AccScience Publishing / EJMO / Online First / DOI: 10.36922/ejmo.5809
REVIEW ARTICLE

Advances and applications of single-cell RNA sequencing in deciphering the tumor microenvironment of malignant skin tumors

Yiting Feng1,2† Lanlan Liu1,3,4,5† Chunlan Hu1,3,4,5† Jie Sun1,3,4,5* Mingzhu Yin1,3,4,5* Xin Li1,3,4,5*
Show Less
1 Clinical Research Center, Medical Pathology Center, Cancer Early Detection and Treatment Center, and Translational Medicine Research Center, Chongqing University Three Gorges Hospital, Chongqing University, Chongqing, China
2 Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
3 Chongqing Technical Innovation Center for Quality Evaluation and Identification of Authentic Medicinal Herbs, Chongqing, China
4 Chongqing University Three Gorges Hospital and Academy for Advanced Interdisciplinary Technology, CQU - Ferenc Krausz Nobel Laureate Scientific Workstation, Chongqing, China
5 School of Medicine, Chongqing University, Chongqing, China
Submitted: 7 November 2024 | Revised: 2 December 2024 | Accepted: 17 December 2024 | Published: 10 January 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

The three most prevalent malignant skin tumors are basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and cutaneous melanoma (CM). While BCC and SCC generally exhibit low levels of malignancy, some tumors can become invasive and metastasize. In contrast, CM is the most malignant and lethal form of skin cancer among these three. In recent years, the increasing incidence of skin tumors has garnered significant attention within the medical community. The advent of single-cell RNA sequencing (scRNA-seq) technology has revolutionized the analysis of the tumor microenvironment (TME) in skin tumors, offering novel insights for clinical research. In this review, we provide a concise introduction to scRNA-seq technology and its application in delineating the heterogeneity of the TME in skin tumors, elucidating the mechanisms of tumor progression and pathogenicity, and uncovering new therapeutic targets. Our review offers a comprehensive overview for researchers, offering insights that may advance the understanding of the skin TME in future studies.

Graphical abstract
Keywords
Skin tumor
Tumor microenvironment
Single-cell RNA sequencing
Heterogeneity; Therapeutic target
Funding
This study is jointly supported by the Natural Science Foundation of China (grant no. 32200523), Chongqing Natural Science Foundation (grant no. CSTB2023NSCQ-MSX0658), the Fundamental Research Funds for the Central Universities (grant no. 2023CDJYGRH-YB05), Chongqing Wanzhou Municipal Science, and Health Joint Medical Research Project General Program (wzstc-kw2023004).
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Dlugosz A, Merlino G, Yuspa SH. Progress in cutaneous cancer research. J Investig Dermatol Symp Proc. 2002;7(1): 17-26. doi: 10.1046/j.1523-1747.2002.19631.x

 

  1. Sawada Y, Nakamura M. Daily lifestyle and cutaneous malignancies. Int J Mol Sci. 2021;22(10):5227. doi: 10.3390/ijms22105227

 

  1. Hirner J. Updates in cutaneous oncology. Mo Med. 2023;120(1):53-58.

 

  1. Hyeraci M, Papanikolau ES, Grimaldi M, et al. Systemic photoprotection in melanoma and non-melanoma skin cancer. Biomolecules. 2023;13(7):1067. doi: 10.3390/biom13071067

 

  1. Fu X, Yin M. Monocytes in tumor: From the sight of Single-cell analysis. Tumor Discov. 2022;1(1):4. doi: 10.36922/td.v1i1.4

 

  1. Hameetman L, Commandeur S, Bavinck JNB, et al. Molecular profiling of cutaneous squamous cell carcinomas and actinic keratoses from organ transplant recipients. BMC Cancer. 2013;13(1):58. doi: 10.1186/1471-2407-13-58

 

  1. Zhao Y, Dong J, Liao Y, et al. Identification and validation of four photodynamic therapy related genes inhibiting MAPK and inducing cell cycle alteration in squamous cell carcinoma. Front Oncol. 2022;12:946493. doi: 10.3389/fonc.2022.946493

 

  1. Liu W, Luo X, Zhang Z, et al. Construction of an immune predictive model and identification of TRIP6 as a prognostic marker and therapeutic target of CRC by integration of single-cell and bulk RNA-seq data. Cancer Immunol Immunother. 2024;73(4):69. doi: 10.1007/s00262-024-03658-w

 

