells in cancer immunology and therapy. Nat Cancer. 2022;3(2):143-155. doi: 10.1038/s43018-022-00335-8
- Pai JA, Hellmann MD, Sauter JL, et al. Lineage tracing reveals clonal progenitors and long-term persistence of tumor-specific T cells during immune checkpoint blockade. Cancer cell. 2023;41(4):776.e7-790.e7. doi: 10.1016/j.ccell.2023.03.009
- Wu F, Fan J, He Y, et al. Single-cell profiling of tumor heterogeneity and the microenvironment in advanced non-small cell lung cancer. Nat Commun. 2021;12(1):2540. doi: 10.1038/s41467-021-22801-0
- Xiang X, Wang J, Lu D, Xu X. Targeting tumor-associated macrophages to synergize tumor immunotherapy. Signal Transduct Target Ther. 2021;6(1):75. doi: 10.1038/s41392-021-00484-9
- Guo X, Zhang Y, Zheng L, et al. Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing. Nat Med. 2018;24(7):978-985. doi: 10.1038/s41591-018-0045-3
- Wang Z, Li Z, Zhou K, et al. Deciphering cell lineage specification of human lung adenocarcinoma with single-cell RNA sequencing. Nat Commun. 2021;12(1):6500.doi: 10.1038/s41467-021-26770-2
- Zhang Y, Du W, Chen Z, Xiang C. Upregulation of PD-L1 by SPP1 mediates macrophage polarization and facilitates immune escape in lung adenocarcinoma. Exp Cell Res. 2017;359(2):449-457. doi: 10.1016/j.yexcr.2017.08.028
- Nikanjam M, Kato S, Kurzrock R. Liquid biopsy: Current technology and clinical applications. J Hematol Oncol. 2022;15(1):131. doi: 10.1186/s13045-022-01351-y
- Li X, Li M, Huang M, et al. The multi-molecular mechanisms of tumor-targeted drug resistance in precision medicine. Biomed Pharmacother/Biomed Pharmacother. 2022;150:113064. doi: 10.1016/j.biopha.2022.113064
- Xu M, Zhao H, Chen J, et al. An integrated microfluidic chip and its clinical application for circulating tumor cell isolation and single-cell analysis. Cytometry A. 2020;97(1):46-53. doi: 10.1002/cyto.a.23902
- Su Z, Wang Z, Ni X, et al. Inferring the evolution and progression of small-cell lung cancer by single-cell sequencing of circulating tumor cells. Clin Cancer Res. 2019;25(16):5049-5060. doi: 10.1158/1078-0432.Ccr-18-3571
- Chang Y, Wang Y, Li B, et al. Whole-exome sequencing on circulating tumor cells explores platinum-drug resistance mutations in advanced non-small cell lung cancer. Front Genet. 2021;12:722078. doi: 10.3389/fgene.2021.722078
- Negishi R, Yamakawa H, Kobayashi T, et al. Transcriptomic profiling of single circulating tumor cells provides insight into human metastatic gastric cancer. Commun Biol. 2022;5(1):20. doi: 10.1038/s42003-021-02937-x
- Andrikou K, Rossi T, Verlicchi A, et al. Circulating tumour cells: Detection and application in advanced non-small cell lung cancer. Int J Mol Sci. 2023;24(22):16085. doi: 10.3390/ijms242216085
- Kim J, Xu Z, Marignani PA. Single-cell RNA sequencing for the identification of early-stage lung cancer biomarkers from circulating blood. NPJ Genomic Med. 2021;6(1):87. doi: 10.1038/s41525-021-00248-y
- Kagamu H, Yamasaki S, Kitano S, et al. Single-cell analysis reveals a CD4+ T-cell cluster that correlates with PD-1 blockade efficacy. Cancer Res. 2022;82(24):4641-4653. doi: 10.1158/0008-5472.Can-22-0112
- Zhong R, Zhang Y, Chen D, Cao S, Han B, Zhong H. Single-cell RNA sequencing reveals cellular and molecular immune profile in a pembrolizumab-responsive PD-L1- negative lung cancer patient. Cancer Immunol Immunother. 2021;70(8):2261-2274. doi: 10.1007/s00262-021-02848-0
