AccScience Publishing / EJMO / Online First / DOI: 10.36922/ejmo.5385
ORIGINAL RESEARCH ARTICLE

Next-generation sequencing and bioinformatics analysis in breast cancer research: Insights from Western Kazakhstan

Marzhan Aitmagambetova1 Nazar Seidalin2 Dmitriy Babenko3 Gaziza Smagulova4 Saule Balmagambetova1 Arip Koishybaev1 Anar Tulyayeva1 Nurgul Kereyeva1 Dinara Zholmukhamedova1 Azamat Zharylgapov1 Nauryzbay Imanbayev1 Nurgul Ablakimova4,5*
Show Less
1 Department of Oncology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
2 Department of Oncology, Hospital of the Medical Center of the Administration of the President of the Republic of Kazakhstan, Astana, Kazakhstan
3 Scientific Research Center, Karaganda Medical University, Karaganda, Kazakhstan
4 Department of Pharmacology, Clinical Pharmacology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
5 Department of Hospital Pharmacy, Regional Perinatal Center, Aktobe, Kazakhstan
Submitted: 22 October 2024 | Revised: 17 November 2024 | Accepted: 20 November 2024 | Published: 13 December 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Breast cancer (BC) is one of the most prevalent malignancies among women worldwide and a leading cause of cancer-related mortality. Studying gene mutations associated with BC risk in Kazakh women can help identify hereditary predispositions and facilitate early prevention. Next-generation sequencing (NGS) technology was used to sequence 113 candidate genes, followed by bioinformatics analysis, on BC patients from Western Kazakhstan. NGS sequencing revealed 28 polymorphisms from the genome-wide association studies catalog, seven of which were identified as statistically significant risk polymorphisms for BC: RARG (Rs2229774), FGFR2 (Rs2981582), ATM (Rs1800057), MAP3K1 (Rs889312), BRCA2 (Rs11571833), FGFR2 (Rs7895676), and FGFR2 (Rs1219648). Inheritance model analysis showed that the polymorphism in the Rs2981582 of the FGFR2 gene increased the likelihood of developing BC across four inheritance models. The Rs2229774 polymorphism of the RARG gene elevated BC risk in three models, whereas the Rs889312 polymorphism of the MAP3K1 gene did so in two models. The Rs137852985 polymorphism of the BRIP1 gene raised BC risk in four models, and Rs137852576 of the AR gene increased the risk in the codominant model. In a one-factor risk prediction, 32 significant factors were identified, with risks ranging from 69.7% to 90.6%. The combination of polymorphisms “Rs2229774 (AG),” “Rs889312 (AA, CC),” and “Age <54 years” yielded a high-risk assessment (95.8%), with a predictive quality score of 0.88. Overall, NGS sequencing identified six statistically significant gene polymorphisms (ATM Rs1800057, RARG Rs2229774, BRCA2 Rs11571833, MAP3K1 Rs889312, FGFR2 Rs2981582, and BRIP1 Rs137852985) associated with a high risk of BC in Kazakh women.

Keywords
Next-generation sequencing
Breast cancer
Genome-wide association study
Single-nucleotide polymorphism
Bioinformatics analysis
Funding
This research was funded by the Ministry of Education and Science of the Republic of Kazakhstan as part of the project “New Molecular-Genetic Methods for Pre-Symptomatic Diagnosis and Treatment of Several Significant Diseases” (State Registration Number 0117RK00036; Project Leader: Ramazanova B.A., Asfendiyarov Kazakh National Medical University), 2019.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229-263. doi: 10.3322/caac.21834

 

  1. Igissin N, Toguzbayeva A, Khamidullina Z, et al. Epidemiology of breast cancer mortality in Kazakhstan, trends and geographic distribution. Asian Pacific Journal of Cancer Prevention. 2023;24(10):3361. doi: 10.31557/APJCP.2023.24.10.3361

 