  1. Cheng B, Li L, Luo T, et al. Single-cell deconvolution algorithms analysis unveils autocrine IL11-mediated resistance to docetaxel in prostate cancer via activation of the JAK1/STAT4 pathway. J Exp Clin Cancer Res. 2024;43(1):67. doi: 10.1186/s13046-024-02962-8

 

  1. Dai X, Zheng HL, Ma YX, et al. Single-cell transcriptome analysis identified core genes and transcription factors in mesenchymal cell differentiation during liver cirrhosis. Front Biosci (Landmark Ed). 2024;29(2):62. doi: 10.31083/j.fbl2902062

 

  1. Gui M, Huang S, Li S, et al. Integrative single-cell transcriptomic analyses reveal the cellular ontological and functional heterogeneities of primary and metastatic liver tumors. J Transl Med. 2024;22(1):206. doi: 10.1186/s12967-024-04947-9

 

  1. Cheng JB, Sedgewick AJ, Finnegan AI, et al. Transcriptional programming of normal and inflamed human epidermis at single-cell resolution. Cell Rep. 2018;25(4):871-883. doi: 10.1016/j.celrep.2018.09.006

 

  1. Tang F, Barbacioru C, Wang Y, et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods. 2009;6(5):377-382. doi: 10.1038/nmeth.1315

 

  1. Park YJ, Kwon GH, Kim JO, Kim NK, Ryu WS, Lee KS. A retrospective study of changes in skin cancer characteristics over 11 years. Arch Craniofac Surg. 2020;21:87-91. doi: 10.7181/acfs.2020.00024

 

  1. Teh N, Leow LJ. The role of actin in muscle spasms in a case series of patients with advanced basal cell carcinoma treated with a hedgehog pathway inhibitor. Dermatol Ther (Heidelb), 2020;11(1):293-299. doi: 10.1007/s13555-020-00464-x

 

  1. Jayaraman SS, Rayhan DJ, Hazany S, Kolodney MS. Mutational landscape of basal cell carcinomas by whole-exome sequencing. J Invest Dermatol. 2014;134(1):213-220. doi: 10.1038/jid.2013.276

 

  1. Cameron MC, Lee E, Hibler BP, et al. Basal cell carcinoma: Epidemiology; pathophysiology; Clinical and histological subtypes; And disease associations. J Am Acad Dermatol. 2019;80(2):303-317. doi: 10.1016/j.jaad.2018.03.060

 

  1. Ganier C, Mazin P, Herrera-Oropeza G, et al. Multiscale spatial mapping of cell populations across anatomical sites in healthy human skin and basal cell carcinoma. Proc Natl Acad Sci U S A. 2024;121(2):e2313326120. doi: 10.1073/pnas.2313326120

 

  1. Yerly L, Pich-Bavastro C, Di Domizio J, et al. Integrated multi-omics reveals cellular and molecular interactions governing the invasive niche of basal cell carcinoma. Nat Commun. 2022;13(1):4897. doi: 10.1038/s41467-022-32670-w

 

  1. Guerrero-Juarez CF, Lee GH, Liu Y, et al. Single-cell analysis of human basal cell carcinoma reveals novel regulators of tumor growth and the tumor microenvironment. Sci Adv. 2022;8(23):eabm7981. doi: 10.1126/sciadv.abm7981

 

  1. Haensel D, Daniel B, Gaddam S, et al. Skin basal cell carcinomas assemble a pro-tumorigenic spatially organized and self-propagating Trem2+ myeloid niche. Nat Commun. 2023;14(1):2685. doi: 10.1038/s41467-023-37993-w

 

  1. Bansaccal N, Vieugue P, Sarate R, et al. The extracellular matrix dictates regional competence for tumour initiation. Nature. 2023;623(7988):828-835. doi: 10.1038/s41586-023-06740-y

 

  1. Huang L, Wang X, Pei S, et al. Single-cell profiling reveals sustained immune infiltration, surveillance, and tumor heterogeneity in infiltrative basal cell carcinoma. J Invest Dermatol. 2023;143(11):2283-2294.e17. doi :10.1016/j.jid.2023.04.020

 

  1. Pich-Bavastro C, Yerly L, Di Domizio J, et al. Activin A– mediated polarization of cancer-associated fibroblasts and macrophages confers resistance to checkpoint immunotherapy in skin cancer. Clin Cancer Res. 2023;29(17):3498-3513. doi: 10.1158/1078-0432.Ccr-23-0219

 