- Hu Y, Xu C, Ren J, et al. Exposure to tobacco smoking induces a subset of activated tumor-resident tregs in non-small cell lung cancer. Transl Oncol. 2022;15(1):101261. doi: 10.1016/j.tranon.2021.101261
- Ruan H, Zhou Y, Shen J, et al. Circulating tumor cell characterization of lung cancer brain metastases in the cerebrospinal fluid through single-cell transcriptome analysis. Clin Transl Med. 2020;10(8):e246. doi: 10.1002/ctm2.246
- Wang G, Qiu M, Xing X, et al. Lung cancer scRNA-seq and lipidomics reveal aberrant lipid metabolism for early-stage diagnosis. Sci Transl Med. 2022;14(630):eabk2756. doi: 10.1126/scitranslmed.abk2756
- Tang Y, Kwiatkowski DJ, Henske EP. Midkine expression by stem-like tumor cells drives persistence to mTOR inhibition and an immune-suppressive microenvironment. Nat Commun. 2022;13(1):5018. doi: 10.1038/s41467-022-32673-7
- Filippou PS, Karagiannis GS, Constantinidou A. Midkine (MDK) growth factor: A key player in cancer progression and a promising therapeutic target. Oncogene. 2020;39(10): 2040-2054. doi: 10.1038/s41388-019-1124-8
- Jiang A, Wang J, Liu N, et al. Integration of single-cell RNA sequencing and bulk RNA sequencing data to establish and validate a prognostic model for patients with lung adenocarcinoma. Front Genet. 2022;13:833797. doi: 10.3389/fgene.2022.833797
- Aleksakhina SN, Kashyap A, Imyanitov EN. Mechanisms of acquired tumor drug resistance. Biochim Biophys Acta Rev Cancer. 2019;1872(2):188310. doi: 10.1016/j.bbcan.2019.188310
- Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer. Nature. 2019;575(7782):299-309. doi: 10.1038/s41586-019-1730-1
- Zhang A, Miao K, Sun H, Deng CX. Tumor heterogeneity reshapes the tumor microenvironment to influence drug resistance. Int J Biol Sci. 2022;18(7):3019-3033. doi: 10.7150/ijbs.72534
- Wang X, Zhang H, Chen X. Drug resistance and combating drug resistance in cancer. Can Drug Resist. 2019;2(2): 141-160. doi: 10.20517/cdr.2019.10
- Kashima Y, Shibahara D, Suzuki A, et al. Single-cell analyses reveal diverse mechanisms of resistance to EGFR tyrosine kinase inhibitors in lung cancer. Cancer Res. 2021;81(18):4835-4848. doi: 10.1158/0008-5472.Can-20-2811
- Salcher S, Sturm G, Horvath L, et al. High-resolution single-cell atlas reveals diversity and plasticity of tissue-resident neutrophils in non-small cell lung cancer. Cancer cell. 2022;40(12):1503.e8-1520.e8. doi: 10.1016/j.ccell.2022.10.008
- Stewart CA, Gay CM, Xi Y, et al. Single-cell analyses reveal increased intratumoral heterogeneity after the onset of therapy resistance in small-cell lung cancer. Nat Cancer. 2020;1:423-436. doi: 10.1038/s43018-019-0020-z
- Caushi JX, Zhang J, Ji Z, et al. Author correction: Transcriptional programs of neoantigen-specific TIL in anti-PD-1-treated lung cancers. Nature. 2021;598(7881):E1. doi: 10.1038/s41586-021-03893-6
- He L, Fan Y, Zhang Y, et al. Single-cell transcriptomic analysis reveals circadian rhythm disruption associated with poor prognosis and drug-resistance in lung adenocarcinoma. J Pineal Res. 2022;73(1):e12803. doi: 10.1111/jpi.12803
- Chen G, Ning B, Shi T. Single-cell RNA-Seq technologies and related computational data analysis. Front Genet. 2019;10:317. doi: 10.3389/fgene.2019.00317