  1. Ladd MK, Peshkin BN, Isaacs C, et al. Predictors of genetic testing uptake in newly diagnosed breast cancer patients. J Surg Oncol. 2020;122(2):134-143. doi: 10.1002/jso.25956

 

  1. Roberts E, Howell S, Evans DG. Polygenic risk scores and breast cancer risk prediction. Breast. 2023;67:71-77. doi: 10.1016/j.breast.2023.01.003

 

  1. Yoshida R. Hereditary breast and ovarian cancer (HBOC): Review of its molecular characteristics, screening, treatment, and prognosis. Breast Cancer. 2021;28(6):1167-1180. doi: 10.1007/s12282-020-01148-2

 

  1. Consortium BCA. Breast cancer risk genes-association analysis in more than 113,000 women. N Engl J Med. 2021;384(5):428-439. doi: 10.1056/NEJMoa1913948

 

  1. Abu-Helalah M, Azab B, Mubaidin R, et al. BRCA1 and BRCA2 genes mutations among high risk breast cancer patients in Jordan. Sci Rep. 2020;10(1):17573. doi: 10.1038/s41598-020-74250-2

 

  1. Gao Y, Samreen N, Heller SL. Non-BRCA early-onset breast cancer in Young Women. Radiographics. 2022;42(1):5-22. doi: 10.1148/rg.210109

 

  1. Wood ME, McKinnon W, Garber J. Risk for breast cancer and management of unaffected individuals with non-BRCA hereditary breast cancer. Breast J. 2020;26(8):1528-1534. doi: 10.1111/tbj.13969

 

  1. French JD, Edwards SL. Genetic determinants of breast cancer risk. Curr Opinion Endocr Metab Res. 2020;15:1-7. doi: 10.1016/j.coemr.2020.07.009

 

  1. Kang D, Choi JY. Breast cancer-related low penetrance genes. Adv Exp Med Biol. 2021;1187:419-434. doi: 10.1007/978-981-32-9620-6_22

 

  1. Mulerova T, Ogarkov M. Interethnic associations of increased heart rate as a factor of cardiovascular risk. Part 2: Genetic markers. Eurasian Cardiol J. 2021;(1):88-93

 

  1. Shu J, Hui X, Zheng X, et al. Correlation of FGFR2 rs2981582 polymorphisms with susceptibility to breast cancer: A case-control study in a Chinese population. J Int Med Res. 2019;47(10):4753-4763. doi: 10.1177/0300060519869058

 

  1. Boyarskikh UA, Zarubina NA, Biltueva JA, et al. Association of FGFR2 gene polymorphisms with the risk of breast cancer in population of West Siberia. Eur J Hum Genet. 2009;17(12):1688-1691. doi: 10.1038/ejhg.2009.98

 

  1. Aminkeng F, Bhavsar AP, Visscher H, et al. A coding variant in RARG confers susceptibility to anthracycline-induced cardiotoxicity in childhood cancer. Nat Genet. 2015;47(9):1079-1084. doi: 10.1038/ng.3374

 

  1. Zolk O, Von dem Knesebeck A, Graf N, et al. Cardiovascular health status and genetic risk in survivors of childhood neuroblastoma and nephroblastoma treated with doxorubicin: Protocol of the pharmacogenetic part of the LESS-anthra cross-sectional cohort study. JMIR Res Protoc. 2022;11(2):e27898. doi: 10.2196/27898

 

  1. Abbasi SA, Baig RM, Ahmed MN, et al. MAP3K1 SNP rs889312 potential risk and MAP3K9 SNP rs11628333 menopause dependent association for breast cancer. Turk J Biochem. 2022;47(4):417-423. doi: 10.1515/tjb-2021-0161

 

  1. Easton DF, Pooley KA, Dunning AM, et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature. 2007;447(7148):1087-1093. doi: 10.1038/nature05887

 