  1. Yost KE, Satpathy AT, Wells DK, et al. Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat Med. 2019;25(8):1251-1259. doi: 10.1038/s41591-019-0522-3

 

  1. Thompson AK, Kelley BF, Prokop LJ, Murad MH, Baum CL. Risk factors for cutaneous squamous cell carcinoma recurrence, metastasis, and disease-specific death. JAMA Dermatol. 2016;152(4):419-428. doi: 10.1001/jamadermatol.2015.4994

 

  1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-249. doi: 10.3322/caac.21660

 

  1. Waldman A, Schmults C. Cutaneous squamous cell carcinoma. Hematol Oncol Clin North Am. 2019;33(1):1-12. doi: 10.1016/j.hoc.2018.08.001

 

  1. De Jong E, Lammerts MUP, Genders RE, Bouwes Bavinck JN. Update of advanced cutaneous squamous cell carcinoma. J Eur Acad Dermatol Venereol. 2022;36 (Suppl 1):6-10. doi: 10.1111/jdv.17728

 

  1. Budden T, Gaudy-Marqueste C, Craig S, et al. Female immunity protects from cutaneous squamous cell carcinoma. Clin Cancer Res. 2021;27(11):3215-3223. doi: 10.1158/1078-0432.Ccr-20-4261

 

  1. Que SKT, Zwald FO, Schmults CD. Cutaneous squamous cell carcinoma: Incidence, risk factors, diagnosis, and staging. J Am Acad Dermatol. 2018;78(2):237-247. doi: 10.1016/j.jaad.2017.08.059

 

  1. Tripathi R, Knusel KD, Ezaldein HH, Bordeaux JS, Scott JF. Characteristics of patients hospitalized for cutaneous squamous cell carcinoma. Dermatol Surg. 2020;46(6):742-746. doi: 10.1097/dss.0000000000002117

 

  1. Ji AL, Rubin AJ, Thrane K, et al. Multimodal analysis of composition and spatial architecture in human squamous cell carcinoma. Cell. 2020;182(2):497-514.e22. doi: 10.1016/j.cell.2020.05.039

 

  1. Sun YZ, Zou DD, Li XJ, et al. Single-cell sequencing highlights heterogeneity and malignant progression in actinic keratosis and cutaneous squamous cell carcinoma. Elife. 2023;12:e85270. doi: 10.7554/eLife.85270

 

  1. Li X, Zhao S, Bian X, et al. Signatures of EMT, immunosuppression, and inflammation in primary and recurrent human cutaneous squamous cell carcinoma at single-cell resolution. Theranostics. 2022;12(17):7532-7549.

 

  1. Wang J, Xie D, Wu H, Li Y, Wan C. Ferroptosis-related local immune cytolytic activity in tumor microenvironment of basal cell and squamous cell carcinoma. Aging (Albany NY). 2022;14(9):3956-3972. doi: 10.18632/aging.204057

 

  1. Yan G, Li L, Zhu S, et al. Single-cell transcriptomic analysis reveals the critical molecular pattern of UV-induced cutaneous squamous cell carcinoma. Cell Death Dis. 2021;13(1):23. doi: 10.1038/s41419-021-04477-y

 

  1. Schütz S, Solé-Boldo L, Lucena-Porcel C, et al. Functionally distinct cancer-associated fibroblast subpopulations establish a tumor promoting environment in squamous cell carcinoma. Nat Commun. 2023;14(1):5413. doi: 10.1038/s41467-023-41141-9

 

  1. Taylor MA, Kandyba E, Halliwill K, et al. Stem-cell states converge in multistage cutaneous squamous cell carcinoma development. Science. 384(6699):eadi7453. doi: 10.1126/science.adi7453

 

  1. Fontana GA, MacArthur MR, Rotankova N, Di Filippo M, Beer HD, Gahlon HL. The mitochondrial DNA common deletion as a potential biomarker of cancer-associated fibroblasts from skin basal and squamous cell carcinomas. Sci Rep. 2024;14(1):553. doi: 10.1038/s41598-023-50213-1

 

  1. Leonardi GC, Falzone L, Salemi R, et al. Cutaneous melanoma: From pathogenesis to therapy (Review). Int J Oncol. 2018;52(4):1071-1080. doi: 10.3892/ijo.2018.4287

 

  1. Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229-263. doi: 10.3322/caac.21834

 