  1. Zheng Q, Ye J, Wu H, Yu Q, Cao J. Association between mitogen-activated protein kinase kinase kinase 1 polymorphisms and breast cancer susceptibility: A meta-analysis of 20 case-control studies. PLoS One. 2014;9(3):e90771. doi: 10.1371/journal.pone.0090771

 

  1. Jara L, Gonzalez-Hormazabal P, Cerceno K, et al. Genetic variants in FGFR2 and MAP3K1 are associated with the risk of familial and early-onset breast cancer in a South-American population. Breast Cancer Res Treat. 2013;137(2):559-569. doi: 10.1007/s10549-012-2359-z

 

  1. De Bruin MA, Kwong A, Goldstein BA, et al. Breast cancer risk factors differ between Asian and white women with BRCA1/2 mutations. Fam Cancer. 2012;11(3):429-439. doi: 10.1007/s10689-012-9531-9

 

  1. Ramus SJ, Kote-Jarai Z, Friedman LS, et al. Analysis of BRCA1 and BRCA2 mutations in Hungarian families with breast or breast-ovarian cancer. Am J Hum Genet. 1997;60(5):1242-1246.

 

  1. Krajc M, Teugels E, Zgajnar J, et al. Five recurrent BRCA1/2 mutations are responsible for cancer predisposition in the majority of Slovenian breast cancer families. BMC Med Genet. 2008;9:83. doi: 10.1186/1471-2350-9-83

 

  1. Bray J, Sludden J, Griffin MJ, et al. Influence of pharmacogenetics on response and toxicity in breast cancer patients treated with doxorubicin and cyclophosphamide. Br J Cancer. 2010;102(6):1003-1009. doi: 10.1038/sj.bjc.6605587

 

  1. De Talhouet S, Peron J, Vuilleumier A, et al. Clinical outcome of breast cancer in carriers of BRCA1 and BRCA2 mutations according to molecular subtypes. Sci Rep. 2020;10(1):7073. doi: 10.1038/s41598-020-63759-1

 

  1. Stafford LK, Tang X, Brandt A, et al. Risk of anthracycline-induced cardiac dysfunction in adolescent and young adult (AYA) cancer survivors: Role of genetic susceptibility loci. Pharmacogenomics J. 2024;24(4):21. doi: 10.1038/s41397-024-00343-0

 

  1. Ni Y, Zbuk KM, Sadler T, et al. ARTICLE germline mutations and variants in the succinate dehydrogenase genes in cowden and cowden-like syndromes. Am J Hum Genet. 2008;83:261-268. doi: 10.1016/j.ajhg.2008.07.011

 

  1. Liu M, Xie F, Liu M, Zhang Y, Wang S. Association between BRCA mutational status and survival in patients with breast cancer: A systematic review and meta-analysis. Breast Cancer Res Treat. 2021;186:591-605. doi: 10.1007/s10549-021-06104-y

 

  1. Geerts D, Cusick JK, Connelly L. The tumor necrosis factor superfamily: An increasing role in breast cancer. Front Media SA. 2020;10:622588. doi: 10.3389/fonc.2020.622588

 

  1. Shah I, Silva-Santisteban A, Germansky KA, et al. Association between family history and risk of pancreatic cancer in patients with BRCA1 and BRCA2 pathogenic variants. Pancreas. 2022;51(7):733-738. doi: 10.1097/MPA.0000000000002104

 

  1. Anestis A, Zoi I, Papavassiliou AG, Karamouzis MV. Androgen receptor in breast cancer-clinical and preclinical research insights. Molecules. 2020;25(2):358. doi: 10.3390/molecules25020358

 

  1. Guzman-Arocho YD, Rosenberg SM, Garber JE, et al. Clinicopathological features and BRCA1 and BRCA2 mutation status in a prospective cohort of young women with breast cancer. Br J Cancer. 2022;126(2):302-309. doi: 10.1038/s41416-021-01597-2

 

  1. Collins JM, Isaacs C. Management of breast cancer risk in BRCA1/2 mutation carriers who are unaffected with cancer. Breast J. 2020;26(8):1520-1527. doi: 10.1111/tbj.13970