  1. Arnold M, de Vries E, Whiteman DC, et al. Global burden of cutaneous melanoma attributable to ultraviolet radiation in 2012. Int J Cancer. Sep 15 2018;143(6):1305-1314. doi: 10.1002/ijc.31527

 

  1. Xu J, Liu W, Liu X, Zhou X, Li G. Alcohol drinking, smoking, and cutaneous melanoma risk: Mendelian randomization analysis. Gac Sanit. 2023;37:102351. doi: 10.1016/j.gaceta.2023.102351

 

  1. Ali Z, Yousaf N, Larkin J. Melanoma epidemiology, biology and prognosis. EJC Suppl. 2013;11(2):81-91.doi: 10.1016/j.ejcsup.2013.07.012

 

  1. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr., Kinzler KW. Cancer genome landscapes. Science. 2013;339(6127):1546-1558. doi: 10.1126/science.1235122

 

  1. Dahl C, Guldberg P. The genome and epigenome of malignant melanoma. APMIS. 2007;115(10):1161-1176. doi: 10.1111/j.1600-0463.2007.apm_855.xml.x

 

  1. Scolyer RA, Long GV, Thompson JF. Evolving concepts in melanoma classification and their relevance to multidisciplinary melanoma patient care. Mol Oncol. 2011;5(2):124-136. doi: 10.1016/j.molonc.2011.03.002

 

  1. Loria D, Matos E. Risk factors for cutaneous melanoma: A case-control study in Argentina. Int J Dermatol. 2001;40(2):108-114. doi: 10.1046/j.1365-4362.2001.01132.x

 

  1. Damsky WE, Bosenberg M. Melanocytic nevi and melanoma: Unraveling a complex relationship. Oncogene. 2017;36(42):5771-5792. doi: 10.1038/onc.2017.189

 

  1. Ribeiro Moura Brasil Arnaut J, Dos Santos Guimaraes I, Evangelista Dos Santos AC, de Moraes Lino da Silva F, Machado JR, de Melo AC. Molecular landscape of hereditary melanoma. Crit Rev Oncol Hematol. 2021;164:103425. doi: 10.1016/j.critrevonc.2021.103425

 

  1. Cakir A, Elcin G, Kilickap S, Gokoz O, Taskiran ZE, Celik I. Phenotypic and genetic features that differ between hereditary and sporadic melanoma: Results of a preliminary study from a single center from Turkey. Dermatol Pract Concept. 2023;13(3):e2023146. doi: 10.5826/dpc.1303a146

 

  1. Zuo L, Weger J, Yang Q, et al. Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nat Genet. 1996;12(1):97-99. doi: 10.1038/ng0196-97

 

  1. Soura E, Eliades PJ, Shannon K, Stratigos AJ, Tsao H. Hereditary melanoma: Update on syndromes and management: Genetics of familial atypical multiple mole melanoma syndrome. J Am Acad Dermatol. 2016;74(3):395- 407; quiz 408-410. doi: 10.1016/j.jaad.2015.08.038

 

  1. Strashilov S, Yordanov A. Aetiology and pathogenesis of cutaneous melanoma: Current concepts and advances. Int J Mol Sci. 2021;22(12):6395. doi: 10.3390/ijms22126395

 

  1. Davis LE, Shalin SC, Tackett AJ. Current state of melanoma diagnosis and treatment. Cancer Biol Ther. 2019;20(11): 1366-1379. doi: 10.1080/15384047.2019.1640032

 

  1. Timar J, Ladanyi A. Molecular pathology of skin melanoma: Epidemiology, differential diagnostics, prognosis and therapy prediction. Int J Mol Sci. 2022;23(10):5384. doi: 10.3390/ijms23105384

 

  1. Gosman LM, Tapoi DA, Costache M. Cutaneous melanoma: A review of multifactorial pathogenesis, immunohistochemistry, and emerging biomarkers for early detection and management. Int J Mol Sci. 2023;24(21):15881. doi: 10.3390/ijms242115881

 

  1. Buja A, Rugge M, Damiani G, et al. Sex differences in cutaneous melanoma: Incidence, clinicopathological profile, survival, and costs. J Womens Health (Larchmt). 2022;31(7):1012-1019. doi: 10.1089/jwh.2021.0223

 

  1. Pandiani C, Beranger GE, Leclerc J, Ballotti R, Bertolotto C. Focus on cutaneous and uveal melanoma specificities. Genes Dev. 2017;31(8):724-743. doi: 10.1101/gad.296962.117

 

  1. Zhang C, Shen H, Yang T, et al. A single-cell analysis reveals tumor heterogeneity and immune environment of acral melanoma. Nat Commun. 2022;13(1):7250. doi: 10.1038/s41467-022-34877-3

 

  1. Zhao Z, Ding Y, Tran LJ, Chai G, Lin L. Innovative breakthroughs facilitated by single-cell multi-omics: Manipulating natural killer cell functionality correlates with a novel subcategory of melanoma cells. Front Immunol. 2023;14:1196892. doi: 10.3389/fimmu.2023.1196892

 

  1. Tirosh I, Izar B, Prakadan SM, et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science. 2016;352(6282):189-196. doi: 10.1126/science.aad0501

 

  1. Li S, Chen L. Multicellular network analysis of melanoma heterogeneity by scRNA-seq. Am J Transl Res. 2023;15(4):2345-2369.

 

  1. Costa GA, de Souza SB, da Silva Teixeira LR, et al. Tumor cell cholesterol depletion and V-ATPase inhibition as an inhibitory mechanism to prevent cell migration and invasiveness in melanoma. Biochim Biophys Acta Gen Subj. 2018;1862(3):684-691. doi: 10.1016/j.bbagen.2017.12.006

 

  1. Kang Z, Wang J, Huang W, Liu J, Yan W. Identification of transcriptional heterogeneity and construction of a prognostic model for melanoma based on single-cell and bulk transcriptome analysis. Front Cell Dev Biol. 2022;10:874429.doi: 10.3389/fcell.2022.874429

 

  1. Deng W, Ma Y, Su Z, et al. Single-cell RNA-sequencing analyses identify heterogeneity of CD8+ T cell subpopulations and novel therapy targets in melanoma. Mol Ther Oncolytics. 2021;20:105-118. doi: 10.1016/j.omto.2020.12.003

 

  1. Yan M, Hu J, Ping Y, et al. Single-cell transcriptomic analysis reveals a tumor-reactive T cell signature associated with clinical outcome and immunotherapy response in melanoma. Front Immunol. 2021;12:758288. doi: 10.3389/fimmu.2021.758288

 

  1. Lian W, Xiang P, Ye C, et al. Single-cell RNA sequencing analysis reveals the role of cancerassociated fibroblasts in skin melanoma. Curr Med Chem. 2024;31(42):7015-7029. doi: 10.2174/0109298673282799231211113347

 

  1. Novotny J, Strnadova K, Dvorankova B, et al. Single-Cell RNA sequencing unravels heterogeneity of the stromal niche in cutaneous melanoma heterogeneous spheroids. Cancers (Basel). 2020;12(11):3324. doi: 10.3390/cancers12113324

 

  1. Sun H, Deng K, Zhou X, et al. A novel gene prognostic signature lymphocyte cytosolic protein 2 regulates melanoma progression by activating tumor-infiltrating CD8+ T-cells through the interferon regulatory factor 5 signaling pathway. Tumor Discov. 2023;2(1):318. doi: 10.36922/td.318

 

  1. Goding SR, Wilson KA, Xie Y, et al. Restoring immune function of tumor-specific CD4+ T cells during recurrence of melanoma. J Immunol. 2013;190(9):4899-4909. doi: 10.4049/jimmunol.1300271

 

  1. Kim J, Kim TJ, Chae S, et al. Targeted deletion of CD244 on monocytes promotes differentiation into anti-tumorigenic macrophages and potentiates PD-L1 blockade in melanoma. Mol Cancer. 2024;23(1):45. doi: 10.1186/s12943-024-01936-w

 

  1. Zhang Y, Bai Y, Ma XX, et al. Clinical-mediated discovery of pyroptosis in CD8+ T cell and NK cell reveals melanoma heterogeneity by single-cell and bulk sequence. Cell Death Dis. 2023;14(8):553. doi: 10.1038/s41419-023-06068-5

 

  1. Shi A, Yan M, Pang B, et al. Dissecting cellular states of infiltrating microenvironment cells in melanoma by integrating single-cell and bulk transcriptome analysis. BMC Immunol. 2023;24(1):52. doi: 10.1186/s12865-023-00587-8

 

  1. Czarnecka AM, Bartnik E, Fiedorowicz M, Rutkowski P. Targeted therapy in melanoma and mechanisms of resistance. Int J Mol Sci. 2020;21(13):4576. doi: 10.3390/ijms21134576

 