 

  1. Dastgheib SA, Sayad S, Azizi S, et al. Association between XRCC2 Arg188His polymorphism and breast cancer susceptibility: A systematic review and meta-analysis. Asian Pac J Cancer Prev. 2024;25(1):43. doi: 10.31557/APJCP.2024.25.1.43

 

  1. Fu X, Tan W, Song Q, Pei H, Li J. BRCA1 and breast cancer: Molecular mechanisms and therapeutic strategies. Front Cell Dev Biol. 2022;10:813457. doi: 10.3389/fcell.2022.813457

 

  1. Shahbandi A, Nguyen HD, Jackson JG. TP53 mutations and outcomes in breast cancer: Reading beyond the headlines. Trends Cancer. 2020;6(2):98-110. doi: 10.1016/j.trecan.2020.01.007

 

  1. Pan W, Cheng H, Zhang J, Yang Z, Lin M. The FGFR2 variant rs13387042 is associated with breast cancer risk: A meta-analysis and systematic review. Clin Breast Cancer. 2024;24:552-561. doi: 10.1016/j.clbc.2024.03.009

 

  1. Moyer CL, Ivanovich J, Gillespie JL, et al. Rare BRIP1 missense alleles confer risk for ovarian and breast cancer. Cancer Res. 2020;80(4):857-867. doi: 10.1158/0008-5472.CAN-19-1991

 

  1. Ueno S, Sudo T, Hirasawa A. ATM: Functions of ATM kinase and its relevance to hereditary tumors. Int J Mol Sci. 2022;23(1):523. doi: 10.3390/ijms23010523

 

  1. Stucci LS, Interno V, Tucci M, et al. The ATM gene in breast cancer: Its relevance in clinical practice. Genes (Basel). 2021;12(5):727. doi: 10.3390/genes12050727

 

  1. Mclarty C. A Pilot Study to Identify Links between Genetic Variation and Shoulder Pain and Dysfunction after Breast Cancer Radiotherapy. [Master Thesis]; 2021

 

  1. Khan Y, Khan NU, Ali I, et al. Significant association of BRCA1 (rs1799950), BRCA2 (rs144848) and TP53 (rs1042522) polymorphism with breast cancer risk in Pashtun population of Khyber Pakhtunkhwa, Pakistan. Mol Biol Rep. 2023;50(7):6087-6096. doi: 10.1007/s11033-023-08463-9

 

  1. Svyatova G, Berezina G, Urazbayeva G, Murtazaliyeva A. Frequencies of diagnostically significant polymorphisms of hereditary breast cancer forms in BRCA1 and BRCA2 genes in the Kazakh population. Asian Pac J Cancer Prev. 2023;24(11):3899-3907. doi: 10.31557/APJCP.2023.24.11.3899

 

  1. Aziz MA, Islam MS. MAP3K1 rs889312 polymorphism and cancer prognosis: A systematic review and meta-analysis. Cancer Rep (Hoboken). 2023;6(1):e1773. doi: 10.1002/cnr2.1773

 

  1. Shanazarov N, Zhapparov Y, Kumisbekova R, Turzhanova D, Zulkhash N. Association of gene polymorphisms with breast cancer risk in the Kazakh population. Asian Pac J Cancer Prev. 2023;24(12):4195-4207. doi: 10.31557/APJCP.2023.24.12.4195

 

  1. Wang L, Deng L, Yuan R, Liu J, Li Y, Liu M. Association of matrix metalloproteinase 9 and cellular fibronectin and outcome in acute ischemic stroke: A Systematic Review and Meta-Analysis. Front Neurol. 2020;11:523506. doi: 10.3389/fneur.2020.523506
Share
Back to top
Eurasian Journal of Medicine and Oncology, Electronic ISSN: 2587-196X Print ISSN: 2587-2400, Published by AccScience Publishing