  1. Castellani G, Buccarelli M, Arasi MB, et al. BRAF mutations in melanoma: Biological aspects, therapeutic implications, and circulating biomarkers. Cancers (Basel). 2023;15(16):4026. doi: 10.3390/cancers15164026

 

  1. Augustin RC, Newman S, Li A, et al. Identification of tumor-intrinsic drivers of immune exclusion in acral melanoma. J Immunother Cancer. 2023;11(10):e007567. doi: 10.1136/jitc-2023-007567

 

  1. Capparelli C, Purwin TJ, Glasheen M, et al. Targeting SOX10- deficient cells to reduce the dormant-invasive phenotype state in melanoma. Nat Commun. 2022;13(1):1381. doi: 10.1038/s41467-022-28801-y

 

  1. Purwin TJ, Caksa S, Sacan A, Capparelli C, Aplin AE. Gene signature reveals decreased SOX10-dependent transcripts in malignant cells from immune checkpoint inhibitor-resistant cutaneous melanomas. iScience. 2023;26(9):107472. doi: 10.1016/j.isci.2023.107472

 

  1. Randic T, Magni S, Philippidou D, et al. Single-cell transcriptomics of NRAS-mutated melanoma transitioning to drug resistance reveals P2RX7 as an indicator of early drug response. Cell Rep. 2023;42(7):112696. doi: 10.1016/j.celrep.2023.112696

 

  1. Kim S, Carvajal R, Kim M, Yang HW. Kinetics of RTK activation determine ERK reactivation and resistance to dual BRAF/MEK inhibition in melanoma. Cell Rep. 2023;42(6):112570. doi: 10.1016/j.celrep.2023.112570

 

  1. Dong Y, Chen Z, Yang F, Wei J, Huang J, Long X. Prediction of immunotherapy responsiveness in melanoma through single-cell sequencing-based characterization of the tumor immune microenvironment. Transl Oncol. 2024;43:101910. doi: 10.1016/j.tranon.2024.101910

 

  1. Statescu L, Trandafir LM, Tarca E, et al. Advancing cancer research: Current knowledge on cutaneous neoplasia. Int J Mol Sci. 2023;24(13):11176. doi: 10.3390/ijms241311176

 

  1. Rao A, Barkley D, Franca GS, Yanai I. Exploring tissue architecture using spatial transcriptomics. Nature. 2021;596(7871):211-220. doi: 10.1038/s41586-021-03634-9

 

  1. Liu T, Ye J, Hu C, et al. Artificial intelligence-enabled spatially resolved transcriptomics reveal spatial tissue organization of multiple tumors. Tumor Discov. 2024;3(1):2049. doi: 10.36922/td.2049

 

  1. Wang L, Hu Y, Gao L. Adjustment of scRNA-seq data to improve cell-type decomposition of spatial transcriptomics. Brief Bioinform. 2024;25(2):bbae063. doi: 10.1093/bib/bbae063

 

  1. Yang G, Cheng J, Xu J, et al. Metabolic heterogeneity in clear cell renal cell carcinoma revealed by single-cell RNA sequencing and spatial transcriptomics. J Transl Med. 2024;22(1):210. doi :10.1186/s12967-024-04848-x

 

  1. Patel AG, Ashenberg O, Collins NB, et al. A spatial cell atlas of neuroblastoma reveals developmental, epigenetic and spatial axis of tumor heterogeneity. bioRxiv; 2024. doi: 10.1101/2024.01.07.574538

 

  1. Boccacino JM, Dos Santos Peixoto R, Fernandes CFL, et al. Integrated transcriptomics uncovers an enhanced association between the prion protein gene expression and vesicle dynamics signatures in glioblastomas. BMC Cancer. 2024;24(1):199. doi: 10.1186/s12885-024-11914-6

 

  1. Xie J, Deng X, Xie Y, et al. Multi-omics analysis of disulfidptosis regulators and therapeutic potential reveals glycogen synthase 1 as a disulfidptosis triggering target for triple-negative breast cancer. MedComm (2020). 2024;5(3):e502. doi: 10.1002/mco2.502

 

  1. Koutrouli M, Nastou K, Piera Lindez P, et al. FAVA: High-quality functional association networks inferred from scRNA-seq and proteomics data. Bioinformatics. 2024;40(2):btae010. doi: 10.1093/bioinformatics/btae010
Share
Back to top
Eurasian Journal of Medicine and Oncology, Electronic ISSN: 2587-196X Print ISSN: 2587-2400, Published by AccScience Publishing